Competitive Strategies for Online Cloud
Resource Allocation with Discounts

The 2-Dimensional Parking Permit Problem

Xinhui Hu', Arne Ludwig?, Andrea Richa!, Stefan Schmid?
! Computer Science, SCIDSE, Arizona State University, Tempe, AZ 85287, USA
2 TU Berlin, Germany ® Telekom Innovation Laboratories (T-Labs), Germany

Abstract—Cloud computing heralded an era where re-
sources can be scaled up and down elastically and in an on-
line manner. This paper initiates the study of cost-effective
cloud resource allocation algorithms under price discounts,
using a competitive analysis approach. We show that for
a single resource, the online resource renting problem can
be seen as a 2-dimensional variant of the classic online
parking permit problem, and we formally introduce the
PPP? problem accordingly. Our main contribution is an
online algorithm for PPP? which achieves a deterministic
competitive ratio of &£ (under a certain set of assumptions),
where k is the number of resource bundles. This is almost
optimal, as we also prove a lower bound of k/3 for any
deterministic online algorithm. Our online algorithm makes
use of an optimal offline algorithm, which may be of
independent interest since it is the first optimal offline
algorithm for the 1D and 2D versions of the parking permit
problem. Finally, we show that our algorithms and results
also generalize to multiple resources (i.e., multi-dimensional
parking permit problems).

I. INTRODUCTION

As the Internet becomes increasingly virtualized, re-
sources can be allocated more flexibly and at large
scale. Virtualization not only introduces an Internet-wide
resource market, but also new business models. For
example, a startup company running a webservice no
longer needs to invest in its own infrastructure, but can
dynamically lease cloud resources to provide the service
to its users in a cost-efficient manner. Also a hybrid
model is possible where the cloud resources are just
used to complement a limited own infrastructure in peak
demand times (a.k.a. “cloud bursting”). New business
models are also introduced by resource brokering oppor-
tunities: a broker may lease a large amount of resources
from different providers and resell them to its customers
(at a higher price).

This paper studies the problem of a (cloud) customer
who rents resource bundles from a (cloud) provider, in
order to offer a certain service to its users (or to resell
the resources). The customer is faced with the challenge

that its resource demand is not known in advance (e.g.,
it depends on the popularity of its website). In order
to ensure that its resource demand is satisfied at any
time, and in order to avoid a costly over-provisioning of
the service, additional resources must be bought in an
online manner. The online resource allocation problem
may further be complicated by the fact that the provider
offers discounts for larger and longer resource contracts.

The goal of the customer is to come up with a
smart resource renting strategy to satisfy its dynamic
and unpredictable resource demand, while minimizing
the overall costs of the bought resource bundles.

Our Contributions. This paper shows that at the heart
of efficient cloud resource allocation lies a fundamental
algorithmic problem, and makes the following contri-
butions. We first observe that the problem of renting a
single resource over time can be seen as a 2-dimensional
variant of the well-known online Parking Permit Problem
(PPP). While in the classic parking permit problem,
only the contract durations need to be chosen, in the 2-
dimensional variant PPP? introduced in this paper, also
the resource rates are subject to optimization.

Our main contribution is the deterministic online al-
gorithm ON2D whose performance is close to the one
of a clairvoyant optimal offline algorithm which knows
the entire resource demand in advance: given some
simplifying assumptions (stated in Section II), ON2D
provably achieves a competitive ratio of O(k), where k
is the total number of available resource contracts; this
is asymptotically optimal in the sense that there cannot
exist any deterministic online algorithm with competitive
ratio o(k).

We also give a constructive proof that the offline
variant of the PPP2 problem can be solved in polynomial
time, by presenting a dynamic programming algorithm
OFF2D accordingly. To the best of our knowledge,
OFF2D is also the first offline algorithm to efficiently
solve PPP and PPP? for long enough request sequences.

= Cs
g /\ Cy
o a (]
| 1
Unpredictable g Cy,C,2-Cs
demand —— i
-~
w(C1) + w(Cs)
Customer covers +2-7(Cs) Provider offers
demand different contracts
Figure 1. Overview of the model: A customer has to cover its

resource demand o by buying contracts C = {C1,Ca,...,Cy} from
the provider. Larger contracts C; come with a price discount (price
w(C5)).

OFF2D is used as a subroutine in ON2D.

Finally, we show that our algorithms and results also
generalize to multi-resource scenarios, i.e., to higher-
dimensional parking permit problems.

Paper Organization. The remainder of this paper
is organized as follows. Section II formally introduces
our model. Section III presents our online algorithm.
Section IV discusses an example and provides intuition
for the analysis, and Section V presents the general
analysis. We show that our algorithm is almost optimal
by deriving a lower bound in Section VI. Section VII
presents a polynomial-time optimal offline algorithm,
and Section VIII shows how to extend our results from
2-dimensions to D-dimensions (for a constant D). We
report on simulation results in Section IX, review re-
lated literature in Section X, and conclude our work in
Section XI.

II. MODEL

We attend to the following setting (for an illustration,
see Figure 1). We consider a customer with a dynami-
cally changing resource demand. We model this resource
demand as a sequence o = (o), where oy refers to
the resource demand at time ¢. We use & to denote
max; o¢. The customer is faced with the challenge that
its future resource requirements are hard to predict, and
may change in a worst-case manner over time: We are in
the realm of online algorithms and competitive analysis.

