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Abstract—Distributed applications often require high-
performance networks with strict connectivity guarantees.
For instance, many cloud applications suffer from today’s
variations of the intra-cloud bandwidth, which leads to poor
and unpredictable application performance. Accordingly, we
witness a trend towards virtual networks (VNets) which can
provide resource isolation. Interestingly, while the problem of
where to embed a VNet is fairly well-understood today, much
less is known about when to optimally allocate a VNet. This
however is important, as the requirements specified for a VNet
do not have to be static, but can vary over time and even include
certain temporal flexibilities.

This paper initiates the study of the temporal VNet embedding
problem (TVNEP).We propose a continuous-time mathematical
programming approach to solve the TVNEP, and present and
compare different algorithms. Based on these insights, we present
the cΣ-Model which incorporates both symmetry and state-space
reductions to significantly speed up the process of computing
exact solutions to the TVNEP. Based on the cΣ-Model, we derive
a greedy algorithm cΣG

A to compute fast approximate solutions.
In an extensive computational evaluation, we show that despite

the hardness of the TVNEP, the cΣ-Model is sufficiently powerful
to solve moderately sized instances to optimality within one hour,
and under different objective functions (such as maximizing the
number of embeddable VNets). We also show that the greedy
algorithm 3oits flexibilities well and yields good solutions. More
generally, our results suggest that already little time flexibilities
can improve the overall system performance significantly.

I. INTRODUCTION

Today’s datacenter networks are often largely oversub-
scribed (e.g., [1]), making network bandwidth a scarce re-
source shared across many tenants. The resulting contention
of the different applications during their networking inten-
sive phases, harms performance and renders running times
unpredictable, potentially entailing a higher cost on the cloud
customer side [2], [3].

The observation that high-performance applications also
require high-performance networks connecting the distributed
servers motivates a shift towards the network virtualization
paradigm [4], [5]. A virtual network (VNet) supports the spec-
ification of bandwidth guarantees and provides performance
isolation. These guarantees can be per VM-pair (e.g., the
graph-based VNet topologies used in SecondNet [6]) or per
VM (e.g., the hose-based networks of Oktopus [7]).

However, if specified too coarsely and statically for the
entire execution, strict resource guarantees can come at the
cost of wasting node and link resources, resulting in subpar

utilization and a possible income loss for the datacenter oper-
ator. Indeed, many applications cycle through different phases,
only some of which are network-intensive (e.g., the duce
shuffle phase). The traffic patterns measured in [8] indicate
that popular cloud applications only generate substantial traffic
during only 30%-60% of the entire execution. Accordingly,
VNets should support temporally varying specifications.

Besides the changing requirements over time, applications
(and hence VNets) may also differ in their scheduling require-
ments: while some applications must be started immediately
upon request, others may come with certain flexibilities on
when they are executed, e.g. when combined with a corre-
sponding price incentive [9].

In this paper we therefore initiate the study of the temporal
VNet embedding problem (TVNEP) in which VNets must
be embedded for a given duration and within a specified
interval. Hence, the TVNEP conceptually consists of two
tasks: (1) finding good embeddings for the VNets, and (2)
scheduling the VNets in such a fashion, according to their tem-
poral specification, that no resource capacities are exceeded.
Solving the TVNEP is challenging, as already the efficient
VNet embedding (i.e., mapping the virtual machines (VMs)
of an application), is computationally hard.

Furthermore note that the TVNEP is not only relevant
for data-centers and high performance computing applica-
tions, but also for wide-are networks (WANs). For example,
Google recently presented its B4 network [10] that connects
roughly a dozen datacenters using a Software-Defined Net-
working (SDN) approach: the bandwidth-intensive data copies
from one site to another, are planned from the logically cen-
tralized perspective of the SDN controller. This allows to run
the network at higher utilizations and to prioritize interactive
applications during periods of failure or resource constraints.
According to the authors, no more than a few dozen datacenter
deployments are anticipated in the near future, which renders
such a central control of bandwidth feasible.

a) Contribution: This paper initiates the study of the
TVNEP problem. In contrast to existing literature focusing on
VNet mappings only, the TVNEP asks for the joint optimiza-
tion of when and how VNets shall be embedded. We present
multiple mathematical programming formulations, and devise
techniques to reduce the problems complexity to enable solv-
ing the TVNEP on moderately sized instances to optimality.
Concretely, we make the following main contributions:

1) We show that interestingly, the TVNEP can be formu-
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lated as a continuous-time model, which in contrast
to discrete models facilitates a compact and accurate
representation of time. We present two different Mixed
Integer Program (MIP) formulations for this continuous
model: the first, the so-called ∆-Model, is based on
state change representations at events and the second,
the Σ-Model, is based on explicit state representations.
We discuss the (dis-)advantages of either of these ap-
proaches, and argue that Σ formulations give much
better relaxations, hence speeding up the branch-and-
bound algorithm employed to solve the model.

2) Our main technical contribution is the cΣ-Model: a
very compact and improved Σ-Model which is based
on rigorous state-space and symmetry reductions. The
model clearly outperforms the other formulations, and
enables us to solve moderately sized instances in the
first place.

3) We show that the cΣ-Model cannot only be used to
solve the TVNEP to optimality, but can also serve as a
basis to develop fast heuristic algorithms. In particular,
we describe the greedy heuristic cΣG

A, to perform the
challenging objective of access control, i.e. maximizing
the number of accepted VNets.

