
1

Supporting the Analyzability of Architectural
Component Models - Empirical Findings and Tool

Support
Srdjan Stevanetic

Software Architecture Research Group
University of Vienna, Austria

Email: srdjan.stevanetic@univie.ac.at
Uwe Zdun

Software Architecture Research Group
University of Vienna, Austria

Email: uwe.zdun@univie.ac.atm

Abstract

This article discusses the understandability of component models that are frequently used as central views in architectural

descriptions of software systems. We empirically examine how different component level metrics and the participants’ experience

and expertise can be used to predict the understandability of those models. In addition, we develop a tool that supports applying

the obtained empirical findings in practice. Our results show that the prediction models have the large effect size, which means

that their prediction strength is of high practical significance. The participants’ experience plays an important role in the prediction

but the obtained models are not as accurate as the models that use the component level metrics. The developed tools combine the

DSL-based architecture abstraction approach with the obtained empirical findings. While the DSL-based architecture abstraction

approach enables software architects to keep source code and architecture consistent, the metrics extensions enable them, while

working with the DSL, to continuously judge and improve the analyzability of architectural component models based on the

understandability of their individual components they create with the DSL. Provided metrics extensions can also help in assessing

how much each architectural rule used to specify the DSL affects the understandability of a component which enables for instance

finding the rules that contribute the most to a limited understandability. Finally, our approach supports change impact analysis,

i.e., the identification of changes that affect different analyzability levels of the component models. We studied the applicability

of our approach in a case study of an existing open source system.

I. INTRODUCTION

In the process of software systems development software architecture represents a key artefact that affects all later activities

such as design and implementation and plays a crucial role in achieving the desired software qualities [55]. Software architecture

focusses on a high level view of a software system and it is defined as : “the structure or structures of the system, which

comprise software components, the externally visible properties of those components, and the relationships among them” [10].

According to the software architecture community, an architectural description can comprise multiple views concentrating

on one of many system concerns, such as logical, implementation, deployment, process, or architectural knowledge view, and

from the viewpoint of different stakeholders, such as end-users, developers, project managers, and business analysts [53], [23].

Architectural component and connector models (or shortly component models), that are part of the implementation view, are

frequently used as a central view of the architectural descriptions of software systems [23]. Component models represent

2

high-level abstractions of the system implementation and are often considered to contain the most significant architectural

information [23]. In this view, components could refer to different system entities such as processes, objects, clients, servers,

data stores, modules, subsystems, etc., while connectors represent the interaction mechanisms between components [23]. In

this article, we consider a component more in the sense of software modules by adopting the definition of Clemens et al.,

i.e. a component represents an implementation unit of software that provides coherent unit of functionality at the first level of

decomposition in the system [23]. This definition is adopted because our work focuses on the understandability of component

models which mainly relates to understanding a functional decomposition of the system and the effect of modifying the system

functionalities, i.e. the impact analysis. Please note that component decomposition can be made independent of the functionality

type implemented in a component. For example, a decomposition can consider both technical functionalities (e.g. components

for file-access or network connection) and business functionalities (e.g. components for savings or accounts). Since a component

in a component model represents a high-level abstraction of the entities in the source code of the system, it can be broken

down into (i.e., is refined by) more fine-grained, technical components or classes that realize the component in the technical

design or implementation of the system. In the context of object-oriented software systems that we focus on, a component

usually groups a set of source code classes and/or packages with similar functionalities, while a connector could represent any

kind of dependency between classes like method calls, fields access, etc.

Understandability is one of the most important characteristics of software quality [74]. The difficulty of understanding

the software system limits its reuse and maintenance. Boehm defined software understandability as a feature of software

quality which means ease of understanding software systems [15]. In the context of component models, understandability

refers to understanding the functionalities of individual components together with the functional relatedness among them [30].

Understandability is a critical aspect for the component models, as their main purpose is to “ ... enable designers to abstract

away fine-grained details that obscure understanding and focus on the “big picture:” system structure, the interactions between

components, ...” [72]. This, however, is not possible if the given models themselves and/or the links to other design and code

artefacts are hard to understand.

In our previous work [92], we examined the relationships between the effort required to understand a component, measured

through the time that participants spent on studying a component, and the hierarchical quality metrics originally designed to

assess the understandability of the modular design of an object-oriented software system [46]. Those metrics refer to 6 design

properties found to have an impact on the understandability of the modular design of a system: size, complexity, encapsulation

(i.e. information-hiding), coupling, cohesion and modular abstraction. In the same study, we have further examined the impact

of personal factors (i.e. the participants’ experience and expertise), and compared the efficiency of both personal and system

related factors (metrics) with the prediction models obtained in our previous studies [89], [90]. In another study reported in a

position paper [88], we presented a tool for supporting software evolution by integrating a DSL-based architecture evolution

approach with our empirically evaluated understandability metrics. In this article, we provide: 1) an extended description of

the results obtained in our previous work ([92]) consisting of more detailed description of the studied metrics and applied

statistical techniques as well as more detailed explanations and discussions of the obtained results, 2) a new metric for

measuring the analyzability of component models based on the integration of our empirical evaluations and the existing work

3

on the analyzability related metrics proposed by Bouwers et al. [17], and 3) significant tool extensions compared to our

previous work reported in a position paper [88] including the realization of the new analyzability metric by supporting how

much each of the architectural rules used to specify a DSL-based architectural abstraction specification contributes to the

understandability of components and enabling change impact analysis, i.e. the identification of changes in the system that

affect different analyzability levels of the component models.

The results of our empirical analyses show that the hierarchical understandability metrics can predict the understandability

with high practical significance. On the one hand, the obtained prediction models are significantly better then the models obtained

using the graph based metrics (examined in [89]), the package based metrics (examined in [90]) or the models that use the

participants’ experiences as predictors. On the other hand, those models are not significantly different or worse in prediction from

the models that combine both the system related metrics (the graph based, package based, and hierarchical understandability

metrics) and the participants’ experiences. This means that, from all studied predictors, the system related metrics (i.e. the

hierarchical understandability metrics) are enough to consider for the prediction. We also find that the participants’ experiences

are important and can predict a significant amount of variance in the data but the obtained models are not as accurate as

the models that use the metrics related to the software system itself (concretely the hierarchical understandability metrics).

Regarding the tool support, we demonstrate in a case study how it can be used to create component models with appropriate

analyzability level by incrementally improving an initial component model of the system. In addition, we show how the tool

can be used for change impact analysis, i.e for detecting the changes that exist between different component models that affect

their different analyzability levels.

This article is organized as follows: In Section II, we discuss the related work. In Section III we describe the study design.

Section IV describes the statistical methods we applied and the analysis of our data. In Section V we discuss the threats to

validity. Section VI describes the tool we developed together with a case study on how the tool can be utilized in a practical

context. In Section VII we conclude and discuss future directions of our research.

II. RELATED WORK

So far very few studies investigate the empirical evidence on the architectural understandability. One of them examines

the influence of package coupling on the understandability of the software systems [41], while another one examines the

relationships between some package-level metrics and package understandability [33]. None of the studies examines the

understandability of architectural components. In this section we discuss the existing works in several fields closely related to

our work.

A. Measuring the understandability

In the work by Patig [75] the variables and tasks that have been proposed by cognitive psychology or applied in computer

science to test understandability are extracted. Those variables and tasks are summarized in Figure 1 and they represent a

theoretical framework for investigations on understandability. The variables have been theoretically justified by the authors

who used them. In our case, the independent variables represent the metrics that we collected (in the work by Patig they

4

are related to abstract/concrete syntax and therefore this part of the figure is adapted from the original one). The dependent

variable in our case is the understandability of components. As we see from Figure 1, different measures can be used to

quantify the dependent variable(s) such as frequency (the number of correct answers), selection (which of several answers

participants choose), response latency (how quickly participants reacts), response duration (how long participants deal with a

task), and amplitude (measuring the strength of response, i.e. brain activities in performing a task). In our case we measured

the correctness of the answers and the time that participants spent on resolving the questions. Regarding the comprehension

tasks the participants of an experiment need to answer an appropriate set of questions. If the questions are related to the syntax

of the model (constructs of the model) the task is called syntactic. If the questions are related to the understanding of the

context described the task is called semantic. Both of these two types of tasks are related to surface level understanding. In

problem-solving tasks that address deeper understanding participants have to resolve whether and how certain information can

be extracted from a model. In our case the problem-solving tasks are more suitable because the participants have to understand

not just the component models themselves, i.e. how the components interact in the model, but also the relations between them

and the concrete system implementation. Modelling tasks are used more for measuring the general ease of use of some notation

and therefore they are not suitable for our case.

Task
Independent Variable(s)

· Metrics related to

component views

Comprehension Modelling

Dependent Variable(s)

Content Persons

Participants Experimenter

Experiment

Conduct Situation

Extraneous Variable(s)

Surface-lavel

· Syntactic

· Semantic

Problem-solving

Effectiveness

· Frequency

· Selection

Efficiency

· Responce latency

· Responce

duration

Amplitude

Fig. 1. Theoretical framework for investigations on understandability (adapted from [75])

In the work by Patig all proposed dependent variables are externally measured in terms of using some external means

like the time that participants spent on answering the questions or the percentage of the correct answers on those questions.

Beside the external means it is also possible to use the participants subjective ratings in the measurement process. In the

context of model understandability Moody proposes three ways how to assess understandability: the model user’s rating of

model understandability, the ability of users to interpret the model correctly, and the model developer’s rating for model

understandability [67]. The first and the third way are based on the subjective ratings of users/developers. However, Lindland

et al. explain that the ability of model users to interpret the model correctly is the best operational test whether the model is

5

actually understood rather than whether it is understandable [54], [67].

B. Architecture and design metrics and their empirical evaluations

There exist plenty of software metrics for measuring the system’s architecture, architectural components, and other high level

software artefacts and structures (packages, modules, graph-based structures). For example, metrics related to components and

component models measure different attributes like size, coupling, cohesion, and dependencies of components as well as the

complexity of the whole component models [86], [84], [85]. Regarding the software packages, different metrics that measure

size, coupling, stability, and cohesion are proposed [33], [41], [60], [42]. Graph-based metrics measure the complexity of

interactions between the graph nodes [13], [57], [5]. Certain graph-based metrics are evaluated to be useful for measuring

large scale software systems that are observed to share some properties that are common for complex networks across many

fields of science [57]. Most of the above given metrics lack of the links to the quality attributes. Stevanetic and Zdun [91]

present a systematic mapping study on software metrics related to the understandability concepts of software architectures

with regard to their relations to the system implementation. In this article and the previous ones that empirically investigate

the understandability of components, the examined metrics are chosen from the given mapping study and tested in the given

context.

There exist several studies that empirically evaluate metrics. In contrast to our work, they usually evaluate the usefulness

of a metric for its proposed purpose, but do not test the relationships of specific metrics, as in our case the prediction of the

understandability using predictor metrics. Also, none of the studies focuses on architectural component models. Among many

others, Basili et al. evaluate object-oriented design metrics as quality indicators [9]. Albrecht and Gaffney provide one of many

examples for a study on development effort metrics [3]. Similarly to our work Moody presents an empirical evaluation of the

use of data model quality metrics [68]. In this approach a broad set of quality metrics is investigated. The result obtained is

that only a few of these quality metrics have an influence on the quality as perceived by the model users. These are the system

complexity, the number of data items duplicated in existing systems, the development cost estimation, the reuse percentage,

and the number of defects by quality factor.

C. Understandability of UML models and process models

There exist a variety of studies in the literature that examine the understandability of different UML models. Some of them

examine the layout or visualization aspects of UML models. Purchase et al. [76] show that certain visualizations are better

than the other depending on the kind of comprehension tasks that is used. Criteria and guidelines of how to create effective

layout for UML class and sequence diagrams are established in the work by Wong and Sun [93]. They are based on perceptual

theories.

Some other studies related to UML model understandability compare the effect of using different UML diagram types

(e.g., sequence and collaboration diagrams). For example, Otero and Dolado take different UML diagrams types, sequence,

collaboration, and state diagrams, and evaluate the semantic comprehension of the diagrams when used for different application

domains [73].

6

Some authors investigate the styles and rigor in UML models and how they affect the understandability of the models. For

example, Briand et al. [18] investigate the impact of using OCL (object constraint language) in UML models on defect detection,

understandability, and impact analysis of changes. They find that the benefits for the individual activities are modest but the

overall benefits of using OCL on the aforementioned activities are significant. None of the aforementioned studies examine

the understandability of architectural components, the central high level organizational units of the architectural descriptions

of software systems.

The work in the field of process model related metrics emphasize the importance of model characteristics for assessing

model understandability. Such metrics measure structural properties of a process model, motivated by prior work in software

engineering related to lines of code, cyclomatic number, or object-oriented metrics [62], [22], [36]. Lee and Yoon, Nissen, and

Morasca [87], [70], [69] focus on defining metrics. Different metrics have been also validated empirically. Cardoso adapts the

cyclomatic number metric for business processes (called it control-flow complexity (CFC)) and proves the correlation of the

metric with perceived complexity of process models [21]. Canfora, Rolon, and Garcia analyse understandability as an aspect of

maintainability using different metrics of size, complexity, and coupling in their experiments. They identify several significant

correlations [20], [2]. Some other metrics are related to cognitive research, e.g. [95], and based on concepts of modularity, e.g.

[96], [94].

Different empirical validations in the field of process models clearly show that size is an important model factor

for understandability, but does not fully determine phenomenons of understanding. It means that additional metrics like

structuredness can help to improve the explanatory power significantly [65]. In our case, we examine the effect of different

metrics, that measure more/less the same concepts as those mentioned for process model understandability (size, coupling,

complexity), on understandability of components’ functionalities implemented by the corresponding set of source code classes.

We also show that the size is not enough to fully determine the understandability and additional properties need to be taken

into account. Similar to our work, Reijers and Mendling [78] investigate the impact of personal and model related factors on

understandability of process models. They show that expert modelers perform significantly better and that the complexity of the

model affects understanding. A combined regression model is calculated that permits preliminary conclusions on the relative

importance of both groups of factors. They find that personal factors (theoretical knowledge, practical experience, educational

background) have a stronger explanatory power in terms of adjusted R2 than model related factors but they kept the size of

the models constant by intentionally selecting models of equivalent size. We also find that the participants’ experiences are

important as well as the system related metrics but in contrast to the work by Reijers and Mendling, we find that the system

related metrics have a significantly stronger explanatory power and even alone can be used for the prediction, i.e. combining

them with the experiences does not produce a stronger explanatory power. Furthermore, we take into account the size. Also,

all our participants are students and we do not consider experts from industry as it is the case in the previous study.

