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Abstract. In this paper, we investigate several data reduction schemes
to improve the computational efficiency in the multi reference configu-
ration interaction (MR-CI) method, one of the main quantum chemical
approaches for solving the electronic Schrödinger equation. The basic
idea is to take advantage of the often relatively low accuracy require-
ments on the solution of the resulting large eigenvalue problem, whose
dimension may reach several hundred millions or even more. We will dis-
cuss some approaches to reduce the amount of data to be accessed and
to be transferred within the Davidson subspace diagonalization method.
We also show experimental results achieved with the COLUMBUS code.

1 Introduction

Quantum chemical methods provide very important procedures for the com-
putation of molecular properties and for the computer simulations of chemi-
cal reactions which cannot be solved exactly. They are based on the electronic
Schrödinger equation; a complicated many-particle differential equation, which
cannot be solved analytically. Therefore, numerical approximations have to be
used. These are usually very involved, extremely time consuming and require
very large amounts of data flow.

In this paper, we focus on the multireference configuration interaction (MR-
CI ) approach [9]. It allows for accurate calculations of molecular systems based
on the original many-particle Schrödinger equation. The MR-CI method is es-
pecially important in “difficult” cases, e. g., for the calculation of dissociation
processes and electronically excited states.

A basis expansion of the many-particle wave function leads to an eigenvalue
problem of enormous size. Although the Hamiltonian matrix H of this eigenprob-
lem is very sparse, its dimension n can easily reach several hundred millions or
even billions. H tends to be diagonally dominant and usually very few eigenpairs
(or only a single one) need to be computed.

Given this setup, the Davidson method is a suitable approach for solving
problems of this type numerically. However, in contrast to the matrix H , the
subspace vectors and the Ritz vectors arising in this process are in general dense,
and not sparse. Due to their enormous dimension, simply storing and handling
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I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2005, LNCS 3743, pp. 564–571, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Data Reduction Schemes in Davidson Subspace Diagonalization for MR-CI 565

those vectors becomes a major performance bottleneck. This is especially severe
when solving the eigenproblem in parallel (which is required for large problems
of interest), because intensive memory accesses and transfer of huge amounts of
data leads to an often prohibitive communication overhead. The data reduction
approach developed in this paper will help to overcome these problems.

Related Work. In earlier work, Dachsel and Lischka [2] have developed first
ideas for a data compression approach in the Davidson subspace diagonaliza-
tion. They propose bitwise data reduction in the subspace vectors based on an
estimator for the resulting error. Their approach assumes diagonal dominance of
the matrix H . Alternative approaches based on fixed-point truncation schemes
have been developed by Harrison and Handy [4], Knowles [5], and Olson [8].

In this paper, we analyze and extend the approach of Dachsel and Lischka,
we compare it with various newly developed error estimators, and also discuss
aspects related to the implementation of such schemes. Moreover, based on nu-
merical experiments with the COLUMBUS code [6, 7], we also give some insight
into how much data reduction can be achieved in practical situations.

2 Multi Resolution Configuration Interaction

The stationary, nonrelativistic, clamped-nuclei, electronic Schrödinger equation
is given as

HΨ = EΨ

with the total Hamiltonian H =
∑

i hi +
∑

i<j gij + Vkk, where hi is the one-
electron operator for electron i containing the kinetic energy and Coulomb at-
traction, gij is the electron-electron repulsion term, Vkk is the nuclear repulsion
and Ψ is the many-electron wave function.

Expanding Ψ into a many-electron basis (configurations state functions {Φi})
and applying the Ritz variational principle leads to the matrix eigenproblem

Hc = Ec (1)

with symmetric H ∈ R
n×n, where n tends to be extremely large (several hun-

dred millions up to a billion). H is sparse, but it is prohibitively costly (in terms
of computation as well as in terms of storage requirements) to construct it ex-
plicitly (Hst = 〈Φs|H|Φt〉). Usually, the lowest eigenpair (or a few of the lowest
eigenpairs) of H need to be computed.