4) We report on our computational evaluation, and show
that using the cΣ approach, solving the TVNEP to opti-
mality is feasible for reasonable problem instances, and
for different objectives, including access control, load
balancing and makespan minimization. Furthermore, the
cΣ-Model significantly outperforms the ∆- and the
simple Σ-Model. Our evaluation also shows that cΣG

A is
often able to find good approximate solutions within
seconds, making the algorithm an attractive alternative in
situations where rigorous optimizations are not feasible.

b) Paper Organization: The remainder of this paper is
organized as follows. We formally introduce the TVNEP prob-
lem in Section II. Section III discusses two main approaches
to formulate continuous-time programs, and Section IV intro-
duces the compact state formulation. The greedy algorithm
is described in Section V. We report on our computational
experiments in Section VI. After reviewing related work in
Section VII, we conclude the work in Section IX.

c) Notation: If E ⊆ V 2 is a set of directed edges, then
δ+E(v ∈ V ) = ({v}×V )∩E and δ−E (v ∈ V ) = (V ×{v})∩E
denote the outgoing and the incoming edges respectively.
When considering points in time, we use (·, ·) and [·, ·] to de-
note open and closed intervals respectively. We use B = {0, 1}
and use sans serif fonts for macros, i.e. textual substitutions.

II. THE TEMPORAL VNET EMBEDDING PROBLEM

The Temporal VNet Embedding Problem (TVNEP) extends
the classic Virtual Network Embedding Problem (VNEP)
(see [11] for a survey) by also considering when requests are
to be scheduled. We first shortly revisit the VNEP.

A. The Virtual Network Embedding Problem

The input to the classic static VNEP is a set R =
{R1, . . . , Rk} of VNet requests that shall be embedded on
a substrate network S with node and link resources (see
Table I). The requests generally specify a VNet with resource
requirements for both their nodes and links (see Table II)
and without information on where to be mapped: this is the
task of the embedding algorithm. Usually, requested node
resources are memory, disk storage and CPU while links are
described by means of bandwidth. In our problem formulation,
we assume only a single node and a single link resource.

Table I
DEFINITION AND SPECIFICATION OF THE SUBSTRATE

VS substrate nodes
ES⊆ VS ×VS substrate links
cS : VS ∪ ES → R+ substrate capacity

Table II
STATIC REQUEST PARAMETERS

∀R ∈ R. VR virtual nodes of request R
∀R ∈ R. ER⊆ VR ×VR virtual links of request R
∀R ∈ R. cR : VR ∪ ER → R+ resources requestes by R

The output of an embedding algorithm is a mapping of
the virtual nodes of a VNet to the substrate nodes, plus a
mapping of the virtual links to corresponding physical path(s)
(see Table III). Virtual links can either be embedded as a
single unsplittable flow, or as a splittable multi-commodity
flow. Intuitively, the closer two virtual nodes of a given VNet
are mapped in the substrate network, the less resources are
needed on the physical path connecting the two virtual nodes.

As our formulations for the TVNEP solve the VNEP as
a subproblem, we will give now the constraints to find a
local, i.e. time-independent, embedding for a request. Similarly
to [12], we define the following variables (see Table III). As
we consider splittable flows the mapping of virtual links onto
substrate links is not binary, but real valued.

Table III
VARIABLES FOR EMBEDDING REQUESTS

xR: R→ B decides which requests to embed
∀R ∈ R. xV : VR ×VS → B maps virtual nodes on substrate nodes
∀R ∈ R. xE : ER × ES → [0, 1] maps virtual links on substrate links

To compute time-invariant embeddings, the following two
constraints stated in Table IV suffice. By Constraint (1), all
virtual nodes must be mapped onto a single substrate node,
iff. the request is to be embedded. Constraint (2) constructs a
splittable flow. Given a link Lv = (N+

v , N
−
v ) ∈ ER of request

R ∈ R, this constraint specifies flow preservation on all nodes
on which neither N+

v nor N−v have been mapped. On the other
hand, if N+

v has been mapped on N+
s , then the flow balance is

set to be −1 at node Ns; similarly if N−v has been mapped on
N−s then the flow balance must equal 1, therefore constructing
a unit flow from N−s to N+

s .
For the VNEP to yield feasible solutions, it must be

guaranteed that substrate capacities are not exceeded. To
shorten notation, we use the macros presented in Table V for
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computing the alloctions of request R ∈ R on substrate node
Ns ∈ VS or link Ls ∈ ES.

Table IV
MAPPING OF NODES AND LINKS ONTO THE SUBSTRATE

∀R ∈ R.∀Nv ∈ VR . xR(R) =
∑

Ns∈VS

xV (Nv , Ns) (1)

∀R ∈ R.∀Lv = (N+
v , N

−
v ) ∈ ER .∀Ns ∈ VS∑

Ls∈δ+(Ns)

xE(Lv , Ls)−
∑

Ls∈δ−(Ns)

xE(Lv , Ls) (2)

= xV (N−v , Ns)− xV (N+
v , Ns)

Table V
MACROS

∀R ∈ R.∀Ns ∈ VS. allocV(R,Ns)=
∑
Nv∈VR

cR (Nv) · xV (Nv , Ns)

∀R ∈ R.∀Ls ∈ ES. allocE(R,Ls) =
∑
Lv∈ER

cR (Lv) · xE(Lv , Ls)

Several objectives have been proposed for the VNEP [11]: a
natural criterion is to try to embed as many VNets as possible;
i.e., the embedding algorithm additionally performs access
control by deciding which VNets to accept and which to reject.
Another criterion is to embed a given set of VNets (thus fixing
xR(R) = 1 for all requests R ∈ R) in a way that minimizes
the maximal link load, or that uses the least physical nodes or
links (e.g., for energy saving considerations).

B. The Temporal Virtual Network Embedding Problem

The TVNEP regards the question of where and when to
embed a VNet: besides the VNet’s resource specification (see
Table II), VNets are attributed with three temporal parameters:
the duration of execution d, the earliest possible start and latest
end point in time, ts and te respectively (see Table VI).

Table VI
TEMPORAL REQUEST PARAMETERS

T > 0 maximal considered time horizon
∀R ∈ R. tsR ≥ 0 earliest possible start of R
∀R ∈ R. teR ≤ T latest possible end of R
∀R ∈ R. dR∈ R+ duration of request R

Clearly, if te−ts > d the provider may harness this temporal
flexibility by scheduling the VNet’s execution such that e.g.
bottlnecks are averted. While the provider may schedule the
VNet arbitrarily subject to lying in the interval [ts, te], we
assume that the embedding of the VNet onto the substrate is
invariant, i.e. does not change, over time. Even though a model
in which the provider may arbitrarily migrate VNets might be
of interest in its own right, such reconfigurations are likely to
incur additional resource allocations, e.g. to transfer the data
of one VM to another substrate node. Note however, that our
model presented in Section IV can be easily adapted to model
explicit migrations [13].

