
Transforming Enterprise Models to Linked Data via
Semantic Annotations

Benedikt Pittl1, Hans-Georg Fill2

Abstract: The use of conceptual models in enterprises is today a well-known fact. This includes many
different types of models ranging from process models, organizational models, and infrastructure
models to various types used in software engineering and technical systems development. Although
these models are largely speciĄed in a formal or at least semi-formal way, the knowledge contained
in them is often only accessible via manual inspection. The primary reason for this shortcoming is
the use of different formats for expressing models and the lack of machine-processable semantic
speciĄcations of the model content. In this paper we present a Ćexible approach for transforming
information from such enterprise models to RDF. Thereby, we use a model weaving technique to
annotate conceptual models with concepts from ontologies. For assessing its technical feasibility, the
approach has been prototypically implemented on the SeMFIS platform and applied to a use case in
the area of business process management.

Keywords: Conceptual Model; RDF; Ontology; Semantic Annotation

1 Introduction

Today, enterprises heavily rely on conceptual models such as business process models,
organization models or infrastructure models, thus potentially leading to hundreds if not
thousands of models just within one organization [Ro06, WH01]. Such models are often
created with the aim of fostering communication and understanding [My92] and are an
important source of knowledge. Usually, these models are stored in the databases of the
used modeling tools [vDDM13]. For analyzing these models using query techniques and
benchmarks [APW08, EKO07, vDDM13], or for executing them [Fi12], models need to be
available in a machine-processable format that is ideally based on a standard representation.
In the context of the Web of Data, conceptual models were recently identiĄed as a valuable
source for data repositories [BK16]. Thereby, the model content is transformed to ontologies -
usually in RDF format. The transformation to ontologies has two main beneĄts: (i) Exchange

of Model Information. Standardized formats such as RDF foster the exchange of models
across different tools and platforms. (ii) Semantic Processing. The usage of ontology formats

1 University of Vienna, Faculty of Computer Science, Waehringerstrasse 29, 1090 Vienna, Austria; benedikt.
pittl@univie.ac.at

2 University of Bamberg, Department for Information Systems - System Development and Database Application
Group, An der Weberei 5, 96047 Bamberg, Germany; hans-georg.Ąll@uni-bamberg.de

cba

I. Schaefer, D. Karagiannis, A. Vogelsang, D. Méndez, C. Seidl (Hrsg.): Modellierung 2018,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2018 55

https://creativecommons.org/licenses/by-nc/3.0/
benedikt.pittl@univie.ac.at
benedikt.pittl@univie.ac.at
hans-georg.fill@uni-bamberg.de
https://creativecommons.org/licenses/by-sa/4.0/

enables semantic processing based on reasoning and query techniques, especially through
linking the model information to other ontologies and linked data repositories. This enables
the linkage, querying and merging of different data sources with information contained in
the models [BHB09].

The scientiĄc community proposed two main paradigms for the transformation from
conceptual models to ontologies used in the Web of Data: (i) Hinkelmann [Hi15] presented
seven approaches which describe how to establish a linkage between conceptual models and
ontologies. These approaches range from simple links Ű through adding textual attributes in
model elements which contain a URI to an ontology element Ű over semantic tunnels where
semantic information for model elements is retrieved via webservices Ű to semantic transit

models where models contain references to an ontology. However, a concrete approach
for transforming models to RDF was not described. Additionally, all seven approaches
have the drawback that a new modeling language is required that permits to link elements
to ontology concepts. Based on the assumption that enterprises already have large model
repositories [WH01], the requirement of such a new modeling language would lead to
a considerable effort for remodeling or at least migrating the existing models. (ii) For
overcoming these drawbacks, an RDFizer has been presented for transforming conceptual
models to RDF [BK16]. Thereby, static transformation patterns were deĄned that are
applicable to arbitrary models. While this approach is comprehensive in the sense that each
model element and attribute is serialized according to the pattern, it is not easily adaptable
to speciĄc needs e.g. to deĄne how model concepts are serialized to RDF. Furthermore, the
modeling languages of the models to be transformed has to be altered if additional RDF
information is to be represented.

The research question which we want to answer in this paper is "How to semantically enrich

and process existing visual models in standardized semantic formats?". Thereby, we pursue
the following three goals: (i) The approach has to be generic so that it is applicable for
models created with different modeling languages. (ii) The approach has to be simple so
that business users are able to do the enrichment (iii) The approach has to be adaptive
so that modiĄcations of the enrichment are possible. Hence, in this paper we present
a customized model weaving approach for transforming the content of conceptual models
to RDF. Our approach does not require an adaptation of existing modeling languages but
allows referring to existing ontology concepts. Thereby, our weaving approach is based
on semantic annotations for linking model elements and their attributes with ontology
schema concepts. The annotations can be created, removed or modiĄed without affecting
the conceptual models nor the ontology, which makes our approach useful for semantically
enriching and processing already existing models. For easing the speciĄcation of the
semantic annotations, we provide a domain-speciĄc visual language. We conceptualized
and evaluated the approach following three steps: (i) SpeciĄcation of a visual language
for conĄguring Ćexible transformations via annotations (ii) SpeciĄcation of generic rules
for conducting the transformation to RDF (iii) Implementation of the approach using the
SeMFIS platform [Fi17].

56 Benedikt Pittl, Hans-Georg Fill

The remainder of the paper is structured as follows. An overview of existing paradigms
for semantically enriching models is presented in section 2. Our transformation approach
based on visual annotations is explained in section 3. Section 4 describes the technical
implementation followed by a use case based evaluation in section 5. A discussion is
described in section 6. The paper closes with a conclusion in section 7.