In order to cover its resource demand, the customer
buys resource contracts from a (cloud) provider. For
ease of presentation, we will focus on a single resource
scenario for most of our paper; however, we will also
show that our results can be extended to multi-resource
scenarios. Concretely, we assume that the provider offers
different resource contracts C(r,d) of resource rate r
and duration d. We will refer to the set of available
contracts by C = {C1,Cs,...,Cy}. Each contract type
has a price m(C) = 7(r,d), which depends on its rate
r(C) = r and its duration d(C) = d. We will assume

that resource contracts have a monotonically increasing
rate-duration product r x d, and will denote by C; the
it" largest contract.

A specific contract instance of type C; will be de-
noted by Ci(]) for some index 4. Each instance C’i(])
of contract type C;(r,d) has a specific start time tgj),
and we will sometimes refer to a contract instance
by C9(t9) r; d;). The identifiers are needed since
multiple contracts of the same type can be “stacked”
in our model, but will be omitted if the contract is clear
from the context.

We will make three simplifying assumptions:

Al Monotonic Prices: Prices are monotonically in-
creasing, i.e., larger contracts are more expensive
than shorter contracts: 7(C;_1) < w(C;) since
ri—1 X di—1 < 71; X d; for any 1.

A2 Multiplicity: The duration and resource rate of a
contract of type C;(r;,d;) are perfect multiples
of the duration and rate, respectively, of contract
Ci—1(ri—1,d;—1). That is, we assume that d; =
x-d;—q and r; = y-r;_1 for fixed bases z,y > 2.
Moreover, without loss of generality (w.lo.g.), we
will assume that the smallest contract has d; = 1
and r, = 1.

A3 Intervals: We assume that a contract of duration d
can only be bought at time ¢y 4% - d, where {g = 0
is the start time.

Assumption Al is natural: contracts which are dom-
inated by larger, cheaper contracts may simply be ig-
nored. Assumption A2 restricts the variety of available
contracts the customer can choose from, and constitutes
the main simplification made in this paper. Assump-
tion A3 mainly serves the ease of presentation: as we
will prove in this paper (and as it has already been shown
for the classic Parking Permit Problem [13]), an offline
or online algorithm limited by the interval model is at
most a factor of two off the respective optimal solution
in the general model.

Now, let ON be some online algorithm, let C;(ON)
denote the set of contracts bought according to ON
at time ¢ and let C<;(ON) denote the set of contracts
bought according to ON through time ¢. We will use the
notation C; (ON) C C<;(ON) to describe the set of active
contracts at time ¢: i.e., contracts C;(t;,7;,d;) bought
by ON with ¢; <t < t; + d;. Likewise we denote the
set of contracts bought by an optimal offline algorithm
OFF to cover the demand prefix o1, ...,0; until time ¢
by C<:(OFF).

Since a correct algorithm must ensure that there are
always sufficient resources to cover the current demand,
the invariant ZC(r,d)ec;(ON) r > oy must hold at any

moment of time t. We will use the omne-lookahead
model [3] frequently considered in online literature, and
allow an online algorithm to buy a contract at time ¢
before serving the request o; however, ON does not have
any information at all about oy for ¢’ > t.

The goal is to minimize the overall price m,(ON) =
> cec,(on T(C). More specifically, we seek to be
competitive against an optimal offline algorithm and
want to minimize the competitive ratio p of ON: We
compare the price m,(ON) of the online algorithm ON
under the external (online) demand o, to the price
7o (OFF) paid by an optimal offline algorithm OFF,
which knows the entire demand o in advance. For-
mally, we assume a worst-case perspective and want
to minimize the (strict) competitive ratio p for any o:
p = max, 7y (ON) /7, (OFF).

We are interested in long demand sequences o; in
particular, we will assume that the length of o, |0, is at
least as large as the largest single demand o,.

Our problem is a new variant of the classic Parking
Permit Problem PPP [13], which we review quickly in
the following. In PPP, a driver has to choose between k
parking permits of different durations and costs in order
to satisfy all of his/her parking needs while minimizing
the total cost paid. More precisely, the driver has a
sequence of days when he/she needs a parking space at a
parking garage and there are k different parking permits,
where each parking permit P; allows the driver to use
one parking space for d; consecutive days at a cost of
¢;. In the online version of the problem, the sequence of
days when the driver will need a parking space is not
known in advance.

III. COMPETITIVE ONLINE ALGORITHM

This section presents the deterministic online algo-
rithm ON2D for the PPP? problem. As a subroutine,
in order to determine which contracts to buy at time
t, ON2D uses an optimal offline algorithm OFF2D
that computes optimal contracts for a prefix o<; of
the demand through time ¢. In this section, we will
treat OFF2D as a black box, but we will describe a
polynomial-time construction later in Section VII of the
paper.

In order to formally describe and analyze our algo-
rithm, we propose a scheme that assigns bought contracts
to the 2-dimensional time-demand plane. Our model
requires that each point below the demand curve o is
covered by a contract, i.e., the mapping of contracts to
demand points must be surjective.

We pursue the following strategy to assign contracts
to the time-demand plane: at any time ¢, we order the
set of active contracts by their duration, and stack the

A
Cy
=l
o
&
£(Cs
el
Co
(- I A
di dy d3 dy ds
time
Figure 2. Worst-case example where oy = 1 Vt¢. While OFF2D,

at time ds, buys a single contract C's, ON2D is forced to buy all the
depicted contracts, in addition to C’s. For instance, ON2D buys C in
every second time step.

active contracts in such a way that longer contracts are
embedded lower in the plane, i.e., the longest running
contract C;(r;,d;) covers the demand from 1 to r;, the
next shorter contract C;(r;,d;) then covers the demand
r; +1 to r; + r;, and so on. This guarantees a unique
mapping of a demand point p(time, demand) at time ¢
to a contract C; for the offline algorithm.