Definition 2.1 (Temporal VNet Embedding Problem):
Given: A capacitated substrate network S, a set of requests
R and a time horizon T > 0 (see Tables I,II,VI).
Task: Find an optimal temporal embedding, consisting of a
static embedding xR, xV , xE (see Table III), and points in
time for each request R ∈ R to start and end t+R, t

−
R ∈ [0, T ],

such that:
1) the static embedding xR, xV , xE satisfies the

Constraints (1) and (2) (see Table IV),

2) t−R − t
+
R = dR, tsR ≤ t

+
R and t−R ≤ teR holds and

3) for all points in time t ∈ [0, T ] allocations are feasible:

∀Ns ∈ VS. cS(Ns) ≥
∑

R ∈ R with
t ∈ (t+R , t−R )

allocV(R, Ns) ,

∀Ls ∈ ES. cS(Ls) ≥
∑

R ∈ R with
t ∈ (t+R , t−R )

allocE(R, Ls) .

In the above definition, we did not specify a concrete
objective function to optimize the temporal embedding for,
as several different ones will be considered. The objective
functions proposed in this paper comprise access control,
load balancing on nodes, disabling of links to reduce energy
consumption and maximizing the earliness of requests. As
further notation related with our cΣ-Model will be necessary
to state these, we will present the objectives in Section IV-E.

III. THE CONTINUOUS-TIME APPROACH

This section shows that the TVNEP problem can be mod-
eled using a continuous-time approach. This is attractive as
it avoids inaccuracies due to time discretizations and there-
fore allows us to solve the continuous VNEP as stated in
Definition 2.1. We begin by discussing the conceptual model
of abstract event points, and then derive two complementary
ways to model the TVNEP in our continuous-time framework:
the ∆-Model and the Σ-Model. While the ∆-Model only
represents state changes and therefore requires less variables,
the Σ-Model introduces explicit state variables to improve the
LP-relaxations. We will argue that the latter is preferable,
and it will also build the basis of our optimized cΣ-Model
presented in the subsequent section.

Our mathematical programming formulations rely on the
event point model introduced in the following, which will
allow to check the feasibility of possible solutions to the
TVNEP.

A. The Abstract Event Point Model
To check whether resource allocations hold at each point

in time t ∈ [0, T ], it suffices to consider the 2 · |R| − 1
many intervals in which resource allocations are invariant:
letting T = {t+R, t

−
R|R ∈ R}, these intervals are defined

by {[t−, t+]|t−, t+ ∈ T , (t−, t+) ∩ T = ∅}. Our models
compute these time-invariant states using an event point model
illustrated in Figure 1. We define the set of events E =
{e1, . . . , e2·|R|} and the set of states S = {s1, . . . , s2·|R|−1}
and introduce the variables χ+

R and χ−R (see Table VII).
In our basic models, we require the mapping of the start

and end of requests onto event points to be bijective. This can
easily be modeled by the two following constraints:

∀R ∈ R.
∑
ei∈E

χ+
R (ei) = 1 ∧

∑
ei∈E

χ−R (ei) = 1

∀ei ∈ E .
∑
R∈R

χ+
R (ei) = 1 ∧

∑
R∈R

χ−R (ei) = 1
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event1 event2 event3 event4

state1 state2 state3

Event Order

Substrate

Local Mapping
on Substrate

event5 event6

state4 state5
State

R1

R2

R3

Figure 1. Shown are local substrate allocation of requests R1, R2, R3 on a
three node substrate. By assigning the start and end of requests to event points,
states between events can be reconstructed to check feasibility of allocations.

Table VII
DEFINITION OF ABSTRACT EVENT POINT AND STATE SETS

∀R ∈ R. χ+
R : E → B maps the start of R on an event

∀R ∈ R. χ−R : E → B maps the end of R on an event

By the order on the event points, the above mapping in turn
defines a strict linear order on the start and end of the requests,
therefore allowing to reconstruct the states between these event
points. As we will discuss in the course of presenting the cΣ-
Model (see Section IV), these event points will be attributed
(ordered) time values and, via the mapping onto them, will
specify the start and end time of the requests.

In the following we will now present two complementary
approaches to reconstruct the states.

B. ∆-Model: Representing only State Changes

A first and intuitive way to formulate the continuous-time
program, is to represent state allocations (at states S), by
encoding only the state differences or changes ∆ei : VS ∪
ES → R at event point ei. We will refer to this model as
the ∆-Model. Given these changes, the state allocations at
state si computes to

∑i
j=1 ∆ei . However, to compute the ∆ei

variables, conditional assignments of the following form are
necessitated (exemplified for substrate node Ns ∈ VS)

∆ei (Ns) =



+allocV(R,Ns) , if χ+
R1

(ei) = 1

−allocV(R,Ns) , if χ−R1
(ei) = 1

...
+allocV(R,Ns) , if χ+

Rk
(ei) = 1

−allocV(R,Ns) , if χ−Rk
(ei) = 1

This type of selection constraint can, in the framework of
Mixed-Integer Programming, only be modeled in the following
way:

∆ei (Ns) ≤+ allocV(R,Ns) + cS(Ns)(1− χ+
R1

(ei)) (3)

∆ei (Ns) ≥+ allocV(R,Ns)− cS(Ns)(1− χ+
R1

(ei)) · 2 (4)

∆ei (Ns) ≤− allocV(R,Ns) + cS(Ns)(1− χ−R1
(ei)) · 2 (5)

∆ei (Ns) ≥− allocV(R,Ns)− cS(Ns)(1− χ−R1
(ei)) (6)

As shown in the computational evaluation, the utilization of
these constraint types yields very weak models, even though
the number of variables is considerably smaller. We will now

give an example, that motivates the explicit state representation
of the Σ-Model.