2.1 Davidson Subspace Diagonalization

Given the properties of the eigenproblem (1), Davidson’s method [3, 1] is a suit-
able approach for solving it. The basic structure of this method is shown in
Algorithm 1. Starting with an initial vector v0 or subspace V0, a basis for a
(small) subspace V is constructed, in which approximations (Ē, u) of the desired
eigenpairs (E, c) can be computed cheaply (r denotes the associated residual).
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Davidson [3] suggested to expand this basis in each iteration by the solution of
the correction equation shown in Algorithm 1. This procedure is very successful
for strongly diagonally dominant H .

Algorithm 1. Basic structure of Davidson subspace diagonalization
V = V0, W = HV0, v = v0
repeat

w = Hv, V = [V, v], W = [W, w]
H̄ = V �HV = V �W . . . projected matrix
[Ē, α] = eig(H̄, V �V ) . . . Ritz value and Ritz vector
u = V α, r = Hu − Ēu
solve

[
diag(H) − Ē

]
v = r for v . . . correction equation

reduce V, W if necessary
until |r| < tol
return Ē ≈ E, u ≈ c

2.2 Limitations

Davidson’s method requires the storage and retrieval of the n-dimensional vec-
tors spanning the subspaces V and W . Due to their size, these vectors are ei-
ther stored on external disk devices or—in particular for parallel calculations—
distributed over the memory of the individual nodes. Storage and retrieval of
such large amounts of data constitutes a serious communication bandwidth bot-
tleneck. Moreover, the subspace vectors and their memory requirements are the
origin of serious limitations in parallel calculations. Although I/O requirements
have been reduced significantly [10], the problem still remains. Therefore, reduc-
tion of the memory requirements for storage of the subspace vectors by means of
data reduction schemes as described in this paper will lead to substantial allevi-
ation of the bandwidth problem and, in parallel computations, will free memory
needed for the local computation of the matrix-vector product Hv.

3 Data Reduction

The basic idea investigated in this paper is the following: Based on an accuracy
tolerance τ determined by the user, reduce the amount of data to be stored for
the v and w vectors in Davidson’s method. The larger τ the more significant the
data reduction. This reduction of data to be stored obviously also corresponds
to a reduction of data accesses and transfers, which is especially important in
parallel calculations.

In order to guarantee satisfactory accuracy of the computed spectral infor-
mation of H , we develop error estimators and bounds for controlling the errors
in E and c due to suggested perturbations in v and w. The main focus in this
paper is on controlling the error in the energy E, analysis of the corresponding
error in c is the subject of ongoing work.
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3.1 Error Estimators and Bounds

One approach for deriving estimators of the effect of the data reduction on the
computed energy is to examine the difference ∆Ē := Ē − E. By definition,

∆Ē =
u�Hu

u�u
− c�Hc

c�c
.

Neglecting third and higher order terms in the Taylor series expansion with
respect to u around c (u = c + ∆u) leads to (first order terms are zero !)

∆Ē ≈ ∆u�(H − EI)∆u . (2)

From this relation, several estimators can be derived. In the following, we use
the notation e := (1, . . . , 1) and for a matrix A we define |A| by taking absolute
values elementwise, that is, |A|ij := |Aij |.

Dachsel and Lischka [2] have proceeded by replacing the unknown eigenvalue
E by the Ritz value Ē and the matrix H by its diagonal D in (2) which yields

∆Ē ≈ EstDaLi := ∆u�(D − ĒI)∆u =
∑

i

∑

j

(Di − ĒI)∆ui∆uj

With an upper bound on the componentwise perturbation in the vector u,
|∆ui| ≤ β, this leads to the bound

|∆Ē| ≈ |EstDaLi| ≤ β2
∑

i

∣
∣Di − ĒI

∣
∣

Asking for ∆Ē < τ consequently corresponds to requiring

β <

√
τ

e�
∣
∣D − ĒI

∣
∣ e

. (3)