Algorithm 1 Online Algorithm ON2D
Input: Demand prefix o<; = 01,09, ..., 0¢; set of con-
tracts C<;—1 (ON2D) bought by ON2D through time
t—1
Output: Contracts to be bought at time ¢: C,(ON2D)
1: C<¢(OFF2D) - OFF2D(01, 09, ..., 0¢)
2: for C € C<,(OFF2D) do
3: if 3 demand point p covered by C such that p is
not covered by C<;_1(ON2D) then
4: C:(ON2D).add(C)
5: return C,(ON2D)

Our online algorithm ON2D (see Algorithm 1) is
based on an oracle OFF2D computing optimal offline
solutions for the demand so far. ON2D uses these
solutions to purchase contracts at time ¢. Concretely,
ON2D mimics the offline algorithm in an efficient way,
in the sense that it only buys the optimal offline con-
tracts covering time ¢ if the corresponding demand is
not already covered by contracts bought previously by
ON2D: At each time ¢, ON2D compares the set of
previously bought contracts C<;—1(ON2D) with the set
of contracts C<;(OFF2D) that OFF2D would buy for
an offline demand sequence o7, ..., 03; ON2D then only
buys the contracts C' € C<;(OFF2D) for the demand at
time ¢ that is not covered by C<;_1(ON2D).

1V. EXAMPLE

In order to provide some intuition of the behavior
of ON2D, as a case study, we consider the special
scenario where contracts are perfect squares, i.e., C; =
(2¢=1,2¢=1), and where the contract prices have a spe-
cific discount structure, namely 7 (C;) = 2 - C;_;, with
m(Cy) = 1. This price function ensures that OFF2D will
buy at most one C; contract before it is worthwhile to
buy the next larger contract C';; for the given time
interval.

Let us now study the maximal cumulative price IT(C;).
It is easy to see that under the price function above,
the demand sequence o with a constant demand of one
unit per time, maximizes I1(C;) for C; = (2071, 2¢71)
and 7(C;) = 2 - C;_1: higher demands imply missed
opportunities to charge ON2D for smaller contracts, as
already a demand of two at given time ¢ renders it
worthwhile to buy C5, and a demand of four renders
it worthwhile to buy Cj, etc.

With the given demand o, OFF2D will end up buying
each of the smaller contracts once before it buys the
next larger contract. The cumulative price derived from
o according to this behavior is II(C;) = Z’ L) +
7m(C;). We prove this claim by induction over the con-
tract types 4. For the base case ¢ = 1, II(C;) = n(C})
holds trivially. Assuming the induction hypothesis for ¢
we have:

II(Ciy1) = Z I(C;5) + m(Cit1)
j=1
1—1
= I(C)) + TI(Cy) + m(Ciy1)
j=1
i—1
TP S ey +
j=1

i—1

> I(Cy) + 7(Ch) +

j=1

T(Cit1)

Due to the induction hypothesis, the cost of a quarter
of 2¢T1 x 2¢1 i maximized for El LIL(C) + 7 ().
In order to maximize the cost in the second quarter (at
the bottom of the time-demand plane) OFF2D would
need to buy Z;;ll II(C;) again, and instead of buying
a second contract C;, the pricing scheme requires the
purchase of contract C; 1. Therefore, buying the same
contracts again (despite C;) must lead to II(Cj;1) =
22:1 I(C;) + 7(Citr).

In summary, we have derived a worst-case sequence
o for the considered price function, for which ON2D is
k-competitive.

Theorem 1. For the special setting considered in our
case study, ON2D is k-competitive.

Proof: Consider the discussed worst-case sequence
o, where ON2D has to buy every contract (total cost
I1(C;)) while OFF2D can simply buy C; at price 7(C;).
We can show that II(C;) < 4 - 7(C;) and hence
II(C;) < k- 7(C;). According to the observed behavior
of OFF2D, every second contract bought by ON2D is
C1 (272 times), every fourth is Co (272 times), etc.,
and finally ON2D also buys C;. See Figure 2 for an
example. Thus,

I(C;) =202 . n(C1) + 2073 - w(C2) +--- +1-7(Cy)
—9i=2.90 4 9i=8 9l 4 . 4 gi—i, 9i=2 4 1 gi—l
S21‘—1+2z‘—1Jr2i—1+__.+27;—1+2¢—1

=i-27 =4 n(Cy)

V. ANALYSIS: UPPER BOUND

With these intuitions in mind, we now present a
general analysis of ON2D. First, we derive some simple
properties of the contracts bought by the optimal offline
algorithm OFF2D over time. Let us fix an arbitrary
demand point p, i.e., a point below the o-curve in the
time-demand plane. We make the following claim: if p is
covered by a certain contract C' in C<,(OFF2D), p will
never be covered by a smaller contract C’ in Cy» (OFF2D)
for any ¢’ > ¢. In other words, when considering a longer
offline demand sequence o074, ..., 0y, OFF2D will never
buy a smaller contract than C' to cover the demand point
p. This property of “growing contracts” together with the
assumption of disjoint intervals motivates the notion of
contract independence, which we formalize in the lemma
below:

Lemma 1 (Contract Independence). Consider a demand
point p; covered by contract C; € C<;(OFF2D) and a
demand point p; covered by a distinct contract C; €
C<((OFF2D). Then there does not exist a contract C' €
Cy (OFE2D) for any t' < t such that p;,p; are covered
by C. We say that the two contracts C; and C; are
independent.