In the branch-and-bound process used to solve MIP for-
mulations, non-fixed binary variables can attain any value in
the range [0, 1]. Assume now that, besides other requests,
two long lasting requests R1, R2 consisting of single nodes
(VR1 = {v1},VR2 = {v2}), are to be embedded on a single
node substrate (VS = {s}) and that both require all resources
on this node (cR1

(v1) = cR2
(v2) = cS(s)). Clearly, such an

embedding is not possible if R1 and R2 overlap temporally.
The relaxation of the event mapping variables however allows
for the following setting: χ+

R1
(ej) = χ+

R2
(ej) = 0.5. Under

this assignment, the above Constraints (3) and (4) reduce to
0 ≤ ∆ej (s) ≤ cS(s) for j ∈ {1, 2}. Thus, in the relaxation the
variables ∆ej (s) can attain the value 0 and therefore no state
allocations for Ri will ever become visible in the substrate’s
state. Furthermore, as the variables ∆ej allow also for negative
state changes, under the mapping χ−R1

(el) = χ−R2
(el) = 0.5

for l ∈ {101, 102} the constraints (5) and (6) reduce to
−cS(s) ≤ ∆ej (s) ≤ 0 and therefore all previous resource
allocations accounted for at state s100 on node s can be
effectively nullified.

C. Σ-Model: Representing States Explicitly

As discussed above, the linear relaxation of the ∆-Model
may fail to account for any resource allocations previously
made. To ensure better relaxations, we will now present
the Σ-Model that explicitly represents states at the cost of
introducing O(|S| · |R|) additional variables to represent local
state allocations made by each request. In Section IV we will
then show how the state-space can be effectively reduced.

To compute the local allocations, we use macro Σ(R, ei)
defined in Table VIII. Intuitively Σ(R, ei), computes for any
event point ei ∈ E to which extent request R ∈ R is
embedded. This allows us to compute resource allocations as
defined in Table IX: if request R ∈ R is not embedded at event
ei, i.e. Σ(R, ei) = 0, then the local state allocations aR are
not constrained, while if Σ(R, ei) = 1 holds, the local state
allocations are lower bounded by the actual resource usage.
Finally, the Constraint (9) of Table IX guarantees feasibility
of all state allocations by upper bounding the sum of all local
state allocations for the resources r ∈ VS∪ES by its respective
capacity cS(r).

Revisiting the single substrate example from the above
section, we note that by the above model Σ(Ri, ek) = 1
will hold for i = {1, 2} and k = {3, . . . , 100}, implying that
aRi

(sk, s) ≥ cS(s) will hold, showing that χ+
Ri

(ei) = 0.5 and
χ+
Ri

(ei+100) = 0.5 is an infeasible relaxation. The Σ-Model is
therefore provably stronger than the ∆-Model, as it excludes
linear relaxation that are feasible for the ∆-Model. Since the
superiority of this model is based on the ability to derive state
allocation directly using Σ(R, ei), we refer to this model as
Σ-Model.
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Table VIII
STATE ALLOCATION VARIABLES FOR REQUESTS

aR : S × (VS ∪ ES)→ R≥0 allocations of request R over states

∀R ∈ R.∀ei ∈ E. Σ(R, ei) =
∑

j=1,...,i
χ+

R (ej ,R)−
∑

j=i,...,|E|
χ−R (ej ,R)

Table IX
COMPUTING LOCAL STATE ALLOCATIONS AND GUARANTEEING

FEASIBILITY

∀R ∈ R.∀si ∈ S.∀Ls ∈ ES.

aR (si, Ls) ≥ allocE(R, Ls)− cS(Ls) · (1− Σ(R, ei)) (7)

∀R ∈ R.∀si ∈ S.∀Ns ∈ VS.

asi (R, Ns) ≥ allocV(R, Ns)− cS(Ns) · (1− Σ(R, ei)) (8)

∀si ∈ S.∀r ∈ VS ∪ES. cS(r) ≥
∑

R∈R
aR (si, r) (9)

IV. THE COMPACT STATE MODEL cΣ

Based on the discussions and insights from the ∆-Model
and Σ-Model discussed in the previous section, we have
developed the optimized and compact cΣ-Model.

We begin by outlining the major improvement over the Σ-
Model, namely the reduction of symmetries and the state-space
by only employing |R|+1 many event points compared to the
2 · |R| many event points used in the ∆- and Σ-Model. As
the embedding of requests and the general check of feasibility
was already introduced in Sections II and III we present how
to assign points in time to event points and how these relate
to the requests’ start and end time. After having presented the
cΣ-Model in full, we state the objective functions used in our
computational evaluation and then turn towards another very
important technique to reduce the state-space and improve the
LP-relaxation, the temporal dependency graph cuts.

A. Compactification

The major enhancement of the cΣ- over the Σ-Model lies in
the following observation: to check whether a state is feasible,
it suffices to consider only the states originating from the start
of a request. The truth of this is immediate, as the end of a
request may only reduce state allocations.

Figure 2 depicts the same scenario as Figure 1 but in the
compactified model. Here, each start of a request must be

event1 event2 event3

state1 state2

Event Order

Substrate

Local Mapping
on Substrate

event4

state3
State

R1

R2

R3

Figure 2. The example of Figure 1 revisited. By using only |R|+1 many
event points and allowing to map multiple requests’ ends on events, the state
model can be compactified.