Alternatives. The estimator constructed in [2] relies on two approximations:
E is replaced by the Ritz value Ē in (2) (which may not always be appropriate
because this is precisely the error to be estimated), and H is replaced by its
diagonal D (which requires diagonally dominant H). Pursuing a more general
approach, we can rewrite (2) as

∆Ē ≈ ∆u� (
H −

(
Ē − ∆Ē

)
I
)
∆u,

leading to the estimator EstH

∆Ē ≈ EstH :=
∆u�(H − ĒI)∆u

1 − ∆u�∆u
. (4)

In the following we assume that 1 − ∆u�∆u > 0 which implies |∆ui| <
√

1/n.
With this additional constraint we derive analogously to before an upper bound
for the allowable componentwise perturbation in u:

β <

√
τ

e�
∣
∣H − ĒI

∣
∣ e + nτ

. (5)
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If the matrix H happens to be diagonally dominant (as it tends to be the case
in the MR-CI context), we can derive an estimator EstD by replacing H with
its diagonal D in (4), leading to the bound

β <

√
τ

e�
∣
∣D − ĒI

∣
∣ e + nτ

. (6)

Finally, we describe a fourth approach. Using the fact that due to the construc-
tion of the Davidson eigenvectors from a generalized eigenvalue problem ||u|| = 1,
we have

|∆Ē| = |c�Hc − u�Hu| = |(u + ∆u)�H(u + ∆u) − u�Hu| . (7)

Based on (7) we require
∣
∣∆Ē

∣
∣ = |Estq| :=

∣
∣2∆u�Hu + ∆u�H∆u

∣
∣ < τ .

Analogously to before, this corresponds to requiring

β < −e�|Hu|
e�|H |e +

√(
e�|Hu|
e�|H |e

)2

+
τ

e�|H |e . (8)

3.2 Implementation

Several aspects related to the efficient implementation of the concepts developed
so far deserve some more detailed discussion.

Evaluation of Bounds. For performance reasons, the Hamiltonian matrix H
is not constructed explicitly in the context of MR-CI calculations. For the same
reasons, we introduce some additional simplifications in order to reduce the
computational effort for evaluating the estimators and bounds derived before.

Our formulation of the bounds (3), (5), (6), and (8) is based on applying the
triangle inequality, which leads to expressions with sums of absolute values to
be evaluated in every iteration (because Ē changes). To further improve perfor-
mance, we approximate the sums of absolute values by the absolute value of the
sums in those bounds. Based on this simplification, we have to evaluate these
sums only once during the entire process, and information from the huge matrix
H only needs to be accessed once. This approximation tends to work well in our
context since we need to approximate the smallest eigenvalue(s) E of H . Due
to the fact that almost all diagonal entries Di of H tend to have the same sign
and due to the diagonal dominance of H ,

∑
i |Di − Ē| ≈ |

∑
i Di − Ē|.

Implementation of Data Reduction. The information about allowable per-
turbations in the u vectors contained in the bounds (3), (5), (6), and (8) can be
translated into bitwise reductions in the mantissas of the entries in the v and
w vectors as described in [2]. In this paper, we compare this approach with an
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elementwise data reduction strategy, where vector entries with absolute value
below a certain threshold (determined by the bounds) are eliminated, whereas
all entries above this threshold are stored with full precision.

The advantage of elementwise reduction is that it can be implemented more
easily and more efficiently, the disadvantage is that the data reduction achieved
is always lower than or at best equal to that of bitwise reduction. Experimental
evidence presented in Section 4 shows that the memory requirements with ele-
mentwise data reduction can actually be significantly higher than with bitwise
data reduction.

4 Experiments

In this section we present some experimental evidence that the amount of data
reduction achieved in practice is significant.

Test Case. We evaluated the effect of data reduction with the different estima-
tors and bounds (3), (5), (6), (8) for a “small” but representative test problem
of dimension n = 14558 computing the MR-CI energy and wave function for the
Ethylene molecule C2H4.