D. Software quality models

To assess design quality different object-oriented software quality models have been proposed and validated in the

literature [22], [7], [38], [44], [9]. In those models, software quality is assessed using several software metrics that are

7

used to quantitatively assess design properties such as coupling and cohesion. But those models are insufficient to manage

understandability in the high level system representations such as module-view, package-view, or component-view because they

capture a software system as the set of classes and their relationships, but not the set of modules, packages or components

and their relationships.

Contrary to the given quality models, Bansiya et al. [7] proposes a hierarchical quality model for object-oriented design

quality assessment (QMOOD) which is able to assess understandability of a system. Their model extends Dromey’s quality

framework used for building product based quality models [28], [29]. However, QMOOD can only consider the dependencies

between classes in a module without considering the dependencies between classes of different modules as well as a module

hierarchy and therefore cannot assess the quality of modular design properly. Sarkar et al. [83] examine different metrics

that can be used to assess modularization quality of a large-scale object-oriented software system. But the authors do not

provide relationships between their metrics and the high-level quality attributes. Therefore more investigations are necessary

to establish the links between those metrics and high-level quality attributes. Hwa et al. [46] propose a hierarchical model

to assess understandability of modularization in large-scale object-oriented software. They define several design properties,

which capture the characteristics influencing on understandability, and design metrics based on the properties, which are used

to quantitatively assess understandability. In this article, we use the concepts and metrics defined in the work by Hwa et al. to

improve the explanatory power of our previously obtained models on understandability of architectural components.

E. Other aspects related to architectural component models

Even though there is a lack of empirical studies on architectural component models understandability, other aspects like

fault density and reuse of components have been studied before. In the work by Fenton and Ohlsson the relations between

fault density and component size are examined [35]. Mohagheghi et al. use the historical data on defects, modification rate,

and software size to investigate the comparison between software reuse and defect density and stability [66]. Malaiya and

Denton study the factors that can be used to determine the “optimal” component size with regard to fault density [58]. They

identified component partitioning and implementation as influencing factors. Graves et al. examine the software change history

of components in order to create a fault prediction model [40]. Metrics such as change times, time elapsed since the last

changes, and number of changes are used in the model, while size and complexity metrics are not deemed useful. These and

similar studies have in common with our one that a link between software quality or desired properties, such as fault density

or reuse rate, and component properties, such as size, complexity, or change rate, are made. These studies are different from

our one as they examine aspects that can be studied without considering the human participants: They only analyse aspects

that can solely be studied using the software systems and their historical data.

A number of authors propose ways to improve the understandability of architectural models through additional models

or documentation artefacts. A major research direction deals with documenting architectural decisions and architectural

knowledge in addition to component models [6], [47], [99]. Another major research direction deals with architectural views [24],

[45], [53] which enable different stakeholders to view the architectures from different perspectives. Both research directions

8

only complement component models with additional knowledge, but neither of them studied the understandability issues of

component models with regard to their relations to the system implementation.

F. Architecture abstraction and evolution

There exist several approaches that support the abstraction of the architecture from other system artefacts as well as the

architecture evolution. Here, we discuss some of those approaches that are closely related to the approach used in our tool.

Konersmann et al. [52] describe the ADVERT approach that provides support for software evolution on an architectural level.

Their approach is based on two ideas: (1) Maintaining trace links between requirements, design decisions, and architecture

elements, and (2) explicitly integrating software architecture information into the code. Contrary to our approach the ADVERT

approach assumes that the architecture already exists (is built from the design solutions) and it does not provide architecture

level quality checks. Another approach that focusses on architecture evolution is proposed by Barnes et al. [8]. They support

the modelling of different evolution paths and allow reasoning about architecture evolution based on these different paths.

Cuesta et al. [26] extends the approach by Barnes et al. by proposing the documentation of architecture evolution using

architectural knowledge. These approaches are more focussed on reasoning about architecture evolution while our approach

aims at supporting architecture evolution in order to evolve source code and architecture documentation in a synchronized

fashion, allowing at the same time architecture quality evaluation.

There exist several approaches that focus on the automatic creation of source code abstractions using automatic clustering. The

comparison and review of those approaches and the corresponding clustering measures can be found in the work by Maqbool

and Babri [59]. They define a number of clustering algorithms groups and compare their performance using different open

source projects. The results show which approach works good for which application but no conclusions regarding the overall

effort necessary to correct the automatic clustering are drawn. Contrary to all these approaches our DSL-based approach is

semi-automatic, enables the checking of design constraints during the abstraction process, provides traceability between source

code and models and focuses on the evolution of the architecture (having an “up-to-date” architecture that reflects the source

code) rather then the recovery of architecture. Also, our approach provides quality checking of the generated architectural

abstractions based on the corresponding empirical evaluations.

Egyed [32] proposes an approach for model abstraction based on traceability information and abstraction rules. The author

identified 120 abstraction rules for the example of UML class models, which need to be extended with a probability value

because the rules may not always be valid. Our approach is based on architectural abstraction specifications that enable creating

architectural models on different levels of abstraction, starting from the system implementation.

III. EMPIRICAL STUDY DESCRIPTION

For the planning of our study, data collection, and analysis and interpretation of the results, we have followed the experimental

process guidelines proposed by Kitchenham et al. [50]. In particular, for the planning phase, the next guidelines are followed:

experimental context setting guidelines (examining the related work, defining hypotheses, and considering the circumstances

in which an empirical study takes place) and study design guidelines (defining the population of the study, administering the

9

treatments, considering the methods for reducing bias). For data collection, and the analysis and interpretation of the results, the

next guidelines are followed: data collection guidelines (defining measures used in the study, ensuring their accurate calculation,

considering which data should be excluded), analysis guidelines (choosing the appropriate statistical techniques, performing

the data sensitivity analysis), interpretation guidelines (defining the population and the circumstances for which the results

apply, specifying study limitations and threats to validity).

A. Goals

As mentioned above, this article aims at further elaborating on the concepts and metrics related to the empirical evaluations

of the understandability of components that we studied in our previous work. Namely, we examine the usefulness of the

hierarchical understandability metrics proposed in the work by Hwa et al. [46] as well as the participants’ experience and try

to improve the prediction efficiency of our previous prediction models.

In the following couple of paragraphs we provide the notation and the definitions of the metrics we used in our previous

work as well as the metrics from the discussed hierarchical model.

The metrics that we studied in our previous studies include: metrics adapted from the corresponding package level metrics

defined by Martin [60] (studied in [90]) and metrics on graphs that have been previously defined by Allen et al. [4], [5] (studied

in [89]).

The metrics adapted from the package-level metrics defined by Martin are shown in Table I. The first three metrics are

adapted from the corresponding package level metrics (number of classes for a package, package afferent coupling and package

efferent coupling) defined by Martin [60]. We consider the dependencies between the components in terms of the dependencies

between the classes while in the work by Martin the dependencies between packages are considered through the number of

packages that are related to the given package1. The first three metrics characterize the coupling and the size of a component

and the fourth metric is introduced to model the internal complexity of the component in terms of the number of dependencies

between classes within a component.

Metric’s name Number of
Classes (NC)

Number of Incoming
Dependencies (NID)

Number of Outgoing
Dependencies (NOD)

Number of Internal
Dependencies (NIntD)

Metric’s
definition

Total number of
classes inside a

component.

Total number of
classes inside a

component.

Total number of dependencies
between the classes outside of
a component and the classes
inside a component that are

used by those outside classes.

Total number of dependencies
between the classes inside a
component and the classes

outside of a component that are
used by those inside classes.

Measured
Property

Design
Size/Complexity

Coupling Coupling Complexity

TABLE I
METRICS ADAPTED FROM THE PACKAGE LEVEL METRICS DEFINED BY MARTIN [60]

Regarding the metrics defined by Allen et al. [4], [5], a graph composed of nodes and edges is considered as an abstraction

of a software system and a sub-graph represents a software module. With respect to our case, nodes correspond to the source

code classes while edges correspond to the relationships between those classes. Components (that group source code classes)

in our case correspond to the modules in the work by Allen [4].

1Please note that the relationships between the classes consider dependencies between the classes affected by method calls, data reference or inheritance
relationships. The same dependencies are considered for all sets of metrics.

10

In this paragraph we provide the metrics’ definitions together with some explanations. The definitions of the graph based

metrics are shown in Table II. The notation used for the metrics definitions is the following (adapted from the work by Allen

[4]): S – the whole system graph (all nodes and edges), S# – edges–only graph (edges in S and end points), Si – node

sub–graph (nodes in S# and edges incident to node i (i = 0 for the environment node, i = 1, ..., n for system nodes)),

MS – S partitioned into modules, mk – module k (nodes in a module and their incident edges), MS∗ – nodes in MS and

intermodule edges, MS0 – nodes in MS and intramodule edges, Pr(i, j) – path between nodes i and j (nodes and edges

on the path between the nodes i and j , including i and j), pL(i) – the proportion of the i-th row pattern in the nodes ×

edges table, nk – the number of nodes in a module, ne k – the number of edges incident to nodes in a module, and m
(nk)
k –

module as a complete graph consisting of nodes in a module and all possible edges between those nodes. The definitions of

the length metrics are based on the notion of size, applied to paths (each path is considered to be a module in that case) [4].

The definitions of the coupling and the cohesion metrics are based on the definition of complexity whereby different graph

abstractions are considered. Namely for the complexity metrics a whole system graph is considered while for the coupling and

cohesion metrics an intermodule edges graph and an intramodule edges graph are considered, respectively. For instance, the

counting coupling metric for a module is equal to the number of edges incident to nodes in a module but only intermodule

edges are taken into account unlike the counting complexity metric where edges in a whole system graph are taken into

account.

Metrics definitions

Information theory based metrics Counting based metrics

Size (𝑚𝑘| S) = ∑ (− log 𝑝𝐿(𝑖))

𝑖𝜖𝑚𝑘

 CSize (𝑚𝑘| S) = 𝑛𝑘

Length (𝑚𝑘| S) = max
𝑖,𝑗 ∈ 𝑚𝑘

(min
𝑟

(𝑆𝑖𝑧𝑒(𝑃𝑟 (𝑖, 𝑗))|𝑆))

CLength (𝑚𝑘| S) = max
𝑖,𝑗 ∈ 𝑚𝑘

(min
𝑟

(𝐶𝑆𝑖𝑧𝑒(𝑃𝑟 (𝑖, 𝑗))|𝑆))

Complexity (𝑚𝑘| S) = ∑ 𝑆𝑖𝑧𝑒(𝑆𝑖) −

𝑖𝜖𝑚𝑘

Size (𝑚𝑘| 𝑆#) CComplexity (𝑚𝑘| S) = 𝑛𝑒_𝑘

Coupling (𝑚𝑘| MS) = Complexity (𝑚𝑘| 𝑀𝑆∗) CCoupling (𝑚𝑘| MS) = CComplexity (𝑚𝑘| 𝑀𝑆∗)

Cohesion (𝑚𝑘| MS) =
Complexity (𝑚𝑘| 𝑀𝑆𝑜)

Complexity (𝑚𝑘
(𝑛𝑘)| 𝑀𝑆𝑜)

 CCohesion (𝑚𝑘| MS) =
CComplexity (𝑚𝑘| 𝑀𝑆𝑜)

CComplexity (𝑚𝑘
(𝑛𝑘)| 𝑀𝑆𝑜)

TABLE II
GRAPH BASED METRICS DEFINITIONS (ADAPTED FROM [4] AND [5])

The metrics from the hierarchical understandability assessment model consider six design properties which affect under-

standability of the modular design of a system. Hwa et al. [46] systematically examined which properties can affect the

understandability and the six of them they found are: design size, complexity, encapsulation (i.e. information-hiding), coupling,

cohesion and modular abstraction. Complexity, encapsulation, coupling and cohesion come from general properties which

should be managed for software quality [39], [16], [7] and modular abstraction is a new design concept introduced by the

module/package hierarchy [79], [56]. Table III represents the metrics definitions together with the corresponding notation.

Please note that modules in the work by Hwa et al. correspond to components in our case. Please also note that the DMH

metric (Depth in Module Hierarchy) might not be always directly applicable for components since e.g. one (big) component

might contains classes located in several modules/packages with similar functionalities. In that case, similarly to Hwa et al.,

11

we can find an average depth in a hierarchy for all classes in a component with respect to the location of the class in a

module/package hierarchy.

Metric’s name Metric’s definitions Measured
Property

Module Size in
Classes (MSC) MSC(𝑚𝑑) = |𝐶(𝑚𝑑)|

Design
Size/Complexity

Number of API
Classes (NAC)

𝑁𝐴𝐶(𝑚𝑑) = |{𝑐1 ∈ 𝐶(𝑚𝑑)| ∃𝑐2 ∈ 𝐶(𝑚𝑑2)[𝑟𝑒𝑙𝑐(𝑐2, 𝑐1) ∧
𝑚𝑑2 ∈ 𝑀𝐷 ∧ 𝑚𝑑2 ≠ 𝑚𝑑]}|

Encapsulation

Direct Module
Coupling (DMC)

𝐷𝑀𝐶(𝑚𝑑) = |{𝑚𝑑2 ∈ 𝑀𝐷|𝑟𝑒𝑙𝑐(𝑚𝑑,𝑚𝑑2) ∨ 𝑟𝑒𝑙𝑐(𝑚𝑑2, 𝑚𝑑),
𝑚𝑑 ≠ 𝑚𝑑2}|

Coupling

Number of
Disjoint Clusters

(NDC)

𝑁𝐷𝐶(𝑚𝑑) =

|

|

{

𝑐𝑙 ⊆ 𝐶(𝑚𝑑)

||

∀𝑐𝑖 ∈ 𝑐𝑙

[
(|𝑐𝑙| = 1 ∨ ∃𝑐𝑗 ∈ 𝑐𝑙 (𝑟𝑒𝑙𝑐(𝑐𝑖 , 𝑐𝑗) ∨ 𝑟𝑒𝑙𝑐(𝑐𝑗 , 𝑐𝑖))) ∧

∄𝑐𝑘 ∈ 𝐶 [(𝑐𝑘 ∉ 𝑐𝑙 ∧ (𝑟𝑒𝑙𝑐(𝑐𝑖 , 𝑐𝑘) ∨ 𝑟𝑒𝑙𝑐(𝑐𝑘 , 𝑐𝑖)))]
]

}

|

|

Cohesion

Cohesion by
Rest of World

(CRW)

𝐶𝑅𝑊(𝑚𝑑) = ∑
|𝑆𝑅𝐶(𝑐)|

|⋃ 𝑆𝑅𝐶(𝑐)𝑐∈𝐶(𝑚𝑑) |
, 𝑆𝑅𝐶(𝑐) = {𝑐2 ∈ 𝐶 |(𝑐2 ∈

(𝐶 − 𝐶(𝑚𝑑))) ∧ (𝑟𝑒𝑙𝑐(𝑐, 𝑐2) ∨ 𝑟𝑒𝑙𝑐(𝑐2, 𝑐))}

Cohesion

Depth in Module
Hierarchy (DMH)

𝐷𝑀𝐻(𝑚𝑑) = |𝑀𝐷𝑎(𝑚𝑑)| Abstraction

Notation Description

𝑀𝐷 The set of modules in the
system

𝐶 The set of classes in the
system

𝐶(𝑚𝑑) The set of classes in a

module 𝑚𝑑

(𝐶 = ⋃ 𝐶(𝑚𝑑)𝑚𝑑∈𝑀𝐷)

 𝑟𝑒𝑙𝑐(𝑐1, 𝑐2)
 true – if a class 𝑐1depends

on another class 𝑐2 by
method calls, data
reference or inheritance
relationship

false – otherwise

 𝑟𝑒𝑙𝑚𝑑(𝑚𝑑1, 𝑚𝑑2)

 true – if ∃𝑐1, 𝑐2 [𝑐1 ∈
𝐶(𝑚𝑑1) ∩ 𝑐2 ∈ 𝐶(𝑚𝑑2) ∩
𝑟𝑒𝑙𝑐(𝑐1, 𝑐2)]

false – otherwise

𝑀𝐷𝑎(𝑚𝑑)
 The set of all ancestor

modules of a module 𝑚𝑑
in the module hierarchy

TABLE III
NOTATION FOR THE HIERARCHICAL UNDERSTANDABILITY METRICS AND THEIR DEFINITIONS (ADAPTED FROM [46])

B. Variables

The variables used in our study can be divided into two sets. The first set is related to the variables that are collected from

the participants and the second set is related to the variables that are collected from the studied system. All the variables

can also be divided into dependent and independent variables. The first set of variables includes 7 variables, from which 5

are independent variables related to the participants’ demographic information: programming experience, Java programming

experience, commercial programming experience, experience in programming computer games, and Android programming

experience, and the remaining two are the time required to study a component and the percentage of the correct answers on

the given questions. The time variable is used to measure the effort required to understand a component and it represents a

dependent variable. The percentage of the correct answers variable is introduced to help in estimating the time variable, in

the case that the participants do not spend enough time to fully examine the given components in order to achieve a high

percentage of correctness (see below for more explanations).