Independence between contracts is trivially ensured in
our model. This allows us to introduce a simple charac-
terization of the scenarios maximizing the competitive
ratio.

Lemma 2. The competitive ratio is maximized in a
scenario where OFF2D buys only one contract to satisfy
the entire demand o.

Proof: By contradiction. Assume OFF2D buys more
than one contract, say C; and C;. Now assume that over
time, ON2D buys a set of (possibly smaller) contracts

Ciry,Ciry ...
ngCj/g...

to cover the demand points of C; and
to cover the demand points of C;. Thus,
ON2D pays 7(C;)+n(Cy)+...and 7(C;)+7(Cjr)+. ..
whereas OFF2D pays «(C;) and 7(C}); the resulting
competitive ratio is po, = (7(C;)+7(Cir)+...)/7(C})
for the C; part and pc, = (7(C;)+n(Cyr)+)/7r()
respectively. Since all contracts in OFF2D are inde-
pendent, the competitive ratio p of OFF2D will be
max{pc,, pc, },» which would also be the case if the
larger contract was the only one bought by OFF2D. ®

We hence want to show that ON2D will never buy
too many small contracts to cover a demand for which
OFF2D would later only buy one contract. Concretely, let
us fix any contract C; € C<;(OFF2D), and let us study
the set of contracts S bought by ON2D during the time
interval [0,¢) which overlap with C; in the time-demand
plane. Recall that S will only contain distinct instances
of the contracts (since ON2D does not buy “repeated”
contracts) and it will be contained in Uy ,Cy (OFF2D).
By the interval and independence property, we know that
contracts in S are all “inside” C}, i.e., do not exceed its
boundary in the plane. Accordingly, we can compute an
upper bound on the maximum cumulative price spent on
contracts in .S by ON2D while OFF2D at time ¢ only
bought a single contract C; at price 7. In the following,
let us refer to this cumulative price paid by ON2D by

I(C;) = Zces m(C).

Lemma 3. The maximum cumulative price paid by
ON2D fto cover a contract C;, I1(C;), is less than or
equal to i - 7(C;), for any i > 0.

Proof: Consider a contract C; € C<;(OFF2D)
and S as defined above. Let ¢ be such that ON2D
has bought ¢ contracts C;_; to cover the area of C;

during time [0,t), where 0 < £ < % For all
other C' € S, we must have C' € {Cy,...,C;_2}. Let

={C €S, st. C € {C1,...,Ci_2}}. Hence we
have » g m(C) < 7(C;) —£-m(C;_1), since the area
covered by all contracts in .S is at most equal to the area
covered by Cj, and given Assumption Al. We argue by

induction on 1.

Base case 7 = 1: If there is just one type of contract
C1, the online algorithm will buy the same contracts as
the offline algorithm, and the claim holds trivially.

Inductive step © > 1: Assuming the induction hypoth-
esis holds for all j < i, we have:

(C;) = - TI(Cy_1) + 7(C.

)+ Z (p)

CJ(P)esl
SO (i—-1) m(Cim) +m(C)+ Y. Gw(C)
C;P)es/
<L (i—1) -7 (Cin) +7(C) +(i-2) > w(C))
ciPes
<e-(i—1) 7(Ci1) + m(Ci)+
+ (i —2)[7(Cy) — £-7(Ci—1)]
=0-7(Ci—1) + (i — 1) - 7(Cy)
7r(C’l) . . i — T .
Sw(ci_l) (Ci—1) + (i = 1) - 7(Cy)

7(Cs) + (i = 1) - 7(C;) =i - 7(Cy)

|
With these results, we can derive the competitive
ratio. According to Lemma 3, for each contract Ci(]) €
C<.(OFF2D), the accumulated cost H(Ci(j)) is bounded
by i-7(C;). Therefore, summing up all the accumulated
costs of each contract in C<;(OFF2D), we get the
total cost of ON2D at time ¢. Note that every contract
bought by ON2D must be totally covered by contracts
in C;(OFF2D), since C;(OFF2D) is an optimal solution
for the entire demand sequence o<; and the contract
independence property holds. Since we have k different
contracts and for each contract C; in C;(OFF2D), we
have II(C;) < i-7(C;) < k- w(C;), and:

Theorem 2. ON2D is k-competitive, where k is the total
number of contracts.

As we will show in Section VI, this is almost optimal.
Finally, observe that restricting ON2D to Assump-
tion A3 does not come at a large cost.

Theorem 3. Let ALGy be an optimal offline algorithm
for PPP?, and let ALGy be an optimal offline algo-
rithm for PPP? where we relax Assumption A3. Then
7T(ALG2) < ’/T(ALGl) <2 '/T(ALGQ).

Proof: Consider any contract Ci(m)(ri,di) bought
by an optimal offline algorithm for PPP? without As-
sumption A3. When time is divided into intervals of
length d;, C,(m) will overlap in time with at most two
contracts C’) and C of duration d;. Therefore, we
can modify the optlmal solution output by ALGy by pur-
chasing those two contracts instead of C’i(m), eventually
transforming the optimal solution output by ALG, into
a feasible solution for PPP? (under Assumption A3).
Hence, we can guarantee that m(ALG2) < 7(ALGy) <
2 - (ALG2). [|

Hence, since ON2D is k-competitive under Assump-
tion A3 (Theorem 2), and since the optimal offline cost is

A n; = 4
= Ni4+1 =
g .=
< Ci—l—l m;
g
<
C; [1G[1] G| Cs
0 di time 7d;
Figure 3. ON buys n; = 4 contracts C; and n;4+1 = 1 contract

C'i+1 over seven intervals of length d;. In two of these seven intervals
ON buys several contracts smaller than C; to cover the demand.

at most a factor of two lower without the interval model
(Theorem V), we have:

Corollary 1. ON2D is 2k-competitive for the general
PPP? problem without Assumption A3, where k is the
number of contracts.