The calculations were performed with the COLUMBUS program system, a
collection of programs for high-level ab initio molecular electronic structure cal-
culations [6, 7]. Double precision accuracy, i. e., a mantissa length of 52 bits,
was used, the threshold for the stopping criterium for the Davidson subspace
method was set to tol = 10−4, and the tolerance τ for the data reduction was
set to τ = 10−8.

Convergence History. Fig. 1 illustrates that the artificial perturbations in-
troduced in the vectors v and w of Davidson’s method hardly influence its con-
vergence behavior. In our test case, only one additional iteration step is required
until convergence for all versions of data reduction. Moreover, it can be observed
that for the test case considered the various estimators and bounds hardly differ.

|∆Ē|DaLi,D,H,q

|∆Ē| no reduct.
|∆u|DaLi,D,H,q

|∆u| no reduct.
EstH

EstDaLi,D,q

Convergence History

Iteration

10987654321

10−8

10−6

10−4

10−2

1

102

Fig. 1. Convergence history of Davidson’s method with data reduction (based on var-
ious estimators and bounds) as well as without data reduction
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BW: DaLi,H,D
BW: q

EW: DaLi,D,H
EW: q

no reduction

Storage Requirements (accum.)

Iteration

[b
it

]

25%

50%

75%

100%

1086420

1.4 · 107

1.2 · 107

1.0 · 107

8.0 · 106

6.0 · 106

4.0 · 106

2.0 · 106

Fig. 2. Accumulative representation of the number of bits to be stored for different
variants of data reduction (elementwise “EW”, bitwise “BW”, various estimators and
bounds) as well as without data reduction

Storage Savings. In this example, we focus on achieving maximum storage
efficiency, which means that per vector only one additional compression factor,
representing the maximum difference between a vector entry and its value after
data reduction, is stored. The actual length of the mantisse of each vector entry
can then be calculated using this factor and the exponent of the entry. The
starting vector for the Davidson procedure is created by diagonalizing a reference
subspace. Most of the entries in this vector are zero. Therefore, this vector is
submitted to the data reduction process at the beginning of the calculation as
well.

Fig. 2 illustrates very high savings in storage requirements from bitwise data
reduction. In contrast, for this test case the benefits of elementwise data reduc-
tion are much smaller.

5 Conclusions

A data reduction strategy for reducing the data transfer during the solution of
the high dimensional eigenvalue problem arising in the MR-CI method for solv-
ing the electronic Schrödinger equation has been investigated. It is based on the
estimation of the error in the eigenvalues resulting from componentwise pertur-
bations in the subspace vectors. We have evaluated an earlier data compression
scheme introduced by Dachsel and Lischka [2] and compared it to new alterna-
tives based on new error estimators. Using the COLUMBUS program package,
the following observations could be made for a realistic test case: (i) the data
reduction achieved hardly depends on the specific error estimator used, (ii) with
bitwise data reduction, the amount of data to be handled can be reduced to
about one fourth, and (iii) for the test case considered, bitwise data reduction
is much more attractive than elementwise reduction.

Current and future research investigates how this data reduction is best trans-
lated into performance gains in terms of actual runtime reductions. First expe-
riences indicate that even for relatively fast communication, runtime reductions
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may be achieved if data reduction is beyond (roughly) 50% (even earlier for
slower communication). We need to point out that the potential benefits from
our technique presented here do not only come from reducing runtimes, but,
sometimes even more important, from making the solution of problems feasible
which could not be handled before due to storage restrictions. Nevertheless, we
will also investigate alternative (and more efficient) implementation strategies
beyond the elementwise and bitwise reduction discussed here.
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P.G., Brown, F.B., Ahlrichs, R., Böhm, H.J., Chang, A., Comeau, D.C., Gdanitz,
R., Dachsel, H., Ehrhardt, C., Ernzerhof, M., Höchtl, P., Irle, S., Kedziora, G., Ko-
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