The second set of variables are related to the metrics that we aim to explore (see Tables I, II and III) and they are calculated

form the studied system. All the metrics are treated as independent variables.

The dependent variables and their scale types, units, and ranges are shown in Table IV while the independent variables

together with their scale types, units, and ranges are shown in Table V.

C. Hypotheses

We expect that the given hierarchical understandability metrics can be used as good predictors of the understandability. In

addition, we expect that the participants’ experience is also significant in predicting the understandability effort. In other words,

12

Description Scale
type

Unit Range

Time Ratio Minutes Positive natural numbers including 0

 TABLE IV
DEPENDENT VARIABLES AND THEIR SCALE TYPES, UNITS AND RANGES (REUSED FROM [89]

Description Scale

type

Unit Range

Programming exp. Ratio Years Positive rational numbers incl. 0

Java programming exp. Ratio Years Positive rational numbers incl. 0

Commercial programming exp. Ratio Years Positive rational numbers incl. 0

Computer games programming exp. Ratio Years Positive rational numbers incl. 0

Android programming exp. Ratio Years Positive rational numbers incl. 0

NC (Number of Classes) Ratio Class Positive natural numbers incl. 0

NID (Number of Incoming Dependencies) Ratio Dependency Positive natural numbers incl. 0

NOD (Number of Outgoing Dependencies) Ratio Dependency Positive natural numbers incl. 0

NIntD (Number of Internal Dependencies) Ratio Dependency Positive natural numbers incl. 0

Size (inform. and count.) Ratio bit/node Positive real/integer numbers incl. 0

Complexity (inform. and count.) Ratio bit/edge Positive real/integer numbers incl. 0

Coupling (inform. and count.) Ratio bit/edge Positive real/integer numbers incl. 0

Length (inform. and count.) Ratio bit/node Positive real/integer numbers incl. 0

Cohesion (inform. and count.) Ratio - Positive real/rational numbers incl. 0

Percentage of the correct answers Ratio - [0,100]%

MSC (Module Size in Classes) Ratio class Positive integer numbers incl. 0

NAC (Number of API Classes) Ratio class Positive integer numbers incl. 0

DMC (Direct Module Coupling) Ratio module Positive integer numbers incl. 0

NDC (Number of Disjoint Clusters) Ratio - Positive integer numbers incl. 0

CRW (Cohesion by Rest of World) Ratio class Positive rational numbers incl. 0

DMH (Depth in Module Hierarchy) Ratio - Positive integer numbers incl. 0

TABLE V
INDEPENDENT VARIABLES AND THEIR SCALE TYPES, UNITS AND RANGES

we expect that the prediction models that use the participants’ experience can provide better prediction than using the median

as an estimate. In case of the experience variables, we do not expect that they can capture the variability of the measured

understandability as good as the metrics related to the system itself. For example, if we have two components to be studied,

one with 3 and the other one with 15 classes, it is hard to believe that participants with the same experience would need the

same effort to understand them. A bigger component would require much more effort than a smaller one that is caused by

the variation in their sizes. Therefore we do not expect that the corresponding prediction models for the experience variables

are highly accurate. At the end, by combining the system related metrics (the graph-based, package-level, and hierarchical

understandability metrics) with the participants’ experience, we expect that more efficient prediction models can be obtained

compared to those that consider separately the graph based metrics, the package-level metrics, the hierarchical understandability

metrics and the participants’ experience.

Based on previous considerations we formulate the following set of hypotheses:

Hypothesis (H1): The hierarchical quality model metrics can be successfully utilized to predict the effort required to

understand a component with high practical significance.

Hypothesis (H2): Prediction models created using just the participants’ experiences as predictors have at least one predictor

with a non-zero coefficient, i.e. they can predict the understandability effort significantly well.

Hypothesis (H3): Combining both the system related metrics and the participants’ experiences leads to a significantly

increased efficiency of the obtained prediction models compared to the prediction models that use just the graph based metrics.

13

Hypothesis (H4): Combining both the system related metrics and the participants’ experiences leads to a significantly

increased efficiency of the obtained prediction models compared to the prediction models that use just the package-level

metrics.

Hypothesis (H5): Combining both the system related metrics and the participants’ experiences leads to a significantly

increased efficiency of the obtained prediction models compared to the prediction models that use just the participants’

experiences.

Hypothesis (H6): Combining both the system related metrics and the participants’ experiences leads to a significantly

increased efficiency of the obtained prediction models compared to the prediction models that use just the hierarchical

understandability metrics.

D. Study design

1) Subjects: The participants of the study are 49 master students. The study took place within the Advanced Software

Engineering (ASE) lecture at the University of Vienna in the Winter Semester 2013.

2) Objects: The object of our study was the Soomla Android store 2 system, version 2.0. It is an open source cross platform

framework that supports virtual economy in mobile games, and encourages better game design and faster development. We

choose the given system because of the following factors:

• The system is open source which enables us to carry out the study and communicate its results.

• The system is written in Java which the participants are familiar enough with.

• The application domain of the system is probably known to the participants from similar game applications.

• The system has industrial relevance since it is used in many real-world games.

• The source code of the system contains of 54 classes within 8 packages. The system has in total 3623 LOC (excluding

blank and commented lines) and therefore it is probably understandable within a study session, but also not too simple.

3) Instrumentation:

a) Architectural documentation about the Soomla Android store system: A UML component diagram representing the

architecture of the system, its conceptual description and the traceability links that relate the architecture to the system

implementation (class design) are handed in to the participants.

The architecture of the system is shown in Figure 2. There are in total seven architectural components: Security (C1),

CryptDecrypt (C2), PriceModel (C3), GooglePlayBilling (C4), StoreController (C5), DatabaseServices (C6), and StoreAssets

(C7). In addition there exist two more external components: GooglePlayServer, the REST Web Services running at Google,

and SQLLiteDatabase, the database accessed using JDBC. The architectural representation of the system is constructed by

two experienced software architects. They fully studied the given system and its documentation and extracted its architecture

together with the traceability links to the system implementation. Table VI shows a short description of the roles that the

components play in the system.

2all versions: https://github.com/soomla/android-store, studied version: https://swa.univie.ac.at/soomla/

14

 «jdbc»

encrypt/decript

obfuscator

sharedPreferences

 «rest»

googlePlayBillingAccess

androidBus and storeInfo

storageManager

storeAssets

price

assetsInfo

StoreAssets PriceModel

DatabaseServicesStoreController

GooglePlayBilling

«RESTWebService»

GooglePlayServer
Security

CryptDecrypt

 «database»

SQLLiteDatabase

Fig. 2. Architectural description of the Soomla Android store system in the form of UML component diagram (reused from [90])

Component Component’s role

Security (C1) Verifies the information during the purchasing process

CryptDecrypt (C2) Provides encrypt/decrypt services to obfuscate the billing information and
to encrypt/decrypt the data stored to or retrieved from the database

PriceModel (C3) Describes the model that explains how the prices of virtual items are
formed

GooglePlayBilling (C4) Simplifies in-app billing API which is a Google play service that lets you
sell virtual goods from inside your applications

StoreController (C5) Provides the runtime functionality of the Android store and contains up-to-
date store information

DatabaseServices (C6) Performs the initialization of the database and implement retrieve, add,
and remove operations for store assets in the database

StoreAssets (C7) Describes the virtual items used in the application (virtual currency, virtual
goods, and their classification)

 TABLE VI
SOOMLA ANDROID STORE ARCHITECTURAL COMPONENTS AND THEIR ROLES IN THE SYSTEM (REUSED FROM [90])

b) Source code access: The access to the source code of the system was browser-based, on prepared computers. Namely

we enabled the participants to easily navigate through the components and open the source code of their realized classes by

grouping the classes into the corresponding components.

c) A questionnaire to be filled-in by the participants: The first part of the questionnaire is related to the rated participants’

experiences including. The second part contains the understandability questions related to the 7 architectural components. Four

true/false questions were provided to be studied for each component, and the participants had to check the right answers

among them. In order to correctly answer the questions, the participants had to fully understand the functionalities of each

component by examining the relationships (as well as the roles of those relationships) among the classes inside a component

and the relationships among the classes inside a component and the classes outside of that component. In the case of bigger

components, answering the questions requires to analyse more classes and their relationships than in the case of smaller

components. Table VII shows an example of two questions, one for Component GooglePlayBilling (Q1) and the other one for

15

Component Security (Q2). Component GooglePlayBilling (has 11 classes) is bigger than Component Security (has 2 classes)

and therefore the corresponding question(s) require to examine more classes and their relationships than the question(s) for

Component Security. The order in which the seven components are studied is changed for different participants so that 7 random

combinations of components are generated and assigned to the participants (the order of questions within the components

remained the same). For example, one participant studied the components in one order, e.g.: C2, C6, C1, C3, C5, C7, and

C4 while another one studied them in some other randomly generated order, e.g.: C1, C5, C7, C3, C4, C6, and C2. The

randomization enables us to get more/less balanced data for all the components in terms of equalizing the fatigue effects or

the lack of time needed to complete all required tasks.

Q1 (GooglePlayBilling).
The usual data flow in the component GooglePlayBilling can be represented using the next
sequence of relationships: class BillingRequest – Android Market – class BillingReceiver – class
BillingService – class ResponseHandler – class PurchaseObserver. The sequence can be
explained as follows: The class BillingRequest sends messages to Android Market using
MarketBillingService, then the class BillingReceiver receives and forwards all received messages
for handling the further communication with Android Market to the BillingService class, then
BillingService notifies the application about purchase state changes using the ResponseHandler
class which at the end updates the UI using the received information from the Android Market
(posting appropriate events, updating currency balances, items, etc.).

a)

Q2 (Security).
The class Security uses the class AESObfuscator in order to obfuscate (make unclear) of values
before saving to database (DB) and when retrieving from DB.

a)

TABLE VII
AN EXAMPLE OF TWO QUESTIONS (ONE FOR COMPONENT GOOGLEPLAYBILLING AND ONE FOR COMPONENT SECURITY)

In order to measure the time that the participants spent on analysing each of the components, we provided a table with the

time slots. Each slot contains a start and a stop time. The start time indicates the time when the participants started analysing

a component while the stop time indicates the time when they finish it. Several slots were provided for each component in

case that the participants want to analyse a component several times. The format used for writing the time is hour : minute.

The time limit for the whole study was 90 minutes. None of the participants has been studied the system before so that a

potential bias that some participants spent additional time (beside the time written in the time slots) on examining the system

is negligible. To ensure that there will be enough time to analyse all the components within the study session of 1.5 hours, we

tried the same study with several our colleagues before we tried it within the course. All of them agreed that the given tasks

are appropriate for the given time limit. All the above explained instruments are available on the following Web address3. The

file containing our results to be assessed by others is available on the same page.

E. Execution

1) Data collection: Figure 3 shows the data related to the participants’ demographic information.

Based on the information from the figure we can say that the programming experience of the participants is medium to high.

Most of them have more than 3 years of programming experience. Many of the participants also have industrial programming

experience while Android and game programming experience have only a few of them.

3https://swa.univie.ac.at/soomla-architectural-components/

16

 Fig. 3. Participants’ demographic information

The descriptive statistics (mean, median, and standard deviation) related to the time and the percentage of the correct answers

variables is shown in Figure 4. From our results we excluded the participants that have less than one year of programming

experience and also some of the participants who did not specify both start and stop time for the studied components.

0

5

10

15

20

25

C1 C2 C3 C4 C5 C6 C7

Mean Median Std. Dev.

Time (minutes) Percentage of the correct answers

0

20

40

60

80

100

C1 C2 C3 C4 C5 C6 C7

Fig. 4. Descriptive statistics for the time and the percentage of the correct answers variables (reused from [89])

The data related to the metrics we aim to explore are shown in Tables VIII, IX and X. The graph based metrics are

automatically calculated from the corresponding graph abstractions of the system. The graph abstraction of the whole system

is also utilized for the calculation of the package based and hierarchical understandability metrics. The metrics are independently

calculated by two architects who studied the system in order to avoid misinterpretation of their calculations. The accuracy of

the graph based metrics calculations is additionally tested on the examples provided by Allen [4].

Looking at Figure 4 we can say that the obtained time for the first three components (C1, C2 and C3) is significantly lower

than the time for the remaining four components. This observation is expected since the first three components contain smaller

number of classes in comparison to the other four. Another observation is related to the component C4. The average time

needed to analyse this component is significantly higher than the time needed to analyse the components C5, C6 and C7.