VI. LOWER BOUND

Theorem 2 is essentially the best we can hope for:

Theorem 4. No deterministic online algorithm can
achieve a competitive ratio less than k/3.

The proof is the 2-dimensional analogon of the proof
in [13]. We consider a scenario where the next larger
available contract doubles in cost. With k& being the
number of different contracts, each contract is 2k times
longer and has 2k times more rate, i.e., in our plane
representation contracts are squares covering an area
(2k)2.

W(CZ) = 2i_1
rm=Lr,=2k-ri_1= (2k)i_1
d1 = 1;di =2k - di—l = (Qk)iil

In the following, let us focus on a simple demand
which only assumes rates o, € {0,1} for all {. We
let the adversary schedule demand only when ON has
no valid contract. For each interval (2k)° where the
adversary asks for a 1-demand, ON can choose between
three options (see also Figure 3):

1 Eventual purchase of contract C;. Assume that this
happens n; times.

2 Eventual purchase of larger contracts Cj,j > 1.
Assume that this happens Z;L ;1 times.

3 Never purchase contract C; or any larger contracts.
Assume this happens m; times.

Therefore the sum of all contracts bought by ON is
given by 7(ON) = Zle n; - m(C;). Given an interval
of length ¢, we estimate the cost of OFF by less than
buying multiples of only one kind of contract over the

full interval, i.e., ¢/d; contracts for any i: w(OFF) <
w(Cy) (mﬁ—ZfZ ; ;). In order to derive the lower bound
we first prove a minimum cost of any algorithm ON on
intervals that start with a demand rate of 1.

Lemma 4. Any ON must pay at least 7(C;) on each
interval of length d; that starts with a demand rate of 1.

Proof: By induction on the different intervals 2¢~1.
For i = 1, each algorithm must at least buy a contract
of type C; in order to cover that demand. Assume that
for ¢ — 1, it holds and now let us argue for ¢. If ON
does not buy a contract of type C;, we can divide the
volume into (2k)? squares with side length d;_; each,
where 2k - d;_1 = d;. We let each of these 2k intervals
(at the bottom row) start with a demand of 1 which then
cost at least 7(C;_1) due to the induction hypothesis.
The total cost is at least 2k - 7(C;—1) = k - w(C;) for
every interval where ON does not buy a contract 7 and
at least 7(C;) otherwise. [|
Consider now an interval of length (2k)*~! where no
contract of type ¢ or higher was bought. We know from
the induction that 7(ON) > m, -k-7(C;). We can derive
the following lower bound:

k
m(Ci)(mi + > ny) (1)

j>i

k- 7w (OFF) <

-

<
Il
<

%

ni Yy w(Ci)+m;-w(C)| ()

-

i=0 | j=1
k
< [271,' . W(Oi) +m; - W(Oz)] (3)
=0
< 3-7(ON) 4)

Inequality (1) is given by the cost estimation of OFF
against any ON buying only one kind of contracts.
Inequality (2) is a reorganization of the sum since 7 (C;)
is multiplied by every n;,j > 4 which is also given
after the reordering. Afterwards, we use the geometric
sum on the cost of the contracts to derive Inequality (3).
This leads to a lower bound of k/3 since m(ON) =
SF ni-w(C;) and w(ON) > m; - k - 7(CY).

VII. OPTIMAL OFFLINE ALGORITHM

So far, we have treated the optimal offline algorithm
on which ON2D relies as a black box. In the following,
we show that offline solutions can indeed be computed in
polynomial time, and present a corresponding dynamic
programming algorithm OFF2D.

The basic idea behind the offline algorithm OFF2D
is that the optimal cost for any contract over a certain

Algorithm 2 Pre-computation of matrix M for di-length

Algorithm 3 Offline Algorithm for d-length interval

Input: Demand sequence oy, ..
[t,t + di)).

Output: Matrix M.

1: for : =1 to dj, do

2: MJi,i] < ot

3: fori=1tod, —1do
4. for j =i+ 1 to dy do

5

6

., Ot+q, (over interval

M{i, j] + max{M[i,j — 1], 0404,}
: return M

interval is obtained either by splitting the cost at some
time, or by buying a long contract with a certain rate
r. In the following, recall that dj is the duration of the
largest contract C.

OFF2D proceeds as follows: It splits time into in-
tervals of length di and solves each of these interval
separately using Algorithm 3. OFF2D relies on the fol-
lowing data structures: For each dj-length time interval
I, we precompute the maximum demand within any
subinterval [i,j] of I, and store this information in
position M i, j] of a dj, x dj, matrix M (Algorithm 2). In
particular the maximum requested demand & in interval
I is stored in M[1,dy]. A di X dj x & matrix OPT is
used to compute the optimal cost. The entry OPT[i, j, A]
indicates the optimal cost of covering a demand rate of
MTi, j] — X over the interval [i, j] — i.e. A indicates the
amount of covered demand for [i, j]. Initially, all entries
are set to 0.