Table X
DEFINITION OF ABSTRACT EVENT POINT AND STATE SETS

E= {e1, e2..., e|R|+1} abstract event points
S= {s1, s2, ..., s|R|} states between event points

Table XI
ASSOCIATING REQUEST GROUPS WITH EVENTS

∀R ∈ RG.
∑

ei∈{e1,...,e|R|}
χ+

R (ei) = 1 (10)∑
ei∈{e2,...,e|R|+1}

χ−R (ei) = 1 (11)

∀ei ∈ {e1, . . . , e|R|}.
∑

R∈R

(
χ+

R (ei)
)

= 1 (12)

assigned uniquely to one event point. As the ordering of the
ends of requests does not change the feasibility, we allow for
the assignment of multiple requests’ ends to the same event
point. The semantic of our model will be the following: if the
end of a request is mapped onto an event point ei, then it must
have ended between event points ei−1 and ei.

The set of events and states is defined in Table X while
the constraints assigning requests to event points are given in
Table XI.

The advantage of the cΣ-Model over the Σ-Model is
twofold. Firstly, halving the number of states, halves the
number of variables needed for requests’ local state allocations
(state-space reduction). Secondly, the cΣ-Model can effec-
tively reduce symmetries as discussed in Section IV-D.

B. Incorporating Time into the cΣ-Model

We will now present how time can be incorporated into the
cΣ-Model. As the approach presented here generally applies
to the ∆- and Σ-Models too, we only present the cΣ-version
constraints. Table XII introduces the variables used.

Table XIII states the constraints used to enforce temporal
feasibility. First we impose a (weak) monotonic order on the
events’ points time values. The Constraints (14) and (15) set
the start time of request R ∈ R to the event point it is
associated with. Note that using the sum is valid here, as
we sum only over earlier and later events respectively. The
Constraints (16) and (17) are a slight adaption of (14) and (15),
as in the lower bound for t−R the time point of the previous
event tei−1 is used. This is necessary, as when χ−R (ei) = 1
holds for some R ∈ R and ei ∈ {e2, . . . , e|R|+1}, then R
will end in the interval [tei−1

, tei ]. Lastly, the last constraint
of Table XIII requires that all requests are embedded for the
requested duration.

Together with the parameters, variables and constraints
found in Sections II and III the Tables I-XIII present a
complete formulation for the TVNEP. However, in the next
section, we will introduce further constraints to strengthen the
model, which will complete the description of the cΣ-Model.

Table XII
TEMPORAL VARIABLES

∀ei ∈ E. tei∈ R≥0 time point at which event ei takes place
∀R ∈ R. t+R ∈ R≥0 point in time at which the request R is embedded
∀R ∈ R. t−R ∈ R≥0 point in time at which R’s embedding ends
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Table XIII
ASSOCIATING REQUEST GROUPS WITH EVENTS

∀ei ∈ {e1, . . . , e|R|}. tei ≤ tei+1 (13)

∀R ∈ R.∀ei ∈ {e1, . . . , e|R|}.

t+R ≤ tei + (1−
∑

j=1,...,i
χ+

R (ej ,R)) · T (14)

t+R ≥ tei − (1−
∑

j=i,...,|E|
χ+

R (ej ,R)) · T (15)

∀R ∈ R.∀ei ∈ {e2, . . . , e|R|+1}.

t−R ≤ tei + (1−
∑

j=2,...,i
χ−R (ej ,R)) · T (16)

t−R ≥ tei−1 − (1−
∑

j=i,...,|E|
χ−R (ej ,R)) · T (17)

∀R ∈ R. dR = t−R − t
+
R (18)

C. Temporal Dependency Graph Cuts
Considering the cΣ-Model presented above, one finds that

both temporal as well as state allocation variables are con-
strained using the event mapping variables χ+

R , χ
−
R . To yield

reasonable LP-relaxations, the event mapping variables should
therefore be as less smeared as possible, i.e. that requests’
starts and ends should be assigned fractionally only to as
few event points as possible. In this section, we therefore
introduce Temporal Dependency Graph Cuts: these cuts are
valid constraints that can be a priori derived from the requests’
temporal specification and strengthen the model.

We introduce the directed temporal dependency graph
Gdep(R) = (Vdep, Edep) that will reflect temporal depen-
dencies. We define the graph as follows. The set of nodes
represents the abstract start and end point for each request:
Vdep = R×{start, end}. We define the following functions to
calculate the earliest possible start and the latest possible end
time.

earliest((R, t) ∈ Vdep) =

{
tsR , if t = start

tsR + dR , if t = end

latest((R, t) ∈ Vdep) =

{
teR − dR , if t = start

teR , if t = end

A directed edge (v, w) ∈ V 2
dep will be contained in Edep

iff. v must start before w:

Edep = {(v, w) ∈ V 2
dep|latest(v) < earliest(w)}.

Having defined the dependency graph, we can now start to
derive cuts, i.e. valid inequalities. First convince yourself that
Gdep(R) is acyclic. For (v, w) ∈ Edep, we define the weight
of (v, w) to be 1, if v represents the start of a request and 0
otherwise. As Gdep(R) is acyclic, we can compute maximal
distances by negating the weights and applying the Floyd-
Warshall algorithm [14]. Let distmax : Vdep × Vdep → N
denote the maximal distances between any two nodes. We set
distmax(v, w) = 0 if w is not reachable from v in Gdep(R).
We make the following observations:

1) If a node v ∈ Vdep is reachable from n many nodes
{(Ri, start)}, 1 ≤ i ≤ n then v cannot be mapped on
either one of the first n events.

2) Similarly: If a node v ∈ Vdep reaches n other nodes
{(Ri, start)}, 1 ≤ i ≤ n then all these must occur
after v. Furthermore, if v itself is a start event, then its
corresponding end event must be mapped after the start.
Therefore, if v = (R, start), then v cannot be mapped
on the last n+ 1 events and otherwise, if v = (R, end)
then v cannot be mapped on the last n events.

3) Let v, w ∈ Vdep, such that 0 < distmax(v, w) = d holds.
Assuming that w is mapped on ei then v must be mapped
on {e1, ..., ei−d}.