Consequentially the percentage of the correct answers for the components C5, C6 and C7 is decreased with respect to the

component C4 which has more/less similar values to the smaller components (C1, C2 and C3). Even though it seems expected

17

that the percentage of the correct answers decreases for the components that have many classes simply because of the higher

amount of information that need to be handled which increases the probability of missing some relevant information parts, it

seems also that the participants spent a bit less time for analysing the components C5, C6 and C7 than it is necessary (or at

least for the component C7 which has the same number of classes as the component C4) in order to score better and achieve

the higher percentage of the correct answers. With respect to this and the discussion in Section III-B the percentage of the

correct answers variable is used to help in estimating the time required to fully analyse a component and achieve maximal

correctness of 100 %.

Component level
metrics

Number of
Classes

Number of
Incoming
Dependencies

Number of
Outgoing
Dependencies

Number of
Internal
Dependencies

Security (C1) 2 3 4 1

CryptDecrypt (C2) 5 9 0 5

PriceModel (C3) 3 1 4 2

GooglePlayBilling (C4) 11 4 3 12

StoreController (C5) 8 5 15 5

DatabaseServices (C6) 8 8 8 13

StoreAssets (C7) 13 9 3 14

 TABLE VIII
PACKAGE BASED COMPONENT LEVEL METRICS (REUSED FROM [90])

Component level
metrics

Size Complexity Coupling Cohesion Length

Info Count Info Count Info Count Info Count Info Count

Security (C1) 11.23 2 62.72 8 44.15 7 1.00 1.00 11.23 2

CryptDecrypt (C2) 28.07 5 138.2 14 54.82 9 0.49 0.50 16.84 3

PriceModel (C3) 16.84 3 66.72 7 31.34 5 0.61 0.67 16.84 3

GooglePlayBilling (C4) 61.76 11 222.3 19 42.11 7 0.27 0.27 28.07 5

StoreController (C5) 44.92 8 205.7 25 125.2 20 0.31 0.33 16.84 3

DatabaseServices (C6) 44.92 8 298.2 29 101.5 16 0.47 0.46 16.84 3

StoreAssets (C7) 61.76 11 274.3 24 64.73 10 0.40 0.39 22.46 4

 TABLE IX
GRAPH BASED COMPONENT LEVEL METRICS (REUSED FROM [89])

Component level
metrics

MSC NAC DMC NDC CRW DMH

Security (C1) 2 1 2 0 1 1

CryptDecrypt (C2) 5 5 3 0 1.8 2

PriceModel (C3) 3 1 2 0 1.25 3

GooglePlayBilling (C4) 11 4 2 0 3.5 1

StoreController (C5) 8 2 4 0 1.33 1.87

DatabaseServices (C6) 8 5 4 0 2.29 1.87

StoreAssets (C7) 11 6 3 0 1.43 2.64

 TABLE X
HIERARCHICAL UNDERSTANDABILITY COMPONENT LEVEL METRICS (REUSED FROM [92])

2) Validation: To prevent the participants from using forbidden materials and talking to each other at least one observer

was present in the lab during the study execution. It also enabled the participants to pose clarification questions. The materials

given to the participants are collected before any of them left the lab. There were no cases where the participants behaved

unexpectedly.

18

IV. ANALYSIS

The following statistical tests are used for analysing the data.

• Variance Inflation Factor (VIF) [71] and Condition Number (CN) [11] - Collinearity Analysis

• Multiple Regression Analysis (MRA) [82]

VIF and CN are commonly used to detect the multicollinearity problems (see below). MRA is commonly used to examine

the relationship between one dependent variable and more than one independent variables or predictors. The relationship is

assumed to be linear, which makes a model easy to interpret. Furthermore, the “true” relationship is often at least approximately

linear over the range of values that are of interest to us. Even if it is not, the variables can be transformed in such a way as

to linearise the relationship. The analyses are performed using the programming language R [77].

A. Collinearity Analysis

Collinearity analysis aims at indicating the variables that are highly correlated with some other variables. Those variables

should be excluded from the set of all possible predictors potentially considered for the prediction. To test for possible

correlations within the studied metrics sets, we calculate the Condition Number (CN) and the Variance Inflation Factor (VIF).

The VIF values greater than 10 suggest high correlation, i.e. multicollinearity problems among the tested variables. The CN

values greater than 30 suggest the same [12].

Regarding the information theory and counting graph based metrics we consider them as two separate sets of predictors

because we already saw that they are highly correlated in our case. Therefore, all potential predictors considered for the

prediction models generation include either the information theory based metrics or the counting based metrics and the

percentage of the correct answers (see discussion in Section III-E1). The VIF and the CN values for the information theory

graph based metrics and the package based metrics are shown in Tables XI and XII respectively.

Variable

VIF

VIF
(w/o Length)

VIF
(w/o Size)

VIF (w/o
Size,

Length)

VIF (w/o
Complexity,

Length)

Size 52.61 12.95 N/A N/A 3.69

Complexity 12.62 10.44 5.66 2.97 N/A

Coupling 12.90 2.59 7.60 1.64 1.29

Cohesion 12.54 3.92 9.01 2.09 3.49

Length 54.54 N/A 13.43 N/A N/A

Percentage of the
correct answers

1.39 1.38 1.36 1.34 1.38

Condition
number (CN)

33.78 18.10 13.68 7.73 7.27

TABLE XI
CONDITION NUMBER AND VARIANCE INFLATION FACTOR – INFORMATION THEORY GRAPH BASED METRICS

Regarding the information theory graph based metrics, as we can see from Table XI, the greatest VIF value when all metrics

(predictors) are included (column “VIF”) is the value for the Length metric (54.54 > 10). The VIF value for the Size metric

is very close to it (52.61). Therefore, in the first step we can exclude either the Length or the Size metric from the set of

predictors. The results for the VIF values and the CN value after excluding these metrics are shown in the third and the fourth

column of the figure. After excluding the Length metric there are two predictors that can be further excluded, the Size or the

19

Variable VIF VIF (without NIntD)

Percentage of the correct
answers

1.4405 1.4391

Number of Classes (NC) 7.3977 1.6092

Number of Incoming
Dependencies (NID)

1.5776 1.4213

Number of Outgoing
Dependencies (NOD)

1.2432 1.2135

Number of Internal
Dependencies (NintD)

7.9627 N/A

Condition number (CN) 5.72 4.94

 TABLE XII
CONDITION NUMBER AND VARIANCE INFLATION FACTOR – PACKAGE BASED METRICS (REUSED FROM [90])

Complexity metric (they are both greater than 10 and have similar VIF values4). After excluding the Size metric, only the

Length metric has the VIF value greater than 10. Therefore, we obtained two final sets of possible predictors that are used for

creating the prediction models for information theory based metrics. Excluded predictors are either the Size and the Length

metrics or the Complexity and the Length metrics. The final sets of predictors have acceptable VIF and CN values (see for

example those in Table XI). Using the same procedure for the counting based metrics we obtain three final sets of possible

predictors, i.e. the sets exclude either the Size and the Length metrics, the Complexity and the Length metrics, or the Size and

the Cohesion metrics.

For the package based metrics, as we can see from Table XII, the VIF coefficients in the case when all predictors are included

are less than 10 where the greatest VIF value is 7.96 (for NIntD). Therefore, we can say that there is a slight tendency of

multicollinearity between the variables. Hence, we decided to exclude the NIntD from the set of all predictors after which we

get acceptable results for both VIF and CN values (see Figure XII).

Regarding the hierarchical understandability metrics they are no multicollinearity problems in that set of metrics. The highest

VIF value has the MSC metric (3.87) and the CN value for this set of predictors is 13.11. The participants’ experiences also

do not express multicollinearity problems. The highest VIF value has the programming experience variable (1.62) and the CN

for the whole set of variables is 8.29. As mentioned above, we would like to examine the model where all the studied variables

are taken into account, i.e. the hierarchical understandability metrics, the participants’ experiences, the package based metrics

and the counting or information theory graph based metrics. Combining all those 4 sets together introduces multicollinearity

problems since there are metrics in multiple sets that measure the same concepts (size, coupling, and cohesion) even if different

metrics for those concepts are used. After examining the VIF and CN values all graph based and package based metrics can

be excluded from the set. After excluding these metrics, the highest VIF value has the MSC metric (3.98) and the CN value

for the remaining set of variables is 16.76.

B. Multiple Regression Analysis

In this part of the analysis we create multiple regression models that can be used for predicting the time variable. They

are also used to test our hypotheses described in Section III-C. To prevent the over-fitting of the data, i.e. to enable more

4In principle the predictors with the highest VIF values are step-by-step excluded from the set until the highest VIF value becomes less than 10. In our
case we have two predictors that have high VIF values that are close to each other (both in the first and in the second step of the analysis) and therefore we
can exclude either one or another predictor. The performances of the obtained linear regression models in all the cases show very tiny differences between
each other (see Section IV-B).

20

efficient generalization of the results we perform the Mallows’ Cp calculation for creating the prediction models [51]. If p is

the number of predictors including the constant predictor, if it exists, all the models that satisfy the equation Cp ≤ p must be

considered as reasonable good fits with respect to preventing data over-fitting.

Before we move to the regression analysis, we shortly explain the role of the percentage of the correct answers variable. In

Section III-B, we mentioned that this variable is used as an independent variable to help estimating the time as a dependent

variable. Namely, there might exist a dependency between the time and the percentage of the correct answers because if the

participants spend less than some minimum time required to analyse a component, the percentage of the correct answers will

probably decrease because of an incomplete insight into all relevant component parts. Therefore with the help of the percentage

of the correct answers variable we can estimate the time required to fully understand a given component, i.e., to achieve 100%

of the correct answers5. If we replace the value for the percentage of the correct answers in the obtained prediction models (see

below) with the constant value of 100%, the effort required to fully understand a component is obtained, that further depends

only on other factors included in the model. Please note also that predicting the time for 100% of the correctness is not the

most realistic requirement because of the lack of the data that are available for that. For example we can also estimate 75%

of the correctness which would be more accurate because there exist more data for that. However in our case we use 100%

because of the negligible difference in the prediction.

To check the accuracy of the obtained prediction models we calculated a goodness of fit measure using the following equation

based on the absolute deviation of the median [49] (assuming Xi is the prediction and Yi is the actual value):

A(accuracy) =

∑
i |Yi −Xi|∑

i |Yi −median(Yi)|

The smaller the value of A the better prediction. If the value is greater than 1, the estimation is not working, i.e. there is no

evidence that the prediction is better than using the median as an estimate. The value (1-A) represents the proportion of the

variation in the Y variable explained by the predictions. (1-A) is a robust analogue of R2, so the following guidelines based

on those proposed by [49] can be used for the effect size calculation: the (1-A) values in the range of 0 to 0.0372 represent

a small effect size, the values in the range of 0.0372 to 0.208 represent a medium effect size while the values in the range

of 0.208 to 0.753 represent a large effect size. Furthermore, for good prediction models the residuals have to be normally

distributed which is the case with our data. The influential points are the points whose removal will cause a large change in

the fit, and they can be detected using Cook’s distance contour lines [34]. When some points have a distance that is larger

than 1, it suggests that the model might be poor or might have outliers. Our models do not have influential points. We further

provide the significance of the coefficient of determination (R2) for the obtained models that is measured by the F-statistic

[27].

In order to test our hypotheses described in Section III-C, we first generate the prediction models that consider: 1) the

package based understandability metrics, 2) the graph based understandability metrics, 3) the hierarchical understandability

metrics, 4) the participants experiences, and 5) both system related metrics (the package based, graph based and hierarchical

5Please note that predicting the percentage of the correct answers variable is also possible but since we focus on estimating the time as a measure for the
understandability effort we consider the percentage of the correct answers as an auxiliary variable that helps in predicting the time variable

21

understandability metrics) and the participants experiences, using the above explained analysis. The obtained models are then

compared if there is a significant difference in their prediction capabilities. The best 3 models in terms of the given accuracy

measure (A) for the above given cases that fit the explained criteria (Cp ≤ p) are shown in Tables XIII (the package based

metrics), XIV (the counting graph based metrics), XV (the hierarchical metrics), XVI (the participants’ experiences), XVII

(the participants’ experiences together with the system related metrics). For all shown models except the ones that consider

the participants’ experiences as predictors, the effect size is in the range of 32% to 40% which represents a large effect size.

Those results suggest that the obtained prediction models have high practical significance. Please note that the percentage of

the correct answers variable is taken into account for the construction of the prediction models as independent variable based

on the discussion provided in Section III-A. With regard to that, we have to check if this variable alone captures the most of

the variance in the measured understandability effort in which case the studied metrics and participants’ experiences variables

do not play an important role. It is not the case, since the prediction model that considers only the percentage of the correct

answers variable has the accuracy measure (A) greater then 1 and does not provide better prediction then using just the median

as an estimate.

Another useful technique for overcoming the over-fitting problem is the cross-validation analysis [37]. Beside the Mallows’

Cp analysis, we also applied 10-fold cross-validation technique on our data [1]. The results of the cross-validation analysis

corroborate the results of the Mallows’ Cp analysis and confirm their validity.

Coefficients

Intercept Percentage
of the correct

answers

Number
of

Classes

Number of
Incoming

Dependencies

Number of
Outgoing

Dependencies

Model 1 x 4.8597 1.5162 -0.5349 x

Model 2 x 4.5754 1.4628 -0.5175 0.1150

Model 3 2.4250 2.8902 1.4200 -0.5795 x

Models’
characteristics

F-statistic:
p-value

Accuracy Effect size
(1-Accuracy)

Model 1 < 2.2e-16 0.6436 0.3563

Model 2 < 2.2e-16 0.6447 0.3552

Model 3 < 2.2e-16 0.6387 0.3612

TABLE XIII
MODELS’ PARAMETERS – PACKAGE BASED METRICS

Coefficients

Size

Complexity

Coupling

Length

Cohesion

Percentage
of the correct

answers

Model 3 1.3890 x x x x 2.7413

Model 4 1.4519 x -0.0665 x x 3.0246

Model 5 1.3893 x x x 0.0334 2.7157

Models’
characteristics

F-statistic:
p-value

Accuracy Effect size
(1-Accuracy)

Model 3 < 2.2e-16 0.6770 0.3230

Model 4 < 2.2e-16 0.6781 0.3219

Model 5 < 2.2e-16 0.6768 0.3232

TABLE XIV
MODELS’ PARAMETERS – COUNTING GRAPH BASED METRICS

Regarding the hypothesis H1 that consider the prediction models for the hierarchical understandability metrics, with respect

to the analysis undertaken, we can say that the hypothesis H1 is supported, i.e. the hierarchical quality model metrics can be

22

Coefficients

MSC

NAC

DMC

CRW

DMH

Percentage of
the correct
answers

Model 1 1.2979 -0.7210 x 2.0825 -0.1394 1.6652

Model 2 1.1517 -0.7889 0.5555 2.5473 -0.1371 x

Model 3 1.2463 -0.7858 0.4285 2.1331 -0.3535 1.2900

Models’
characteristics

F-statistic:
p-value

Accuracy Effect size
(1-Accuracy)

Model 1 < 2.2e-16 0.6053 0.3947

Model 2 < 2.2e-16 0.6054 0.3946

Model 3 < 2.2e-16 0.6024 0.3976

TABLE XV
MODELS’ PARAMETERS - HIERARCHICAL UNDERSTANDABILITY METRICS

Coeff.