Algorithm 2 pre-computes the matrix M over the dj-
length interval [t, t+d}], where t = b-d}, for integer b >
0. Lines 1-2 initialize the matrix and store the demand
o1+ in entry M]i,]. Lines 3-5 compute the maximum
demand within any time interval [t + ¢,¢ + j], 0 < ¢ <
7 < d. The demand can be obtained by comparing the
demand at time t + j (i.e., 04y;) with the maximum
demand between time ¢ 4 ¢ and ¢ + 7 — 1, which has
already been computed by our algorithm.

After obtaining the matrix M over interval [t, t + dj],
we can compute the optimal solution for the PPP?
problem over the same interval using Algorithm 3, as
we show in Theorem 5:

Theorem 5. Algorithm 3 computes an optimal offline
solution for any given interval of length dy, in time O(di-
0), where G is the maximum demand over the interval.

Proof: We assume, for the sake of simplicity and
without loss of generality, that ¢ = 0 and the d-length
interval we consider is [0, di].

Correctness: By induction over the length of the
subintervals £ = j — ¢ 4+ 1 and the respective uncovered

Input: Precomputed matrix M over interval [¢,t + dj].
Output: Optimal total costs OP T[4, j, -] for all intervals
within [t, + dj).
1: Initialize all entries in OPT to be 0.
2: Let 6 = M[i, j].
3: for : = 1 to dj, do
4: for A= M[i,i| —1to 0 do
5: OPTIi, 1, A] —
ming (., qyec{OP T[4, 4, min{a, \+-r}|+n(r,d)}
6: for / =2 to d; do
7: fori=1tod,—¢+1do

8: j=i+6—-1
9: for A = M[i,j] — 1 to 0 do
10 OPT[4,J, A] —
min;<,<;{OPT[¢, z, min{M|[i, 2], A}] +
OPT[z + 1,7, min{M|[z + 1, j], A\}|}
11: C' + {C@ @ r.d) e C:t® =b-d for
some positive integer b and @) < < 7 <
t@) 4 d}
12: if C’ is not empty then
13: OPT[i, j, A] — min{OPT[i, j, Al;
ming (. gyecr OPT[4, j, min{é, A + r}] +
w(r,d)}

14: return OPT[1,dy, 0]

demand A. Clearly, the claim is true for intervals [i, 1]
(¢ = 1) (Lines 3-5): If A > 0 we need at least
one contract C(r,d) to finish covering the demand at
time ¢; the remaining demand at time ¢ not covered
by C must be covered optimally by other contracts, as
previously computed in OPT[i,4, A + r]. Now consider
a subinterval [i,j] of length £ = j — i + 1 > 2, where
1 < i < j < dg. This interval is either split into two
non-overlapping subintervals of smaller length (Case I),
or a long contract of length equal to or greater than
¢ that completely covers [i,j] is bought, at a certain
demand rate r, where 0 < r < M[i, j] (Case II). Given
Assumption A2 and A3, for any instances of contracts
C’,iy) and C,(,q), either the duration of one contract is fully
contained in the other, or the two contracts never overlap
in time: Hence, given that we consider all intervals
[, 7], including the ones that may correspond to actual
instances of contracts, it is enough to consider only these
two cases.

In Case I, we split the interval at time z such
that the solution OPT[i, z, min{M[i, 2], A} + OPT[z +
1,j,min{M[z + 1,4], A}] is minimized over all z be-
tween ¢ and j (Line 10). Since the lengths of the two
subintervals z — i+ 1 and j — 2z are both smaller than ¢,

OPT[i, 2, A] and OPT[z+1, j, A] already store the cost of
optimal solutions for these subproblems, respectively, by
the induction hypothesis. Hence OPT[i, z, \| + OPT[z +
1,4, A\] will yield the optimal solution for OPT[i, j, A] if
Case I applies.

In Case II, we buy a long contract with rate r. First, we
need to check which contracts with longer durations can
cover [i, j] fully, and store the candidate contracts in C’.
A candidate contract C'®) (t(*) 1. d), where t*) = b .d
according to Assumption A3, satisfies t(*) < i < j <
t(*) 4-d. The algorithm picks the valid candidate contract
that minimizes 7 (r, d) plus the optimal cost of covering
the largest remaining demand M{i,j] — (A + r) over
[¢, 7], which has been previously computed and stored in
OPT[¢, j, A + 7] (Line 11).

By choosing the smaller value of Cases I and II, we
obtain the optimal cost for subproblem [z, j, A] (Line 13).

Time Complexity: The total time complexity of OFF2D
for the pre-computation part in Algorithm 2 is O(d3).
The first part of Algorithm 3 in (Lines 3-5) takes O(dy -
k - o) time, where ¢ is the maximum demand for the
whole time interval. The first two loops of the second
part (Lines 6-7) take O(d3) time and the for-loop in Line
9 takes O(0) time. The statement in Line 10 requires
O(dy) time and Lines 11 and 13 take time O(k) each.
Therefore, the total time complexity is O(d; - &) for a
subinterval with length dj.]

Taking Theorem 5 into account for all intervals of
length dj; in o, and for a long enough demand sequence
o (i.e., such that |o| = (&), where 7 is the maximum
demand over o), we get the following corollary, which
expresses the total running time of the offline algorithm:

Corollary 2. Algorithm OFF2D runs in time O(|o|?d3).