Note that the first two above observations can be formulated
in the following graph theoretical way: given a node v ∈ Vdep

consider the maximal subgraph (with respect to nodes and
edges) of Gdep such that all nodes within this subgraph reach
v or can be reached by v respectively. Counting the number
of edges attributed with 1 then directly gives the number of
leading and trailing event points on which the request of v
cannot be embedded. Denoting these values by dist+max(v) and
dist−max(v) we can derive the Temporal Dependency Graph
Cuts (see Table XIV), in which we use the following macro:

χEvent(ei ∈ E , (R, t) ∈ Vdep) =

{
χ+

R (ei) if t = start

χ−R (ei) if t = end

Note that the above considerations hold also for the general
Σ-Model, such that only slight modifications are necessary
to construct the temporal dependency graph cuts for these
models. While Constraint (20) can reduce LP smearings,
Constraint (19) is of upmost importance to presolve the Σ-
and cΣ-Model: as the event mapping variables are restricted
to certain event ranges we can apply the following presolving
routine if the start and end event ranges do not overlap.
Let E+R = {ei, ..., ej} and E−R = {ej+k, ..., el} denote the
event ranges for the start and end of R respectively. Clearly,
Σ(RR , en) = 1 (see Table VIII) holds for i ≤ n < j + k
and therefore we do not need to compute state allocations
aR for the intermediate states sn but can directly factor the
allocations of R into the sum of Constraint (9) (see Table IX).
Constraint (19) therefore poses another important state-space
reduction.

Table XIV
TEMPORAL DEPENDENCY GRAPH CUTS

∀v ∈ Vdep.
|R|+1−|dist−max(v)|∑
i=|dist+max(v)|+1

χEvent(ei, v) = 1 (19)

∀v ∈ Vdep.∀w ∈ dist+max(v).∀ei ∈ E, distmax(v, w) + 1 ≤ i ≤ |R|.∑i
j=1 χEvent(ej , w) ≤

∑
ej∈E

j≤i−distmax(v,w)

χEvent(ej , v) (20)

D. Symmetry Reductions

We will now show that the compactification of the Σ-
Model into the cΣ-Model yields symmetry reduction. Consider
the scenario of k requests R = {R1, . . . , Rk} of duration
dk = 1+1/2k which are to be embedded in the interval [0, 2].
Clearly, a priori, the only possible event order is to first start
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all requests and then end them (this is indeed implied by the
temporal dependency graph cuts of Table XIV). We will now
show that the number of possible solutions can be reduced by
a factor of 2k using the cΣ-Model in comparison to the ∆-
and Σ-Model. Assume that the requests’ starts are assigned in
the order of ascending durations: χ+

Ri
(ei) = 1. Based on the

chosen durations, Ri+1 can either be scheduled to complete
before Ri or after Ri by setting t−Ri+1

= t−Ri
± 1/2k+1.

Therefore, having fixed the requests’ start variables, there
might be as much as 2k many possible combinations to order
the requests’ ends. In contrast, the cΣ-Model allows only for
a single solution, in which all requests’ ends are mapped on
the last event point.

E. Objective Functions
We will now present the objective functions used in the

evaluation of our approach.
1) Access Control: The task is to maximize the revenue of

the substrate’s provider. We choose the revenue to be the sum
requested virtual node resources over time:

max
∑
R∈R

xR(R) · dR ·
∑

Nv∈VR

cR(Nv)

2) Maximize Earliness: Given a fixed set of requests to
be embedded, the provider may charge an additional fee
depending on how soon the request is embdded. We assume
that this fee is proportional to the duration of the request, such
that if the request is started at the earliest possible time, the
fee is dR and if the request starts at the latest possible time,
the fee is 0.

max
∑
R∈R

dR · (1−
t+R − t

s
R

teR − dR − tsR
)

3) Balance Node Load over Time: Given a fixed set of
requests to be embedded, the provider may try to schedule
and embed the given requests in such a way, that during
the span of time under consideration, the number of nodes
never being used more than some fraction of their capacity
is maximized. To this end, we introduce additional binary
variables F : VS → B, deciding whether a substrate node
is never used more than f% of its capacity.

max
∑

Ns∈VS

F (Ns) , s.t. ∀Ns ∈ VS.∀si ∈ S.

(1− F (Ns))·(1− f) · cS(Ns) ≥
∑
R∈R

asi(Ns)− f · cS(Ns)

4) Disable Links for Energy Savings: Another goal one
may pursue with is the conservation of energy. Concretely, one
may want to turn off as many links (i.e., switch or router ports)
as possible for as long as possible [15]. To model this objective
function, we introduce decision variables D : ES → B, such
that D(Ls) = 1 iff. Ls can be disabled over the whole time
span [0, T ].

max
∑
Ls∈ES

D(Ls) , s.t.

∀Ls ∈ ES.
∑

R∈R.Lv∈ER

xE(Lv, Ls) ≤ |R| ∗ (1−D(Ls))

V. GREEDY ALGORITHM cΣG
A

The objective of maximizing the number of embeddable
VNets (i.e., the access control objective) is a natural and
important one, as it e.g., maximizes the revenue for the infras-
tructure provider. However, compared to other objectives with
a fixed set of requests, it is considerably more complex. To
complement our study of optimal algorithms, in this section,
we will present a fast (and polynomial-time) greedy algorithm
to compute heuristic solutions for this particular objective.
Interestingly, the algorithm is still based on our cΣ-Model.