Prog.

Java
Prog.

Comm.
Prog.

Game
Prog.

Android
Prog.

Percentage of
the correct
answers

Mod 1 x x x x 0.8977 12.7565

Mod 2 x x x 0.3978 0.7729 12.6131

Mod 3 x x 0.2173 x 0.9456 12.0908

Models’
characteristics

F-statistic:
p-value

Accuracy Effect size
(1-Accuracy)

Mod 1 < 2.2e-16 0.9608 0.0392

Mod 2 < 2.2e-16 0.9622 0.0378

Mod 3 < 2.2e-16 0.9614 0.0384
TABLE XVI

MODELS’ PARAMETERS - PARTICIPANTS’ EXPERIENCES

successfully utilized to predict the effort required to understand a component with high practical significance.

Regarding the hypothesis H2 that consider the participants’ experiences as predictors, we see from Table XVI that the effect

size of the obtained models (around 4%) is on the border between small and medium. Compared to the other obtained models

that consider the system related metrics, we can say that these models are much less accurate and efficient. These results

comply with the discussions provided in Section III-C that the participants’ experiences cannot capture the variability as good

as the metrics related to the software model itself. Therefore it has been demonstrated that the hypothesis H2 is supported,

i.e. the prediction models for the effort required to understand a component created using just the participants’ experiences as

predictors have at least one predictor with a non-zero coefficient, i.e. they can predict the understandability effort significantly

Coeff.

Prog.

Java
Prog.

Comm
Prog.

Game
Prog.

MSC

NAC

CRW

DMC

DMH

Percentage
of the correct

answers

Mod 1 x x x 0.229 1.188 -0.70 2.625 x 0.230 x

Mod 2 x x -0.017 0.225 1.188 -0.69 2.632 x 0.243 x

Mod 3 -0.019 -0.09 x 0.293 1.305 -0.74 2.119 x x 1.790

Models’
characteristics

F-statistic:
p-value

Accuracy Effect size
(1-Accuracy)

Mod 1 < 2.2e-16 0.6092 0.3908

Mod 2 < 2.2e-16 0.6079 0.3921

Mod 3 < 2.2e-16 0.5936 0.4063

TABLE XVII
MODELS’ PARAMETERS - PARTICIPANTS’ EXPERIENCES TOGETHER WITH THE SYSTEM RELATED METRICS

23

well. Please note that this does not mean that the obtained models are well-fitted (accurate), it just means that they can predict

the significant amount of variance in the model comparing to the remaining unexplained variance [37]. Based on the obtained

result, we can say that the participants’ experiences are important and can significantly improve the understandability but they

are not able to appropriately capture the variance in the data caused by the variation of system’s structural properties (like

size, coupling, cohesion, etc.). The result is as mentioned above expected.

Finally, to test the hypotheses H3, H4, H5, and H6, we compare the efficiency of the obtained prediction models that use

both the system related metrics and participants’ experiences on one side and the models that use separately the package based,

graph based, and hierarchical understandability metrics, as well as the participants’ experiences. For that purpose, we calculate

two parameters, the difference between the AICc (second-order corrected Akaike Information Criterion) values (∆AICc) for the

models to be compared and the corresponding evidence ratios (w). These parameters are commonly used for model comparisons

in case of non-nested models6 [19]. If the obtained difference (∆AICc) is lower than 4 we can say that there is no significant

difference in the prediction capabilities (power) of the given two models [19]. If the difference is in the range [4,7], we can

say that there is a significant difference in the prediction capabilities, and, if the difference is greater than 10, a very strong

difference exists [19]. The evidence ratio is a value of one model being more likely than the other model (for example a model

with AICc=120 is nearly 150 times more likely than a model with AICc=130). We compare the best models from each group

in terms of the AICc measure. The results of the analysis are shown in Table XVIII.

Model Description ∆AICc 1 ∆AICc 2 w1 w2

Model 1 The hierarchical
understandability metrics
plus the participants’
experiences

0 1.88 1 2.56

Model 2 The hierarchical
understandability metrics

-1.88 0 0.39 1

Model 3 The participants’
experiences

>10.00 >10.00 >e+05 >e+05

Model 4 The graph-based metrics >10.00 >10.00 >e+05 >e+05

Model 5 The package-level
metrics

>10.00 >10.00 >e+05 >e+05

∆AICc 1 = AICc (Model i) - AICc (Model 1); w1 (evidence ratio) = exp(0.5*∆AICc 1)
∆AICc 2 = AICc (Model i) - AICc (Model 2); w2 (evidence ratio) = exp(0.5*∆AICc 2)

TABLE XVIII
MODEL COMPARISONS

Column ∆AICc 1 shows the difference between the AICc values of each model and the model that includes both the

hierarchical understandability metrics and the participants’ experience variables (Model 1). The corresponding evidence ratios

are shown in column w1. From the obtained ∆AICc 1 values we see that there is a large significant difference (values greater

then 10) in prediction capabilities between Model 1 and the last 3 listed models Models 3, 4, and 5. Regarding the difference in

prediction between Model 1 and Model 2 (that just includes the hierarchical understandability metrics) no significant difference

exists (∆AICc 1=-1.88). Based on the obtained results we can say that the Hypotheses H3, H4, and H5 are supported while

the Hypothesis H6 is not supported, i.e. combining both the system related metrics and the participants’ experience variables

leads to a significantly increased efficiency of the obtained prediction models compared to: 1) the prediction models that use

6Nested models are those where all predictors from one model are also contained in the other model. Our models use different sets of predictors and
therefore they are non-nested.

24

just the graph based metrics, 2) the prediction models that use just the package based metrics, and 2) the prediction models

that use just the participants’ experiences. The model with both the hierarchical understandability metrics and the participants’

experience is not significantly better in prediction compared to the model that includes just the hierarchical understandability

metrics. It is even a little bit worse (the AICc value is increased by 1.88)7. As a consequence of this last fact we can also

conclude that the model that includes just the hierarchical understandability metrics is significantly better than the last 3 listed

models, i.e. Models 3 ,4, and 5 (the differences of the AICc values are increased by 1.88 in comparison with the ∆AICc 1).

Columns ∆AICc 2 and w2 show the differences of the AICc values and the corresponding evidence ratios between each model

and Model 2.

To summarize the obtained results we can say the following. The introduced hierarchical understandability metrics can be

used to predict the understandability effort of a component with high practical significance. On the one hand, those prediction

models are significantly better in predicting the understandability effort than the models obtained using the graph based metrics,

the package based metrics or the participants’ experiences. On the other hand, those models are not significantly different or

worse in the prediction from the models that combine both the system related metrics (the graph based, package based and

hierarchical understandability metrics) and the participants’ experiences. The participants’ experience can predict a significant

amount of variance in the data but the obtained models are not as accurate as the models that use the metrics related to the

system itself (concretely the hierarchical understandability metrics).

With respect to the discussions in Section III-B we can now calculate the effort required to fully understand a component

by replacing the percentage of the correct answers variable in the obtained prediction models with the constant value of 100%.

In Figure 5 the predicted time variable using the model with the highest effect size value (Model 3 from Table XV) and the

time variable obtained from the participants are shown. The predicted time variable significantly differs from the time variable

obtained from the participants just for the component StoreAssets (C7). It can be interpreted that the participants needed a bit

more time for analysing the component StoreAssets (C7) in order to be able to answer all the questions correctly. It really

makes sense because the component StoreAssets (C7) has 11 classes as there are in the component GooglePlayBilling (C4)

and therefore we expect that they require similar times in order to be fully studied.

Before we move to the next section let us examine one more interesting aspect. Namely in the context of process model

understandability [20], [2] (see Section II for more details) different empirical validations showed that size is not enough to

fully determine phenomena of understanding: additional metrics like structuredness help to improve the explanatory power

significantly [65]. We confirm this in the context of architectural components by comparing the prediction power of the model

that considers just the size metric (MSC metric) and the best obtained model in terms of the accuracy measure that considers the

hierarchical understandability metrics. The obtained ∆AICc value is 59.707 and the corresponding evidence ratio is w=9.2e+12.

These results confirm that there is a strong significant difference in the prediction power between the mentioned models.

V. VALIDITY EVALUATION

In this section we discuss how we tried to minimize the threats to validity. The following threats are taken into account:

7The reason for that is that Model 2 has a lower number of predictors which is more preferable for the AICc criterion.

25

C1 C2 C3 C4 C5 C6 C7

Time from participants (mean)
Time from the predicted model

Time

0
5

10
15

20
25

30

Fig. 5. The time from the participants and the time from the predicted model where the correctness of the answers is set to 100 %

a) Conclusion validity: The conclusion validity indicates to which extent the conclusions are statistically valid. The

sample size is one of the possible threats for the statistical validity. In our case 49 students answered the questions for the 7

components.

While the number of participants we used is quite fair the dataset consisting of 7 components is limited to the relatively

small-size dataset due to the limited time of the study session. However after performing the power analysis in R [48] we found

that the statistical power obtained for our sample with the medium effect size of 0.15, which corresponds to the expected R2

around 0.4 (we assumed the effect size suggested by Cohen [25]) is 0.99. It means that the likelihood of finding a prediction

model when there is one with the given effect size is 99 %. Therefore the total sample size is not considered to be a threat

for the conclusion validity. Anyway we plan to increase the number of studied components in our future work.

b) Construct validity: The construct validity describes the degree to which the used variables are accurately measured

by the appropriated instruments.

A possible threat to the construct validity might be related to the instruments for measuring the time variable. Namely the

participants might have forgotten to write the time in the time slots appropriately, i.e. right before they start analysing a given

component and right after they finish it. To minimize that threat we put a reminder before the text related to each component

to remind the participants to write the time appropriately.

For the future reproduction studies in a browser-based environment it might be useful to set up a script that monitors the

website being viewed and automatically collects the information per student. Another option would be to use IDE tracking

tools, e.g. an Eclipse plugin.

The true/false questions might seem to be not good choice for measuring the understandability since the participants could

get the right answer 50 % of the time. However, the maximal likelihood that any number of participants from the given range

(1–49) get the correct answers on 2 or more question (2, 3, or 4) is just around 14 %. Therefore the likelihood of obtaining a

26

substantially higher score by guessing alone is very small [31].

The component level metrics are calculated automatically with the help of the tool ObjectAid UML Explorer8. The

dependencies between the source code classes are visualized in the tool and based on those visualizations the corresponding

graph abstractions used for the graph based metrics calculations are manually generated. The hierarchical understandability

metrics are directly calculated from the provided visualizations. The accuracy of the graph based metrics calculations is

additionally tested on the examples provided in the work by Allen [4]. In any case, all metrics are independently calculated

by two architects who also created the architecture of the studied system. Therefore, the threat that the metrics calculations

are not valid is highly reduced.

c) Internal validity: The internal validity relates to the degree to which conclusions can be drawn about cause-effect of

independent variables on the dependent variables. The following threats are considered:

• Participants competences and experiences. The participants’ competence might influence the study results. In our case

all participants have knowledge about software development and software architecture, as well as of software traceability.

Most of them have at least medium experience in programming. Regarding the participants’ experiences we considered the

experience years (see Table V). Some other potential variables related to the participants’ demographic information may

affect the obtained results to a certain extent. For example, in addition to the considered variables we examined possible

differences in our results in case we add the final participants’ grades in the course and if the participants successfully

passed two other courses that might be relevant for the studied problem Software Engineering, and Information Systems

and Technologies. After considering these variables the accuracy measure for the best prediction model that considers

the experience variables only slightly changed. This result does not affect any of our hypotheses and considerations and

therefore we decided not to report about it in detail. In our future work we plan to include experts who have many years

of professional experience and to test whether some different prediction models can be obtained.

• Fatigue effects. Total time limit for the whole study was 1.5 hours so fatigue was not very relevant. Also, the randomization

of the tasks helped to cancel out these effects.

• Questions Design. The fact that we used more complex questions in case of larger components might cause additional

difficulties to answer them. It is because in practice, people have a limit to the number of things they can keep in mind

at a time. However, please note that each smaller question within the bigger one can be separately studied.

d) External validity: The external validity is related to the degree to which the results of the study can be generalized

to the broader population. The greater the external validity, the more the results of an empirical study can be generalised to

actual software engineering practice. We dealt with the following facts:

• Components and their metrics.

With respect to the time limitation of our study, we tried to find the components that vary in the size and the other

studied metrics to the extent possible in order to make our results more generalizable. Therefore we intentionally took the

components that vary in the size and the other studied metrics in order to cover different metrics values. There is a very

low threat for the statistical validity of our results (see Section V-0a). The obtained prediction models are validated to

8www.objectaid.com

27

prevent over-fitting of the data (see Section IV-B), i.e. to enable a reasonably well-fitting prediction in case of new data.

However, to examine more fine-grained distributions of the components’ metrics and especially the components whose

metrics’ values significantly vary from the studied metrics’ values (i.e. are significantly bigger than the studied metrics’

values), more components need to be examined. In case of bigger components it would be interesting to see to which

extent the obtained prediction models would be affected. In that case the participants would require much more time to

analyse the components. Furthermore, an architectural representation would probably require hierarchical organization of

the components, i.e. components having sub-components at different abstraction levels (it starts from a set of high-level

components that model high level functionalities and results in a set of low-level components that combine to perform the

high-level functionalities). This representation complies with the guides for software architecture definition in the series of

guides for software engineering produced by the Board for Software Standardisation and Control (BSSC) of the European

Space Agency [61], for instance. Having in mind the above discussion we are aware that our results (obtained prediction

models) might vary to a certain extent for new data. According to that our tool support (see Section VI for more details)

is designed to consider the predicted component’s understandability values as more relative values (rather than evaluating

the design by giving absolute values), i.e. in comparison to the understandability of other components in the system, that

is used for identifying critical components which require more effort to be understood compared to other components in

the system.

• Studied system and its representations.

Regarding the studied system we chose the system that is written in Java (that the participants are familiar with), that

supports codding standards, that has industrial relevance, and whose application domain is relatively known to the

participants (see more details in Section III-D2). The architecture of the system is represented in the form of UML

component diagram that the participants are also familiar with (see Section V-0c). Having in mind these facts, we can say

that our results might be more or less different for other potential systems depending on the extent to which the assumptions

related to the chosen system are violated. For example, the results might differ for a system written in some other language

that the participants are not familiar with, or some domain specific systems that the participants are totally unfamiliar

with, etc. Also, architectural descriptions of software systems using component models could be created in different ways,

starting from the simple descriptions of the system like box-and-line diagrams [81], over semi-formal models (e.g. UML

models) [14], [63], [80] to formal models in architecture description languages (ADLs) [64] or domain-specific languages

for architecture description [97]. More studies are necessary to examine how different architectural representations affect

the understandability of components with respect to their concrete implementation.