Proof: By summing up the computation time of
[lo|/di] subintervals of length dj, we have an over-
all complexity of O(|o| - di -) = O(|o|*d3), since
lo] = (). |

VIII. HIGHER DIMENSIONS

OFF2D and ON2D are designed for the two-
dimensional version of the PPP problem but they can
also be extended towards a D-dimensional version of the
problem, where each additional dimension (other than
the time duration dimension) would indicate the rate
at which you would buy a certain resource. Regarding
OFF2D we need to do the following changes: For each
additional dimension we need to extend the dimension
of the optimal cost matrix OPT by one and add two
additional loops in OFF2D’s Algorithm 3. Furthermore
we only need to add one additional dimension for the

M matrix in Algorithm 2 which indicates the current
demand dimension 3, M|i, j, 3] and run the algorithm
[times for the pre-computation. We illustrate those
changes below in 3D.

Assume a scenario where a third dimension is added,
e.g. computational and network resources over time. The
contracts C(r,r’,d) then cover r x 7’ x d cuboids. In
order to adjust Algorithm 3, we add another loop after
Line 4 which goes through the maximum values)\ of
the additional demand (for A’ = M[i,,2] — 1 to 0 do)
and change the statement in Line 5 to: OPT[i, 4, A, \'] +
ming (. ayec’ OPT[, 4, X+ 7, X 4+ 1] +7w(r,7’,d). The
same loop must also be added after Line 9 and the
updates of the OPT matrix must be changed accordingly
in Lines 10 and 13.

The runtime of the pre-computation in Algorithm 2
would be increased by a factor of D (i.e., by the dimen-
sion of the problem) and still be negligible regarding
the overall runtime (assuming D is a constant). For
Algorithm 3 the runtime would increase by a factor
of II;>20%, where ¢ is the maximum demand for
resource %, for ¢ > 1, leading to an overall runtime of
O(d3} - 11;>15") for each interval dj.

No changes are needed regarding ON2D. It still mim-
ics OFF2D’s behavior and given the Assumptions A2
and A3, the contract independence still holds for higher
dimensions. Hence, the proof for the competitive ratio
of k still applies.

IX. SIMULATIONS

We have conducted a small simulation study to com-
plement our formal analysis. In this simulation, we
consider k square contracts where C;(r;, d;) has rate and
duration r; = d; = 2t for 1 < i < k. The price 7
of a contract is a function of the rate-duration product
r; -d;, and we study a parameter x to vary the discount.
Concretely, we consider a scenario where a twice as large
time-rate product is by factor (1 +) more expensive,
ie,m(2-d-r)=(1+z) -7(d-r); we set m(1) = 1.

To generate the demand o, we use a randomized
scheme: non-zero demand requests arrive according to a
Poisson distribution with parameter A, i.e., the time be-
tween non-zero o, is exponentially distributed. For each
non-zero request, we sample a demand value uniformly
at random from the interval [1,y].

Each simulation run represents 1000 time steps, and
is repeated 10 times.

Impact of the request model. We first study how the
competitive ratio depends on the demand arrival pattern.
Figure 4 plots the competitive ratio p as a function of the
Poisson distribution parameter A. The price model with
x = 0.5 is used, and there are £ = 8 contract types. First,

4.5

——x=0.5,y=128 k=8

2.5

1 2 3 4 5 6 7 8 9 10
A

Figure 4. Effect of request distribution (Poisson \).

we observe that the competitive ratio p is bounded by
approx. 5, which is slightly lower than what we expect
in the worst-case (cf Theorem 2). Another observation is
that the competitive ratio decreases as A increases. This
can be explained by the fact that demand rates become
sparser for increasing A, and hence less contracts will be
bought. Meanwhile, when the demand rates are sparse,
the offline algorithm will have less chance to buy a larger
contract. Put differently, the online algorithm will pay
relatively more compared to the offline algorithm for
small), as it purchases more small contracts.

Impact of the price model. Different price mod-
els also affect the purchasing behavior of our online
algorithm. Figure 5 shows the competitive ratio p for
different values x. (For this scenario, we set y = 128,
k=8 and A = 2.) We see a tradeoff: for small x, until
x = 0.5, the competitive ratio increases and then begins
to decrease again. The general trend can be explained by
the fact that for small z, it is worthwhile to buy larger
contracts earlier, and it is hence impossible to charge
ON2D much; for larger z, also an offline solution cannot
profit from buying a large contract.

Impact of the number of contracts. Finally, Figure 6
shows the competitive ratio as a function of the number
of contracts k. (We fix t = 0.5, y =128 and A = 2 in
this simulation.) The competitive ratio first increases as
k increases but then stabilizes. This stabilization is due
to the fact that when we have eight or more contracts
(k > 8), the largest contract can cover the maximum
rate. In the beginning, the ratio increases since the offline
algorithm buys larger and larger contracts, and the online
algorithm pays for many small contracts along the way.

4.5

—o—y=128 k=8,A=2

101 0203040506070809 3
X

Figure 5. Effect of discount z.

4.5

——x=0.5,y=128 A=2

250 ~ :

Figure 6. Effect of the number of contracts k

X. RELATED WORK

Cost reductions (due to economy-of-scale effects) are
one of the main motivations behind today’s trend to out-
source infrastructure and software to the cloud. A large
body of literature in the field focuses on resource alloca-
tion and scheduling problems. For a good overview, we
refer the reader to the surveys [2], [5].

Compared to the algorithmic problems of the resource
allocation and scheduling, the economical aspects are
less well-understood. Different economical cloud models
have been proposed and compared by various authors,
e.g., by Armbrust et al. [12], Pal et al. [14], or Dash et
al. [6]. Some of the studied pricing models have their
origins in the context of ISP-customer relationships [17]
and are also related to classic economic problems [8].
An interesting tradeoff between time and price has
been studied in [10], from a scheduling complexity
perspective. More generally, there are several interesting
proposals for novel adaptive resource and spot market

pricing schemes, e.g., [1]. Our model is motivated by
architectures such as [4], [16] which allow for sub-
renting and recursion.