Algorithm cΣG
A takes as input a TVNEP instance with fixed

node mappings; alternative embeddings could be computed
e.g. by employing the approach presented in [12]. However,
we do not follow this direction further here and focus on the
link embedding as well as the temporal scheduling aspects.
First the set of requests is ordered according to the earliest
point in time at which they might start. According to this order,
Algorithm cΣG

A iteratively tries to embed the request at hand
using the cΣ-Model. The objective guarantees that the request
is embedded, if possible; furthermore, if the request can be
embedded, then it is started as early as possible. If a request
has been accepted, it has to be embedded at every following
iteration (by placing it in R+) and at exactly the points in time
returned by the optimal solution computed. If a request is not
embedded, its start and end times are fixed nevertheless (as
required by Definition 2.1). Importantly, the algorithm does not

Algorithm cΣG
A

Input : Substrate S, Requests R (see Tables I, II,VI),
node mappings ∀R ∈ R. x′V : VR ×VS → B

Output: Solution to the TVNEP: (x̂R, x̂V , x̂E , t̂
+, t̂−)

begin
set R′,R+,R− , ∅
set L← R ordered according to tsR
for i = 1 to |L| do
R′ ← R′ ∪ {L[i]}
(x̂R, x̂V , x̂E , t̂

+, t̂−)← optimal solution of:
max T · xR(L[i]) + (T− t−L[i]) (21)

s.t. cΣ(R′) (22)
∀R ∈ R′. ∀Nv ∈ VR . ∀Ns ∈ VS.

x̂V (Nv, Ns) ≤ x′V (Nv, Ns) (23)

∀R+ ∈ R+. x̂R(R+) = 1 (24)
∀R− ∈ R−. x̂R(R−) = 0 (25)

if x̂R(L[i]) = 1 then
set tsL[i] ← t̂+L[i] and teL[i] ← t̂−L[i]

set R+ ← R∪ {L[i]}
else

set teL[i] ← tsL[i] + dL[i]

set R− ← R∪ {L[i]}

return (x̂R, x̂V , x̂E , t̂
+, t̂−)
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fix link allocations: even though the requests embedding period
is fixed, link allocations are recomputed in each iteration.

We conclude our presentation of Algorithm cΣG
A by show-

ing that it is indeed polynomial. As the time points for starting
and ending requests are fixed for all but one request, there are
only O(R′2) many possibilities to map the temporally flexible
request: simply place the point of time of the start between
any two fixed time points and observe that the end can then
be mapped on maximally R′ many event points. As, given a
fixed event order, the MIP reduces to an LP (of polynomial
size), and as LPs can be solved in polynomial time using
e.g., interior-point algorithms [14], Algorithm cΣG

A can be
implemented in polynomial time.

VI. COMPUTATIONAL EVALUATION

This section presents our computational evaluation of the
algorithms to solve TVNEP, and focuses on the following
questions: (1) How do the ∆, Σ and cΣ formulations
perform in comparison? (2) To which extent can we compute
optimal solutions to the TVNEP using the cΣ formulation?
(3) How well does the Algorithm cΣG

A perform in comparison?
(4) What are the benefits of allowing temporal flexibility?

As underlying scenario we have chosen a synthetic work-
load on a data-center topology. The task is to solve the TVNEP
for a day of work, represented by twenty requests spread
over the day. We consider twenty-four of such workloads
independently to allow for qualitative conclusions. As our
main focus is how well our algorithms can cope with temporal
flexibilities, in our plots (x-axis), we increment the temporal
flexibilities (initially there are none) in steps of 30 “minutes”
until each request is equipped with a temporal flexibility
of 6 “hours”. For each of the resulting 24 × 11 = 264
scenarios, we compute solutions using the ∆-, Σ-, cΣ- and
the cΣG

A algorithms with the access control objective.
After having presented the results under the access control

objective, we consider the performance of the cΣ-Model under
the three other objectives presented in Section IV-E.

A. Methodology
As substrate for our experiments we have chosen a directed

4×5 grid graph, with |VS| = 20 nodes and |ES| = 62 directed
edges. Capacities on the substrate are set to be 3.5 for nodes
and five for links. As request topologies, we use five node
stars consisting of a single center and four surrounding nodes,
such that either all links are directed towards the center or
away from the center. This topology may represent a classical
master-slave relationship, or a Virtual Cluster (e.g. [7]). The
requests’ required resources are chosen uniformly at random
from the interval [1, 2], such that with high probability only
two nodes can be mapped on the same substrate node. We
generate 20 requests from a Poisson arrival process with
exponentially distributed inter-arrival time of 1 hour. The
duration of requests is sampled from the (heavy-tailed) Weibull
distribution with shape parameter two and scale parameter
four, giving an expected duration of approximately 3.5 hours.
As our focus in this work is to compare different continuous-
time models, we fix node mappings a priori: for each virtual

node we select uniformly at random a substrate node on which
this node is to be embedded. Importantly however, the virtual
links are not fixed beforehand; our algorithms therefore do
not only need to find a subset of requests to embed, but
furthermore need to decide when these requests are to be
scheduled, compute the embeddings of the virtual links and
guarantee that no substrate capacities are exceeded.

All experiments were conducted on Intel Xeon L5420@2,5
Ghz servers with 8 GB of RAM using Gurobi 5.60. Experi-
ments were terminated after one hour of execution. All model
and data files as well as the logs are available at [13].

B. Results

1) Access Control Objective: We start by comparing the
different MIP formulations. Figure 3 depicts the runtime of the
∆-, Σ-, and cΣ-Model as a function of the time flexibility. As
we terminate experiments after one hour of execution, Figure 4
shows the objective gap (the relative difference between upper
and lower bound in the branch-and-bound process) after one
hour. First, note that the ∆-Model is unable to generate
solutions already for 90 minutes of flexibility, as only for
one of the 24 scenarios, a solution is found. Considering
the Σ- and cΣ-Model, both always yield feasible solutions.
However, the runtime as well as the gaps of the cΣ-Model
are on average one magnitude lower than for the Σ-Model.
We therefore conclude that our optimizations presented in
Section IV significantly reduce the runtime and improve the
quality of solutions.

2) Performance of Algorithm cΣG
A: In Figure 7 the quality

of solutions of the greedy Algorithm cΣG
A is related to the

(optimal) solutions determined by the cΣ-Model. While the
median relative performance for 0 and 30 minutes of flexibility
lies around 10%, the performance of cΣG

A settles at around
5% for the rest of the temporal flexibilities. Even though in
around 25% of the cases, Algorithm cΣG

A yields solutions
being off more than 10% compared to the (optimal) solution,
the performance of cΣG

A is rather surprising, since the optimal
objectives increase nearly linearly (see Figure 9). We therefore
conclude that Algorithm cΣG

A scales well with increasing
temporal flexibilities. Lastly, we state that the runtime of
cΣG

A to solve the cΣ model with fixed time points for
all but one request lies around 0.1 seconds per iteration.
Algorithm cΣG

A is therefore fast and generally produces high
quality solutions.