• Varying class sizes within components.

As we already mentioned above in order to generalize our results we plan to increase the number of studied components.

Beside that we consider one more threat in this context, it is the size of the classes in a component. Considering general

case there might be some classes that are much bigger than other classes in the system. In that case the number of classes

in a component will not appropriately capture the component size (in our case as it is mentioned in Section III-D2 no big

deviations in the sizes of the classes exist). However that case might also be considered as inappropriate design, i.e. big

28

classes can be divided into smaller classes that consist of one or a set of closely related functionalities. Anyway the given

observation can be further examined in order to see how the deviations in the size of classes affect the obtained results.

• Subjects.

It has been shown in previous research that software engineering students may provide an adequate model for the

professional population [98]. Even though our participants have substantial experience including the industrial background

certain changes in the obtained results might be expected with experts. Studies with experts would enable us to conduct

more robust analysis.

To summarize the cases in which our findings, i.e. predictions, would appropriately work, taking into account the given

threats to validity, we can say the following:

• The studied system needs to be object-oriented and its application domain relatively known to the participants.

• The architectural components need to have up to 15-20 classes that do not have big deviations in their size (e.g. one very

big class and several very small ones)

• The participants need to have at least a couple of years of appropriate programming experience as well as basic knowledge

in the software architecture and software engineering field so that they can easily understand the code of the system together

with its architecture.

In other cases, the obtained results can vary from ours to a lesser or greater extent.

VI. TOOL SUPPORT

A. Background

In our previous work (position paper [88]), we presented an integration of a semi-automated DSL-based abstraction of

architectural component models and understandability related software metrics. An overview of our approach is shown in

Figure 6. The black part refers to the semi-automated DSL-based architectural abstraction while the red part marked with

dashed lines refers to the understandability metrics.

Regarding the black part, we defined a DSL that enables architectural abstractions from class models, which can be

automatically extracted from the source code, into architectural component models. First, a class model from the system’s

source code is extracted. Starting from a class model, a UML component model is generated using the architectural abstraction

specification defined in the DSL code. In this way the traceability information that links the class models and component

models can be preserved. Furthermore, the approach supports consistency checks that are based on the automatically generated

traceability information that link the DSL, the class model, and the component model of the system. For instance, the source

code classes that are not covered by the architecture abstraction specification or connectors that are defined in the architecture

specification but where no relation exists in the source code classes are checked. This enables having an “up-to-date” component

model that reflects the source code (i.e. all source code classes are mapped to their respective components). The given approach

also supports the software architect throughout the evolution of a software system by allowing him/her to compare different

component models (see the bottom of the figure) and to maintain them in correspondence with the source code over time.

29

UML Class
Model

UML
Component

View

UML Component
View

(existing/previous
version)

Delta

automatic extraction

Compare

automatic
transformation

mapping

model versions
consistency

Metrics
Constraints

Metrics
Calculations

2. evaluate

Architecture
Abstraction DSL

3. improve

mapping

1. calculate

1. calculate

Source Code

design-code
consistency
checks

3. improve

Fig. 6. Integration of the understandability related metrics in the DSL-based architecture abstraction approach (reused from [88])

The red part marked with dashed lines describes the integration of the understandability metrics for generated component

models. For example, they provide an indicator whether a component model is growing too large or other similar guidelines.

Firstly, the metrics calculations are extracted from both the class model and the component model. The obtained metrics values

are then evaluated with regard to different metrics constraints. Metrics constraints represent a set of rules defined on metrics

values that need to be satisfied. In our case they are defined based on our empirical evaluations and also take into account

some additional considerations (see [88]). In case that some metrics values do not satisfy the corresponding constraints the

architectural abstraction DSL or the source code can be improved in order to resolve the inconsistencies that occurred.

In this paper, we investigate how our empirical findings can be combined with existing empirical evaluations and how we

can provide a corresponding tool support. In that context, we have found the work by Bouwers et al. [17], who studied the

analyzability of component models. Taking into account the findings from Bouwers et al., who found that the components should

be balanced in size in order to facilitate the system’s analyzability, we have argued that balanced values for the components’

understandability effort can facilitate the analyzability of the whole system. In contrast to our previous position paper [88],

where the idea about the balanced understandability of components is just mentioned, in this article we further elaborate on

concrete calculations of the components’ analyzability based on the integration of our new understandability effort prediction

models (i.e. the ones that use the hierarchical understandability metrics, see Section IV-B) and the metrics provided by Bouwers

et al.

30

B. Architecture Analyzability Metric

In this section, we briefly explain our new analyzability metric for component models that is based on the integration of

our understandability related prediction models in the analyzability metric defined by Bouwers et al. [17]. Furthermore, we

elaborate on calculations related to how much each of the rules used to specify architectural abstractions contribute to the

overall understandability of components.

Namely, Bouwers et al. [17] defined a metric for quantifying the analyzability of software architectures. The metric is called

Component Balance (CB) and is defined as the product of two metrics: System Breakdown (SB), which measures whether

a system is decomposed into a reasonable number of components and Component Size Uniformity (CSU), which measures

whether the components are all reasonably sized. The SB metric is based on the number of components in the system and it is

driven by logic that both high and low number of components hinders analyzability. For example, having only one component

is bad since the structure of the code does not provide any hints as to where functionality is implemented. On the other hand,

many small components do not provide a software engineer with sufficient clues as to which component should be chosen to

inspect.

The CSU metric captures how uniformly the volume of the system is distributed over its components and it is based on the

Gini coefficient (see [17]). To provide maximal discriminative power to a software engineer, a system should be decomposed

into a limited number of components of roughly the same size.

Now, we can explain our idea of combining the metric given above with our empirical findings. Namely one of the main

drawbacks of the given metric is that it captures the system’s structural decomposition only using the size metric of a component.

Dependencies between components are not taken into account which is important because the size is not enough to fully

determine phenomena of understanding (see Section IV-B). To improve the situation, we propose to use our “understandability

metric” related to the obtained prediction models instead of a simple size metric. In that case both the internal structure of a

component and its dependencies to other components are captured (see Section III-D3)

Therefore, instead of using the size metric for the CSU metric, we can use the metric obtained from our prediction models

as follows:

Understandability(c) = 1.19×MSC(c)− 0.6982×NAC(c)

+2.6464× CRW (c) + 0.2559×DMH(c)

CSU(C) = 1−Gini({Understandability(c) : c ∈ C})

We picked the first prediction model from Table XV but any of the models can be used since they have almost the

same explanatory power (accuracy). Using the adapted CSU metric, we can now calculate the adapted CB metric as a new

analyzability metric.

31

C. Integration of the Metrics in the Tool

In this Section, we explain how our concepts are embodied in the tool using a concrete example. In particular, we demonstrate

how to create component models with reasonable analyzability level by incrementally improving an initial component model

of the system. In addition, we show how the tool can be used in detecting the changes that exist between different component

models that affect their different analyzability levels. For the calculations given below we used the prediction model 1 given

in Table XV (any other model provided in Table XV can be used).

The calculation of all required metrics are added in the Metrics Calculation part of our tool (see Figure 6). The Metrics

Calculation part is developed using the custom validation features for Xtext based projects (for more information please refer

to http://eclipse.org/Xtext/documentation/). Particularly, the DSL specification for the component models abstraction is written

in a file. The file can then be explicitly validated via the menu option in which case the validator class that pursues the metrics

calculations is called. The calculated metrics are written in a file which is then processed using the R programming language

script. The final output represents the barplot diagram of the CSU metric together with the hierarchical metrics used in the

prediction models for all components in the system. Additionally, the CB and SB metrics are calculated for the whole system.

Furthermore, our tool supports the calculations on how much each of the architectural rules, used to specify a DSL-based

architectural abstraction specification, contributes to the understandability of a given component.

Component Parser consists of {Package (root.frag.parser) and not
{Uses (root.frag.core.Interp) and Package (root.frag)}}

Component CommandObjects consists of
{{Package (root.frag.objs) or Package (root.frag.files)}
and not {Uses (root.frag.core.Interp) and Package (root.frag)}}

Component Interpreter consists of {Class (".*Interp") or
{{Uses (root.frag.core.Interp) and Package (root.frag)}
and not Class (root.frag.core.Dual)}}

Component Core consists of {Package (root.frag.core) and not
{Class (".*Interp") or
{Uses (root.frag.core.Interp) and Package (root.frag)}}}

Component MDSD consists of {Package (root.mdsd)}
Component Exception consists of { Package (root.frag.exceptions)}

 Fig. 7. Initial Component Model - DSL Specification

To demonstrate our tool we use the example of the Frag system. Frag9 is a dynamic programming language implemented

in Java, specifically designed for being a tailorable language, building Domain-Specific Languages (DSLs), supporting Model-

driven Software Development, and for being easily embeddable in Java. To generate the initial component model of the system,

we studied the source code of the system and the corresponding class model that is automatically generated from the system’s

source code. To ease this task, we imported the source code in an Eclipse IDE. The understanding of the system was facilitated

by the fact that one of the authors of the paper is also the author of Frag. After initial examinations, we created the initial

architecture abstraction specification of the system consisting of 6 components (Core, Interpreter, Command Objects, Parser,

Exceptions, and MDSD) is generated. The given 6 components are found to represent the major functionalities and/or concerns

in the system. The DSL specification of the initial component model is shown in Figure 7. Figure 8 shows the distribution of

the calculated metrics values for the initial component model. The CB metric value for the model is 0.32.

9http://frag.sourceforge.net/

32

From the DSL specification (developed using Xtext2), we can see that different architectural rules are used to write the

architecture abstraction. For example, rules operating on source code artefacts relate different source code artefacts packages,

classes, and interfaces to an architectural component (e.g. Package rule shown in Figure 7 which selects everything inside a

specific package), rules utilizing relationships between source code artefacts relate an architectural component to the source

code artefacts that have specific relationships to the given source code artefact like sub- and super-type relations for classes

and interfaces, interface realizations, and other dependencies (e.g. Uses rule shown in Figure 7), etc. Complex rules definitions

are supported through the implementation of the three set operations union (or), intersect (and), and difference (and not) which

are all used in Figure 7. Detailed information about all rules and how they are derived can be found in [43].

Here, we shortly explain how the metrics for each architectural rule in the DSL specification are calculated. In particular,

each rule specifies a set of source code elements to be added to a given component. Hence, for each rule we can calculate

the above mentioned set of metrics as we do for the system’s main components. Let us explain how exactly these calculations

are done for Component Interceptor in the example from Figure 7. The rules are evaluated in the following way: first the

highest level rule is evaluated. In our example, the highest level rule is the or composition rule which actually specifies all

classes in the component. Next the left part of the previously analysed composition rule is evaluated, which is here the Class

rule. Then the right part of the or rule is analysed. Since it consists of further composition rules the next highest level rule

will be picked. In the given example it would be the and not composition rule which specifies all classes contained in both

root.frag.core.Interp and root.frag packages without the class root.frag.core.Dual. Next the left part of the and not rule would

be evaluated, which corresponds to the and composition rule. Then the left and right parts of the and rule are examined which

corresponds to the Uses rule and the Package rule, respectively. At the end the right part of the (and not) rule is evaluated

which corresponds to the Class rule.

0

20

40

60

80

100

120

140

160

180

200
MSC

NAC

CRW

DMH

CSU

Metrics values for the given components

Fig. 8. Initial Component Model - Metrics

From Figure 8 we can see that Component Interpreter has significantly higher CSU metric than the other components,

mainly because of the high number of classes that it contains (see the MSC metric in the figure). Namely, we want that

Component Interpreter includes all classes which name ends with “Interp” or those that are tightly coupled to the class Interp

33

0

20

40

60

80

100

120

140
MSC

NAC

CRW

DMH

CSU

Metrics values for the given components

Fig. 9. Changed Component Model 1 - Metrics

from the core package (see the DSL specification of Component Interpreter in Figure 7). However, by examining how much

each architectural rule in Component Interpreter affects the CSU metric value for the whole component we find that the Uses

and Package rules and therefore the and rule that connects them have the high CSU metric values because of the high number

of classes that those rules produce (see Figure 10). Consequently, a lot of classes are assigned to Component Interpreter that

should not belong there. To improve the situation we change the DSL specification for Component Interpreter so that the

tightly coupled classes to the class Interp now include those that both use the given class and are used by it. Furthermore, the

Package rule now limits finding the tightly coupled classes to the core package. The metrics for the new component model

are shown in Figure 9. The CB metric value for the new component model is 0.37.

0

50

100

150

200

250 MSC

NAC

CRW

DMH

CSU

Metrics values for different architectural rules

Fig. 10. The Impact of Each Architectural Rule on Understandability – Component Interceptor from Figure 7

By looking at Figure 9 we can see that now Component Parser has significantly higher CSU metric value than the other

components. The high CSU metric value for Component Parser is mainly affected by the relatively high number of classes that

this component contains (see the MSC metric values in Figure 9) compared to the other components. Therefore, dividing it

into several smaller components would probably improve the situation, i.e. increase the overall CB metric value for the system.

From the point of the SB metric value which decreases if the number of components is greater or smaller than 8 (see Section

34

VI-B), dividing the Parser component into 2 or 3 smaller components would increase its value since the current number of

components in the system is 6.

0

10

20

30

40

50

60

70

80

90
MSC

NAC

CRW

DMH

CSU

Metrics values for the given components

Fig. 11. Changed Component Model 2 - Metrics

By examining the Parser component we have found that it would make sense to divide the component into two components

ParserRules and ParsedObjects. Namely, the parser used in Frag uses lexical parsing approach based on the composition of

rule definitions that are similar to EBNF. A rule is a description of the situation when the rule matches (a matcher) plus an

action that is taken when the rule applies. The result is a tokenized list of parsed elements. Since the concept of rules is

important it makes sense to create a separate component for handling the parsing rules (Component ParserRules). The second

new component ParsedObjects relates to the list of the parsed elements that roughly corresponds to the Abstract Syntax Tree

(AST) in other parsing approaches. Having a separate component for the AST of the parsed code makes sense because the AST

structure can contain additional information that need to be managed, i.e. the information related to the subsequent processing,

e.g. contextual analysis, etc. The calculated metrics for the new component model are shown in Figure 11. The CB metric for

the new component model is 0.55 and it is increased by 0.18 compared to the previous component model.

The distribution of the metrics values for the new components can further be examined in order to make additional possible

improvements. For example, we can examine if it would make sense to divide Component CommandObjects that has the highest

CSU metric value in the newly generated component model. By examining the corresponding classes of the CommandObjects

component we have found that it can be further divided into two components FileCommands and NonFileCommands that

correspond to the commands for handling files and other non-file related commands. The calculated metrics for the generated

component model that encompasses all mentioned changes are shown in Figure 12. The CB metric for the component model

that consists of all mentioned changes is 0.64 and it is increased by 0.09 compared to the component model it is adapted from.