This paper assumed an online algorithm and compet-
itive analysis perspective. Many online models, such as
ski-rental problems [3], facility location problems [9],
or buy-at-bulk [15] and rent-or-buy [11] problems, as-
sume that once an item has been purchased, it remains
indefinitely for no extra charge. The Parking Permit
Problem [13] and the Bahncard Problem [7] are the
archetype for online problems where purchases have
time durations which expire regardless of whether the
purchase is used or not.

The paper closest to ours is the Parking Permit
Problem (PPP) paper by Meyerson [13]. Formally, PPP
specifies a set of k different types of parking permits
of a certain price 7; and duration d;. In [13], Meyerson
presents an asymptotically optimal deterministic online
algorithm with competitive ratio O(k) (together with
a lower bound of €(k)). The paper also discusses
randomized algorithms and an application to Steiner
forests. While we can build upon some of the techniques
in [13], the rate dimension renders the problem different
in nature, both from an online and an offline algorithm
perspective.

XI. SUMMARY AND CONCLUSION

This paper has shown that at the heart of efficient
cloud resource allocation lies a fundamental algorithmic
problem, and we introduced the PPP? problem, a 2-
dimensional variant of the online Parking Permit Prob-
lem PPP. We presented a deterministic online algorithm
ON2D that provably achieves a competitive ratio of
k, where k is the total number of available contracts;
if we relax Assumption A3, the competitive ratio of
our algorithm is 2k. We also showed that ON2D is
almost optimal in the sense that no deterministic online
algorithm for PPP? can achieve a competitive ratio lower
than %/3. Finally, we proved that the offline version of
PPP2 can be solved in polynomial time.

We believe that our work opens interesting directions
for future research.

1) Optimality: The obvious open question regards the
gap between the upper bound %k and the lower
bound %/3 derived in this paper.

Relaxing the assumptions: While the interval
model only comes at the cost of a small additional
approximation factor (a constant), it seems hard to
remove the assumption entirely but still being able
to compute optimal solutions in polynomial time:
we conjecture that the problem is NP-hard. We
believe that relaxing the multiplicity assumption

2)

10

(which is needed for the concept of contract inde-
pendence in the upper bound proof of Section V)
is a more promising direction for future research.
Randomized algorithms: It will be interesting to
study whether the randomized algorithms known
from the classic parking permit problem can also
be generalized to multiple dimensions.

3)

Acknowledgments. This research was supported by
the BMBF (011S12056).

REFERENCES

V. Abhishek, I. A. Kash, and P. Key. Fixed and market pricing
for cloud services. In Proc. NetEcon Workshop, 2012.

M. Armbrust, A. Fox, R. Grifith, A. D. Joseph, R. H. Katz,
A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica,
and M. Zaharia. Above the clouds: A berkeley view of cloud
computing. In UC Berkeley Technical Report EECS-2009-28,
20009.

A. Borodin and R. El-Yaniv. Online computation and competitive
analysis. Cambridge University Press, 1998.

R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic.
Cloud computing and emerging it platforms: Vision, hype, and
reality for delivering computing as the Sth utility. Elsevier FGCS,
25(6), 2009.

N. M. K. Chowdhury and R. Boutaba. A survey of network
virtualization. Computer Networks, 54:862-876, 2010.

D. Dash, V. Kantere, and A. Ailamaki. An economic model for
self-tuned cloud caching. In Proc. IEEE International Conference
on Data Engineering, pages 1687-1693, 2009.

R. Fleischer. On the bahncard problem. Theor. Comput. Sci.,
268(1):161-174, 2001.

S. Goyal and B. Giri. Recent trends in modeling of deteriorating
inventory. Elsevier EJOR, 134(1), 2001.

S. Guha and K. Munagala. Improved algorithms for the data
placement problem. In Proc.13th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 106-107, 2002.

T. A. Henzinger, A. V. Singh, V. Singh, T. Wies, and D. Zufferey.
A marketplace for cloud resources. In Proc. 10th ACM EMSOFT,
2010.

A. Kumar, A. Gupta, and T. Roughgarden. A constant-factor
approximation algorithm for the multicommodity rent-or-buy
problem. In Proc. 43rd Symposium on Foundations of Computer
Science (FOCS), 2002.

M. Armbrust et al. A view of cloud computing. Commun. ACM,
53(4):50-58, 2010.

A. M. Meyerson. The parking permit problem. In Proc. 46th
Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 274-284, 2005.

R. Pal and P. Hui. Economic models for cloud service markets.
In Proc. ICDCN, 2012.

F. S. Salman, J. Cheriyan, R. Ravi, and S. Subramanian. Buy-
at-bulk network design: Approximating the single-sink edge
installation problem. In Proc. 8th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 619-628, 1997.

G. Schaffrath, C. Werle, P. Papadimitriou, A. Feldmann, R. Bless,
A. Greenhalgh, A. Wundsam, M. Kind, O. Maennel, and
L. Mathy. Network virtualization architecture: Proposal and
initial prototype. In Proc. ACM SIGCOMM VISA, 2009.

S. Shakkottai and R. Srikant. Economics of network pricing with
multiple isps. IEEE/ACM TON, 14(6), 2006.

[1]
[2]

[3]
[4]

[5]
[6]

[7

—

[8

—

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