3) Performance of cΣ-Model under Different Objectives:
We will now consider the performance of the cΣ-Model under
objectives not containing access control, but for maximizing
earliness, the number of free nodes and the number of disabled
links. To interpret the result in terms of the number of requests
per flexibility, these are displayed in Figure 8. Figures 5 and 6
present the runtime and objective gap respectively. While the
objective to disable seems to be the hardest of these, note that
only at temporal flexibilities of 270 and 300 minutes, many
scenarios did not yield optimal solutions within one hour of
execution time. Furthermore, considering the runtime, optimal
solutions for all three objectives can be computed within two
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Figure 3. Runtime of MIP formulations as a function of the time flexibility.
As computations were terminated after one hour, a runtime of 3600 implies,
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minutes up to a temporal flexibility of 180 minutes.

VII. RELATED WORK

For a general overview of the vision of cloud computing and
network virtualization, the reader is referred to the surveys [16]
and [17]. Overall, to the best of our knowledge, there is no
previous work on the temporal VNet embedding problem. In
the following, we review related literature in related fields.

a) Predictable Cloud Network Performance: Many pa-
pers have argued that not only computational and storage
resources must be managed efficiently, but also networking
matters (e.g., [3]). A nice overview of networking aspects in
cloud computing is provided in [2]. While initially, mostly
graph-based models were studied, see e.g., the SecondNet
system [6], there is now a trend towards hose models known
from wide-area networks, see e.g., the Oktopus system [7].
The algorithms presented in this paper are rather general and
support all these models.

b) Time-varying Approaches: Until recently, most lit-
erature ignored the possibility that an application’s network
demands can vary over time [18], [19] in a predictable manner.
Xie et al. [8] profiled several data-intensive MapReduce-style
applications, and showed that many such applications exhibit
predictable time-varying behavior at timescales on the order
of tens of seconds. They proposed a Temporally-Interleaved
Virtual Cluster (TIVC) abstraction, which allows the provider
to admit multiple jobs that effectively time-share the same
bandwidth. In the Cicada approach [2], the tenant starts with
an initial placement of VMs and an estimated traffic matrix.
The provider then profiles the application (similar to Proteus,
but over longer timescales), with the aim of predicting the
traffic matrix and how it varies diurnally. If the matrix appears
predictable, the provider may propose to the tenant a time-
varying or spatially-varying guarantee for future periods.

From an economical perspective, the idea to trade time
flexibility with price has been studied in [20] from a schedul-
ing complexity perspective. More generally, there are several
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interesting proposals for novel adaptive resource and spot
market pricing schemes, e.g., [21], [22].

c) Embedding and Scheduling: The virtual network em-
bedding problem has been studied intensively over the last
years. The general formulation is NP-hard [23], and existing
literature falls into four main categories: some works focus
on optimal solutions on smaller scale environments (such
as a router site), e.g., [24], others propose approximation
algorithms (e.g., [12]) with provable quality guarantees or
heuristics (e.g., [25]) which perform well, e.g., in simulations,
and some works even propose to study environments which
mitigate the computational complexities by imposing certain
structures (e.g., [26]). Researchers have also pursued mathe-
matical programming approaches already. For instance, Kumar
et al. [27] describe an approach to solve a simpler Virtual
Private Network tree computation problem for bandwidth
provisioning. Even et al. [28] propose a general access control
algorithm for many different routing and traffic models which
selects and embeds only the requests of high benefit such
that the overall benefit is maximized, but without exploiting
placement or time flexibilities. Chowdhury et al. [12] present
a MIP supporting flexible node placements for VNets, and
propose a relaxation strategy to find solutions quickly.

Surprisingly, however, while a large body of literature exists
on static embeddings, the important time-aspects for short-
term embeddings have received much less attention. In this
respect, the closest literature to ours are arguably the works on
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the temporal routing and max flow problems which focus on
links only (e.g., [29]). A limited form of temporal embedding
support is also contained in the works by Zhang et al. [30] who
also introduce a heuristic topology-aware embedding scheme,
or in the context of VPN embeddings [28]; however, the
opportunities of time flexibilities are not explored.

d) Other: Also in other fields with time-critical appli-
cations there exist mathematical programming solutions, such
as the spatio-temporal composition of distributed multimedia
objects [31], or more remotely, e.g., chemical production
planning [32]. Indeed, several concepts introduced in the
chemical production literature also apply to the VNet embed-
ding problem [33]. However, the focus in chemical production
planning lies on the sequential planning of production pro-
cesses, where tasks can only be performed after the completion
of predecessor tasks whose output is needed as input; time and
specification flexibilities play only a secondary role. We are
not aware of any results on more complex objective functions
with time-dependent variables, whose state (e.g., resource
allocations) and state differences needs to be tracked over time,
as it is achieved with our approach.

VIII. CONCLUSION

As today’s networks are becoming more virtualized, en-
abling a flexible service allocation and resource sharing, it
is important that a predictable performance is ensured by re-
source isolation. Virtual networks can provide such guarantees.
However, for an optimal resource allocation, VNets should be
mapped and scheduled in a flexible and efficient manner.

Accordingly, this paper has introduced the TVNEP problem
and presented the cΣ-Model to solve the TVNEP to optimality.
Interestingly, despite the computational hardness of TVNEP,
reasonably sized problem instances can be solved to optimality
using our approach. We have additionally presented a greedy
heuristic which is attractive if near optimal solutions are
sufficient, and which could also be used in combination
with the optimal algorithms, e.g., for allocating many smaller
VNets while more rigorous optimizations are performed on
the resource-intensive VNets (the “heavy-hitters”).
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