The example given above shows how we can gradually improve the analyzability of the initial component model by making

changes in the DSL and judge the analyzability of the component model created with the DSL using the given metrics

calculations. It would be also possible to make source code changes and observe their effect on the analyzability of the

generated component model.

Let us now explain how our tool can support finding the changes that affect different analyzability levels of two different

35

0

10

20

30

40

50

60

70

80
MSC

NAC

CRW

DMH

CSU

Metrics values for the given components

Fig. 12. Changed Component Model 3 - Metrics

component models. To appropriately capture different changes in the system that can affect changes in the given metrics

values, our tool supports finding the changes at three different levels in the system: source code changes, component model

changes, and DSL changes. Regarding the source code changes, by comparing different source code versions of the system an

architect or developer can find which source code elements are added to the system, deleted from it, or changed. By comparing

the component models, a user can find the differences in the realized classes contained in each of the components, i.e. if

some classes are added to a given component or removed from it (which cannot be seen using the source code comparisons).

Furthermore, by comparing the component models it is possible to find new components in the system or those that are deleted

from it. The DSL comparisons show the differences in the architectural rules used to specify which system parts are assigned

to a component. By combining the given three kinds of comparisons a user can precisely determine the differences in the

compared system’s versions as well as in each of the compared components. To realize the mentioned kinds of comparisons

we used and extended the Eclipse IDE’s features for the comparisons of different resources. Furthermore, to enable finding

the component model changes we created the corresponding serialized representations of the examined component models that

contain the fully qualified names of all source code artefacts related to each component.

We compare two component models of the Frag system, one that corresponds to the 0.7 version of the system and another

one that corresponds to the 0.8 version. The metrics values for the first component model are shown in Figures 12 while for

the second component model they are shown in Figure 13.

To find which changes in the system caused the different metrics levels of the given component models we compared their

DSLs, their source code, and the classes they contain. From the DSL comparison we can see if there is a difference in the

architectural rules used to specify the given views, if new components are added, or if some of them are deleted. By comparing

the two DSLs we have found that Component MDSD from the first view (version 0.7) is replaced with 3 new Components

DSL, FCL, and FMF in the second view (version 0.8). Otherwise, no changes in the DSL of the other components have been

found. By comparing the components’ contained classes we have found that the package core in the first view is renamed

to the package fmf in the second view.10 Using the same comparison we have found which classes are newly added to the

10The classes contained in the components are compared using their full qualified names that include the names of all packages that contain a given class.

36

0

10

20

30

40

50

60

70

80
MSC

NAC

CRW

DMH

CSU

Metrics values for the given components

Fig. 13. Component Model of the Frag Version 0.8 - Metrics

components or which classes are deleted from them. Finally by comparing the source code folders we can find which classes

changed their source code. In our example we have found that all classes have been changed to a certain extent. Figure 14

shows the visualization of the given comparisons views (DSL, classes, and source code comparisons) based on the Eclipse

features for the resource comparisons. Table XIX provides an overview of all found changes.

Fig. 14. Change Impact Analysis Comparisons

By comparing the corresponding metrics values for the given two component models, we can say that, except newly

37

 Added
Classes

Deleted
Classes

Changed
Classes

Version 0.7 Version 0.8

ParserRules 2 0 41 yes yes

ParsedObjects 2 1 37 yes yes

NonFileCommands 2 0 31 yes yes

FileCommands 1 0 6 yes yes

Interpreter 0 0 5 yes yes

MDSD 0 0 43 yes no (divided into the
DSL, FCL, and
FMF components)

Core 0 0 27 yes yes

Exceptions 0 0 3 yes yes

DSL 0 0 10 no yes

FCL 0 0 11 no yes

FMF 0 0 11 no yes

TemplateEngine 0 0 4 no yes

 TABLE XIX
OVERVIEW OF ALL FOUND CHANGES

introduced components, they show very small differences. This is not in accordance with the number of changes that we found

(see Table XIX). However, after examining the given changes we have found that the only real changes in terms of adding,

deleting or changing some functionality in the system or its part are related to the added or deleted classes in the components

(Columns “Added Classes” and “Deleted Classes” in Table XIX). The changes in other classes are mostly syntactic changes

or code refactoring related changes that do not affect classes’ external behaviour.

The integrated metrics benefit from the architecture abstraction tool in the way that the later provides an “up-to-date”

architectural component model that reflects the source code (i.e. all source code classes are mapped to their respective

components) that is necessary for the metrics calculations. This way, as we demonstrated, the architects or developers can

gradually improve the architecture by making the changes in the source code or in the architecture abstraction DSL and judge

the analyzability of the architecture created with the DSL. To perform such improvements the architect or developer can partially

benefit from the given metrics calculations provided for each component. For example, as we demonstrated, components that

have a large number of classes (i.e. the high MSC metric value) can be broken into several new components. Similarly,

components with high coupling can be modified by rearranging their classes with other classes to which they have a strong

coupling or by refactoring the classes source code to reduce their coupling to the classes in other components. Modification

steps, of course, require manual effort and human expertise.

The metrics calculations for each component as a whole provide useful information on what is its understandability level and

what is it affected from. The metrics calculations for each architectural rule related to a given component help an architect or

developer to grasp how much different source code artefacts that constitute a given component contribute to its understandability,

which rules contribute the most to the limited understandability, etc. (as demonstrated for Component Interpreter above). It

can help during performing changes in the DSL of a component in terms that an architect can assess in which direction and

approximately how much the understandability of a component will change if some rules are changed.

VII. CONCLUSIONS AND FUTURE WORK

In this article, we provide an extended description of the analysis and results obtained in our previous work [92] consisting

of a more detailed description of the studied metrics, applied statistical techniques, and obtained findings. In addition, we

38

present a new metric for measuring the analyzability of component models based on the integration of our empirical findings

and the existing observations related to them, i.e. concretely the existing work on the analyzability related software metrics

proposed by Bouwers et al. [17]. Furthermore, we present significant tool extensions compared to our previous work [88]

including the realization of the new analyzability metric by integrating our previous tools for supporting software evolution

using a DSL-based architecture abstraction with the obtained empirical findings. Our tool extensions enable the calculations

of how much each of the architectural rules used to specify a DSL-based architectural abstraction specification contributes to

the understandability of components and also enable change impact analysis, i.e. the identification of changes in the system

that affect different analyzability levels of the component models.

Regarding our empirical findings, we studied the understandability of architectural components using a number of component

level metrics including the package based metrics defined by Martin [60], information theory graph based metrics, and the

corresponding counting-based graph based metrics defined by Allen et al. [4], [5], and hierarchical understandability metrics

introduced in the work by Hwa et al. [46], as well as the personal factors of participants like experience and expertise, and the

combinations of both personal factors and component level metrics. The understandability of component models is measured

through the time that the participants spent on understanding the components, and then predicted using the above given

component level metrics and participants’ experiences. On the one hand, the prediction models that consider the hierarchical

understandability metrics are significantly better in predicting the understandability effort than the models obtained using other

component level metrics or the models that include the participants’ experiences. On the other hand, those models are not

significantly different in the prediction from the models that combine both the component level metrics and the participants’

experiences. This means that from all studied models it is enough to consider them for the prediction. This result is from

our point of view intuitive, as those metrics are originally designed to assess the understandability of the modular design of

a system. The participants’ experience is also important and can predict a significant amount of variance in the data but the

obtained models are not as accurate as the models that use the component level metrics, i.e., the metrics related to the system

itself.

The obtained empirical findings are integrated in the tool that supports the synchronized evolution of the architecture

and source code of the system. While the DSL-based architecture abstraction approach enables users to keep source code and

architecture consistent, the given metrics extensions enables them, while working with the DSL or source code, to continuously

judge and improve the analyzability of the architectural component model they create with the DSL. To further support users

in performing adequate changes in the DSL or source code and understanding their impacts on the understandability of a

given component, we calculate the given metrics for each architectural rule used to define the DSL-based specification of that

component. In that way users can grasp how much different source code artefacts that constitute a given component affect

its understandability. Beside improving the analyzability of component models, our approach also supports change impact

analysis, i.e. finding which changes in the system’s source code or the DSL-based architectural specification correspond to the

changes in the observed metrics values. The applicability of our approach is shown using a case study of an existing open

source system.

From the academic point of view we believe that our study can serve as a good starting point for future studies on the

39

understandability of architectural components and component models, but also other kinds of software models. The used

instruments and applied statistical techniques provide insight in how the understandability can be appropriately measured and

predicted which can help in devising new empirical studies and experiments. From the practitioner’s point of view, the results

of our study show which factors and metrics are important for assessing the understandability of architectural components in

relation to the system implementation and in how far those metrics can predict the understandability. The understandability

effort (time) for new architectural components can be assessed based on the complexity of their implementation. Absolute

values for the measured understandability effort for new components are considered to be appropriately assessed (accurate)

only in the cases where the circumstances under which the effort is assessed comply with the circumstances under which

the study is conducted, i.e. the system which components are assessed need to be object-oriented whose application domain

is relatively known to the participants, the architectural components need to have up to 15-20 classes that do not have big

deviations in their size (e.g. one very big class and several very small ones), and the participants need to have at least a

couple of years of appropriate programming experience as well as basic knowledge in the software architecture and software

engineering field so that they can easily understand the code of the system together with its architecture. In other cases the

assessment can vary to a lesser or greater extent. Our tool support facilitates the application of the obtained empirical finding

in practice. It is designed to consider the predicted component’s understandability values as more relative values (rather than

evaluating the design by giving absolute values), i.e. in comparison to the understandability of other components in the system,

that is used for identifying critical components which require more effort to be understood compared to other components in

the system. In that way, it can be more or less successfully applied for the systems and components which size and complexity

differ from the studied one.

In our future work, we plan to include experts with many years of experience and compare the results with the ones obtained

here. We also plan to examine more components, including bigger ones, that would enable us to construct more robust prediction

models. However, tackling these challenges is not an easy task since it requires a lot of resources in terms of time and money.

ACKNOWLEDGEMENT

This work was supported by the Austrian Science Fund (FWF), Project: P24345-N23. We thank Dr. Nina Senitschnig from
the Department of Statistics and Operations Research, for valuable suggestions and help related to the statistical analysis
pursued.

REFERENCES

[1] Cross Validation techniques in R: A brief overview of some methods, packages, and functions for assessing prediction models.
[2] E. R. Aguilar, F. Garca, F. Ruiz, and M. Piattini. An exploratory experiment to validate measures for business process models. In C. Rolland, O. Pastor,

and J.-L. Cavarero, editors, RCIS, pages 271–280, 2007.
[3] A. Albrecht and J. E. Gaffney. Software function, source lines of code, and development effort prediction: A software science validation. Software

Engineering, IEEE Transactions on, SE-9(6):639–648, Nov 1983.
[4] E. B. Allen. Measuring graph abstractions of software: An information-theory approach. In IEEE METRICS, pages 182–. IEEE Computer Society, 2002.
[5] E. B. Allen, S. Gottipati, and R. Govindarajan. Measuring size, complexity, and coupling of hypergraph abstractions of software: An information-theory

approach. Software Quality Control, 15(2):179–212, June 2007.
[6] M. A. Babar and P. Lago. Editorial: Design decisions and design rationale in software architecture. J. Syst. Softw., 82(8):1195–1197, Aug. 2009.
[7] J. Bansiya and C. G. Davis. A hierarchical model for object-oriented design quality assessment. IEEE Trans. Softw. Eng., 28(1):4–17, Jan. 2002.
[8] J. M. Barnes, D. Garlan, and B. R. Schmerl. Evolution styles: foundations and models for software architecture evolution. Software and System Modeling,

13(2):649–678, 2014.
[9] V. Basili, L. Briand, and W. Melo. A validation of object-oriented design metrics as quality indicators. Software Engineering, IEEE Transactions on,

22(10):751–761, Oct 1996.
[10] L. Bass, P. Clements, and R. Kazman. Software architecture in practice. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1998.
[11] D. Belsley. Conditioning diagnostics, Collinearity and Weak Data in Regression. Wiley-Interscience, 1991.

40

[12] D. A. Belsley, E. Kuh, and R. E. Welsch. Regression Diagnostics: Identifying Influential Data and Sources of Collinearity (Wiley Series in Probability
and Statistics). Wiley-Interscience.

[13] P. Bhattacharya, M. Iliofotou, I. Neamtiu, and M. Faloutsos. Graph-based analysis and prediction for software evolution. In ICSE’12, pages 419–429,
2012.

[14] M. Bjrkander and C. Kobryn. Architecting systems with UML 2.0. IEEE Softw., 20(4):57–61, July 2003.
[15] B. Boehm. Characteristics of software quality. TRW series of software technology. North-Holland Pub. Co., 1978.
[16] G. Booch. Object-oriented Analysis and Design with Applications (2Nd Ed.). Benjamin-Cummings Publishing Co., Inc., Redwood City, CA, USA, 1994.
[17] E. Bouwers, J. P. Correia, A. Deursen, and J. Visser. Quantifying the Analyzability of Software Architectures. In 2011 Ninth Working IEEE/IFIP

Conference on Software Architecture, pages 83–92. IEEE, June 2011.
[18] L. Briand, Y. Labiche, M. Di Penta, and H. Yan-Bondoc. An experimental investigation of formality in uml-based development. Software Engineering,

IEEE Transactions on, 31(10):833–849, Oct 2005.
[19] K. Burnham and D. Anderson. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer, 2002.
[20] G. Canfora, F. Garca, M. Piattini, F. Ruiz, and C. Visaggio. A family of experiments to validate metrics for software process models. Journal of Systems

and Software, 77(2):113 – 129, 2005.
[21] J. Cardoso. Process control-flow complexity metric: An empirical validation. In Services Computing, 2006. SCC ’06. IEEE International Conference

on, pages 167–173, Sept 2006.
[22] S. Chidamber and C. Kemerer. A metrics suite for object oriented design. Software Engineering, IEEE Transactions on, 20(6):476–493, Jun 1994.
[23] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, R. Nord, and J. Stafford. Documenting Software Architectures: Views and Beyond.

Addison-Wesley, Boston, MA, 2003.
[24] P. Clements, D. Garlan, L. Bass, J. Stafford, R. Nord, J. Ivers, and R. Little. Documenting Software Architectures: Views and Beyond. Pearson Education,

2002.
[25] J. Cohen. Statistical Power Analysis for the Behavioral Sciences. Lawrence Erlbaum, 1988.
[26] C. E. Cuesta, E. Navarro, D. E. Perry, and C. Roda. Evolution styles: using architectural knowledge as an evolution driver. Journal of Software: Evolution

and Process, 25(9):957–980, 2013.
[27] P. Dalgaard. Introductory Statistics with R. Springer, Jan. 2004.
[28] R. G. Dromey. A model for software product quality. IEEE Trans. Softw. Eng., 21(2):146–162, Feb. 1995.
[29] R. G. Dromey and A. D. McGettrick. On specifying software quality. Software Quality Journal, 1(1):45–74, Mar. 1992.
[30] P. Dugerdil and M. Niculescu. Visualizing software structure understandability. In 23rd Australian Software Engineering Conference, ASWEC 2014,

Milsons Point, Sydney, NSW, Australia, April 7-10, 2014, pages 110–119. IEEE Computer Society, 2014.
[31] R. Ebel and D. Frisbie. Essentials of Educational Measurement. Prentice Hall, 1991.
[32] A. Egyed. Consistent adaptation and evolution of class diagrams during refinement. In Fundamental Approaches to Software Engineering, 7th International

Conference, FASE 2004, ETAPS 2004 Barcelona, Spain, volume 2984 of Lecture Notes in Computer Science, pages 37–53. Springer, 2004.
[33] M. O. Elish. Exploring the relationships between design metrics and package understandability: A case study. In ICPC, pages 144–147. IEEE Computer

Society, 2010.
[34] J. J. Faraway. Practical Regression and Anova using R. July 2002.
[35] N. E. Fenton and N. Ohlsson. Quantitative analysis of faults and failures in a complex software system. IEEE Trans. Softw. Eng., 26(8):797–814, Aug.

2000.
[36] N. E. Fenton and S. L. Pfleeger. Software Metrics: A Rigorous and Practical Approach. PWS Publishing Co., Boston, MA, USA, 2nd edition, 1998.
[37] A. Field, J. Miles, and Z. Field. Discovering Statistics Using R. SAGE Publications, 2012.
[38] M. Genero Bocco, D. L. Moody, and M. Piattini. Assessing the capability of internal metrics as early indicators of maintenance effort through

experimentation: Research articles. J. Softw. Maint. Evol., 17(3):225–246, May 2005.
[39] C. Ghezzi, M. Jazayeri, and D. Mandrioli. Fundamentals of Software Engineering. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2nd edition, 2002.
[40] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy. Predicting fault incidence using software change history. IEEE Trans. Softw. Eng., 26(7):653–661,

July 2000.
[41] V. Gupta and J. K. Chhabra. Package coupling measurement in object-oriented software. J. Comput. Sci. Technol., 24(2):273–283, Mar. 2009.
[42] V. Gupta and J. K. Chhabra. Package level cohesion measurement in object-oriented software. J. Braz. Comp. Soc., 18(3):251–266, 2012.
[43] T. Haitzer and U. Zdun. Semi-automated architectural abstraction specifications for supporting software evolution. Science of Computer Programming,

90, Part B(0):135 – 160, 2014. Special Issue on Component-Based Software Engineering and Software Architecture.
[44] R. Harrison, S. J. Counsell, and R. V. Nithi. An evaluation of the mood set of object-oriented software metrics. IEEE Trans. Softw. Eng., 24(6):491–496,

June 1998.
[45] C. Hofmeister, R. Nord, and D. Soni. Applied Software Architecture. Addison-Wesley Professional, 2000.
[46] J. Hwa, S. Lee, and Y.-R. Kwon. Hierarchical understandability assessment model for large-scale oo system. In Software Engineering Conference, 2009.

APSEC ’09. Asia-Pacific, pages 11–18, Dec 2009.
[47] A. Jansen and J. Bosch. Software architecture as a set of architectural design decisions. In Proceedings of the 5th Working IEEE/IFIP Conference on

Software Architecture, WICSA ’05, pages 109–120, Washington, DC, USA, 2005. IEEE Computer Society.
[48] R. Kabacoff. R in Action: Data Analysis and Graphics with R. Manning Pubs Co Series. Manning, 2011.
[49] V. B. Kampenes, T. Dybå, J. E. Hannay, and D. I. K. Sjøberg. Systematic review: A systematic review of effect size in software engineering experiments.

Inf. Softw. Technol., 49(11-12):1073–1086, Nov. 2007.
[50] B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones, D. C. Hoaglin, K. El Emam, and J. Rosenberg. Preliminary guidelines for empirical

research in software engineering. Software Engineering, IEEE Transactions on, 28(8):721–734, Aug. 2002.
[51] M. Kobayashi and S. Sakata. Mallows’ cp criterion and unbiasedness of model selection. Journal of Econometrics, (3):385–395.
[52] M. Konersmann, Z. Durdik, M. Goedicke, and R. H. Reussner. Towards architecture-centric evolution of long-living systems (the advert approach). In

P. Kruchten, A. Koziolek, and R. L. Nord, editors, QoSA, pages 163–168. ACM, 2013.
[53] P. Kruchten. The 4+1 view model of architecture. IEEE Softw., 12(6):42–50, Nov. 1995.
[54] O. I. Lindland, G. Sindre, and A. Sølvberg. Understanding quality in conceptual modeling. IEEE Softw., 11(2):42–49, Mar. 1994.
[55] F. Losavio, L. Chirinos, N. Lvy, and A. Ramdane-Cherif. Quality characteristics for software architecture. Journal of Object Technology, 2(2):133–150,

2003.
[56] M. Lungu, M. Lanza, and T. Girba. Package patterns for visual architecture recovery. In Software Maintenance and Reengineering, 2006. CSMR 2006.

Proceedings of the 10th European Conference on, pages 10 pp.–196, March 2006.
[57] Y. Ma, K. He, D. Du, J. Liu, and Y. Yan. A complexity metrics set for large-scale object-oriented software systems. In Proceedings of the Sixth IEEE

International Conference on Computer and Information Technology, CIT ’06, pages 189–, Washington, DC, USA, 2006. IEEE Computer Society.
[58] Y. K. Malaiya and J. Denton. Module size distribution and defect density. In Proceedings of the 11th International Symposium on Software Reliability

Engineering, ISSRE ’00, pages 62–, Washington, DC, USA, 2000. IEEE Computer Society.
[59] O. Maqbool and H. Babri. Hierarchical clustering for software architecture recovery. IEEE Trans. Softw. Eng., 33:759–780, 2007.
[60] R. C. Martin. Agile software development: principles, patterns, and practices. Prentice Hall PTR, 2003.
[61] C. Mazza, J. Fairclough, M. Bryan, P. Daniel, S. Adriaan, S. Richard, J. Michael, and G. Alvisi. Software Engineering Guides. Prentice-Hall International

(UK), 1996.

41

[62] T. J. McCabe. A complexity measure. IEEE Trans. Softw. Eng., 2(4), July.
[63] N. Medvidovic, D. S. Rosenblum, D. F. Redmiles, and J. E. Robbins. Modeling software architectures in the Unified Modeling Language. ACM

TRANSACTIONS ON SOFTWARE ENGINEERING AND METHODOLOGY, 11(1):2–57, 2002.
[64] N. Medvidovic and R. N. Taylor. A classification and comparison framework for software architecture description languages. IEEE Trans. Softw. Eng.,

26(1):70–93, Jan. 2000.
[65] J. Mendling. Metrics for Process Models: Empirical Foundations of Verification, Error Prediction, and Guidelines for Correctness. Springer Publishing

Company, Incorporated, 1 edition, 2008.
[66] P. Mohagheghi, R. Conradi, O. M. Killi, and H. Schwarz. An empirical study of software reuse vs. defect-density and stability. In Proceedings of the

26th International Conference on Software Engineering, ICSE ’04, pages 282–292, Washington, DC, USA, 2004. IEEE Computer Society.
[67] D. L. Moody. Metrics for evaluating the quality of entity relationship models. In Proceedings of the 17th International Conference on Conceptual

Modeling, ER ’98, pages 211–225, London, UK, UK, 1998. Springer-Verlag.
[68] D. L. Moody. Measuring the quality of data models: an empirical evaluation of the use of quality metrics in practice. In C. U. Ciborra, R. Mercurio,

M. de Marco, M. Martinez, and A. Carignani, editors, ECIS, pages 1337–1352, 2003.
[69] S. Morasca. Measuring attributes of concurrent software specifications in petri nets. In Software Metrics Symposium, 1999. Proceedings. Sixth

International, pages 100–110, 1999.
[70] M. E. Nissen. Redesigning reengineering through measurement-driven inference. MIS Q., 22(4):509–534, Dec. 1998.
[71] R. M. O’brien. A caution regarding rules of thumb for variance inflation factors. Quality & Quantity, 41(5):673–690, 2007.
[72] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimbigner, G. Johnson, N. Medvidovic, A. Quilici, D. S. Rosenblum, and A. L. Wolf. An architecture-based

approach to self-adaptive software. IEEE Intelligent Systems, 14(3):54–62, May 1999.
[73] M. C. Otero and J. J. Dolado. Evaluation of the comprehension of the dynamic modeling in uml. Information and Software Technology, 46(1):35–53,

2004.
[74] M. J. Pacione, M. Roper, and M. Wood. A novel software visualisation model to support software comprehension. In 11th Working Conference on

Reverse Engineering, pages 70–79, Nov 2004.
[75] S. Patig. A practical guide to testing the understandability of notations. In Proceedings of the Fifth Asia-Pacific Conference on Conceptual Modelling -

Volume 79, APCCM ’08, pages 49–58, Darlinghurst, Australia, Australia, 2008. Australian Computer Society, Inc.
[76] H. C. Purchase, L. Colpoys, M. McGill, D. Carrington, and C. Britton. Uml class diagram syntax: An empirical study of comprehension. In Proceedings

of the 2001 Asia-Pacific Symposium on Information Visualisation - Volume 9, APVis ’01, pages 113–120, Darlinghurst, Australia, Australia, 2001.
Australian Computer Society, Inc.

[77] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, 2013.
[78] H. Reijers and J. Mendling. A study into the factors that influence the understandability of business process models. Systems, Man and Cybernetics,

Part A: Systems and Humans, IEEE Transactions on, 41(3):449–462, May 2011.
[79] C. Riva, P. Selonen, T. Syst, and J. Xu. In ICSM, pages 50–59. IEEE Computer Society.
[80] J. E. Robbins, N. Medvidovic, D. F. Redmiles, and D. S. Rosenblum. Integrating architecture description languages with a standard design method. In

Proceedings of the 20th international conference on Software engineering, ICSE ’98, pages 209–218, Washington, DC, USA, 1998. IEEE Computer
Society.

[81] N. Rozanski and E. Woods. Software Systems Architecture: Working With Stakeholders Using Viewpoints and Perspectives. Addison-Wesley Professional,
2005.

[82] D. L. Rubinfeld. Reference Guide on Multiple Regression. Federal Judicial Center, 2nd edition, 2000.
[83] S. Sarkar, A. Kak, and G. Rama. Metrics for measuring the quality of modularization of large-scale object-oriented software. Software Engineering,

IEEE Transactions on, 34(5):700–720, Sept 2008.
[84] K. Sartipi. A software evaluation model using component association views. In IWPC, pages 259–268, 2001.
[85] S. Sengupta, A. Kanjilal, and S. Bhattacharya. Measuring complexity of component based architecture: a graph based approach. SIGSOFT Softw. Eng.

Notes, 36(1):1–10, Jan. 2011.
[86] A. Sharma, P. S. Grover, and R. Kumar. Dependency analysis for component-based software systems. SIGSOFT Softw. Eng. Notes, 34(4):1–6, July

2009.
[87] L. G. Soo and Y. Jung-Mo. An empirical study on the complexity metrics of petri nets. Microelectronics Reliability, 32(3):323 – 329, 1992.
[88] S. Stevanetic, T. Haitzer, and U. Zdun. Supporting software evolution by integrating dsl-based architectural abstraction and understandability related

metrics. In Proceedings of the 2014 European Conference on Software Architecture Workshops, ECSAW ’14, pages 19:1–19:8, New York, NY, USA,
2014. ACM.

[89] S. Stevanetic and U. Zdun. Exploring the relationships between the understandability of architectural components and graph-based component level
metrics. In Proceedings of the 14th International Conference on Software Quality (QSIC), QSIC 2014, Dallas, USA, 2014. IEEE Computer Society.

[90] S. Stevanetic and U. Zdun. Exploring the relationships between the understandability of components in architectural component models and component
level metrics. In Proceedings of the 18th International Conference on Evaluation and Assessment in Software Engineering (EASE), EASE 2014, London,
UK, 2014. ACM Computer Society.

[91] S. Stevanetic and U. Zdun. Software metrics for measuring the understandability of architectural structures – a systematic mapping study. In EASE 2015
- 19th International Conference on Evaluation and Assessment in Software Engineering, April 2015.

[92] S. Stevanetic and U. Zdun. Exploring the understandability of components in architectural component models using component level metrics and
participants? experience. In The 19th International ACM Sigsoft Symposium on Component-Based Software Engineering (CBSE 2016), April 2016.

[93] D. Sun and K. Wong. On evaluating the layout of uml class diagrams for program comprehension. In Program Comprehension, 2005. IWPC 2005.
Proceedings. 13th International Workshop on, pages 317–326, May 2005.

[94] W. M. P. van der Aalst and K. Bisgaard Lassen. Translating unstructured workflow processes to readable bpel: Theory and implementation. Inf. Softw.
Technol., 50(3):131–159, Feb. 2008.

[95] I. Vanderfeesten, H. Reijers, J. Mendling, W. van der Aalst, and J. Cardoso. On a quest for good process models: The cross-connectivity metric. Advanced
Information Systems Engineering, pages 480–494, 2008.

[96] J. Vanhatalo, H. Völzer, and F. Leymann. Faster and more focused control-flow analysis for business process models through sese decomposition. In
Proceedings of the 5th International Conference on Service-Oriented Computing, ICSOC ’07, pages 43–55, Berlin, Heidelberg, 2007. Springer-Verlag.

[97] M. Völter. Architecture as language. IEEE Softw., 27(2):56–64, Mar. 2010.
[98] B. Weber, S. Zeitelhofer, J. Pinggera, V. Torres, and M. Reichert. How advanced change patterns impact the process of process modeling. In I. Bider,

K. Gaaloul, J. Krogstie, S. Nurcan, H. Proper, R. Schmidt, and P. Soffer, editors, Enterprise, Business-Process and Information Systems Modeling,
volume 175 of Lecture Notes in Business Information Processing, pages 17–32. Springer Berlin Heidelberg, 2014.

[99] O. Zimmermann, T. Gschwind, J. Küster, F. Leymann, and N. Schuster. Reusable architectural decision models for enterprise application development.
In Proceedings of the Quality of software architectures 3rd international conference on Software architectures, components, and applications, QoSA’07,
pages 15–32, Berlin, Heidelberg, 2007. Springer-Verlag.