2 Background and Related Work

In the literature there are currently two research directions being investigated for linking
ontologies with conceptual models: model transformation and model weaving [Fi11]. We
will thus Ąrst describe the differences between model transformation and model weaving.
Second, we will review existing weaving approaches which deĄne how models can be
semantically enriched. In the third part we will investigate existing approaches for the
model-to-ontology transformation with a special focus on RDF ontologies.

The transformation between different types of models has been discussed to a large extent in
the context of Model Driven Engineering [DFBV06]. Thereby, transformation models are
models which describe operations for transferring source models to target models. These
operations are executed by a transformation engine. Prominent examples of this approach
are transformations via Query View Transformation (QVT) or the ATL Transformation
Language. An overview of the model transformation approach from a generic perspective
is shown in Figure 1a. The source model (Ma) and the target model (Mb) conform-to

the metamodels MMa and MMb which is illustrated with the ct connectors. Similarly,
the transformation models (TM) conform to a metamodel (TMM). All three metamodels
conform to a meta-metamodel. The transformation operations are part of the transformation
model which references elements of the metamodels MMa and MMb . This is illustrated with
the based-on (bo) connector. For example, the ATL rules used for a model transformation
are grouped to a transformation model TM which is executed by an ATL transformation
engine.

The second research direction for linking models and ontologies is to use weaving models.
The main difference between model weaving and model transformation is that transformation
metamodels have fixed semantics that can be implemented by transformation engines,
whereas weaving models have user-defined semantics [DFBV06]. The model weaving
approach is illustrated in Figure 1b. For model weaving, three metamodels are used whereby
WMM is the weaving metamodel. Weaving models (WM) are models which use domain
speciĄc link types for establishing references between two metamodels (MMa and MMb).
The overall goal of model weaving is just to establish links between elements of two models.
The weaving model can be used for model transformations but it is not limited to it. Hence,
the illustration in Figure 1b does not show a transformation example as Figure 1a. Weaving
approaches are e.g. used for model traceability as well as for model alignment. According
to [DFBV06] model weaving fulĄlls the following requirements: (i) the weaving model
supports the expression of links between two model elements, (ii) different types of links

Transforming Enterprise Models to Linked Data 57

have to be supported whereby the link type provides the semantics, (iii) the links support
different arities, (iv) and the links have references to the model elements.

4 Pittl and Fill

MMM

ct ct

MMa

>

TMM

∧
ct

MMb

<

bo bo

TM

∧
ct

>
<

Ma

∧
ct

> Mb

∧
ct

(a) Model transformation based on [15]

MMM

ct ct

MMa

>

WMM

∧
ct

MMb

<

WM

∧
ct

>
<

(b) Model weaving from [6]

Fig. 1: Model transformation vs model weaving

(a) Model transformation based on [Jo06]

   



 














 














 




     



 






















    

      

            
            
          
          
           

           
          
           
          
            
           
              

        
          
     

             
          
          
             
             
              
           

     

        
      

            
           
          
         
       
           

    
           
          
         
         
            
              
            
  

          

        
         
        

          

   

            
            
             

           

       

  

  


          
           
            

         
          
          

(b) Model weaving from [DFJ05]

Fig. 1: Model transformation and model weaving

Based on these foundations we can now investigate approaches that make use of these
concepts for linking conceptual models and ontologies. Two main reasons can be stated
why such connections are beneĄcial: First, the use of standardized exchange formats such as
RDF and OWL permits the easy transfer of model information across different tools and
platforms. Second, ontology formats permit semantic processing based on reasoning and
query techniques, especially through linking the model information to other ontologies and
linked data repositories.

Following the direction of model transformations, it is often being referred to the XML
Metadata Interchange (XMI) format as a starting point for transforming models to ontologies.
XMI is a standardized format maintained by the OMG3 which fosters the exchange of
models between different modeling tools. For example, [Ga04] describe a transformation
approach for models represented in XMI to OWL via XSLT. Similar approaches are
described in [BB12] and [Cr01]. In [TF07] Event driven Process Chains (EPC) models
are transformed to an RDF ontology. Thereby, the authors assume that the EPC model is
stored in the XML-based format EPML so that the transformation to RDF-XML can also
revert to XSLT. However, all these XSLT transformations are static. They are predeĄned and
cannot be adapted by end users. Furthermore, such direct XSLT transformations consider
metamodels only implicitly. Linkages to other ontologies or linked data repositories are not
foreseen.

In [BK16] a transformation approach from models to RDF is introduced, denoted as RDFizer.
It supports three different ways for Ąrst linking existing URIs to model elements: (i) Linking

by Equivalence: This way is very similar to the direct linkage approach presented in [Hi15].
It expects a string attribute in each model element which contains a URI of an equivalent
ontology concept. (ii) Linking by Modeling Properties: Similar to the previous approach,

3 http://www.omg.org/spec/XMI/

58 Benedikt Pittl, Hans-Georg Fill

URIs are entered into string attributes of model elements. However, the interpretation is
different. The entered URI does not represent the model element which contains the attribute.
Instead, it refers to related concepts. (iii) Linking by Arbitrary Properties or Types: For
adding additional information to model elements, an attribute Table can be added. This
Table is used for generating customized RDF triples. Thereby, the model element which
contains the Table is either the subject or the object of the triple. In a second step, [BK16]
then apply static patterns for the transformation of the conceptual models to RDF ontologies.
These patterns are pre-deĄned generic rules which determine how model information is
transformed to RDF triples. Using this approach, customization is possible ex-post, e.g. using
the external Java component ŤRDF export customizerŤ as shown in [KB16] and [BK15]. It
allows adding, removing or modifying RDF triples created with the patterns. In addition
to the RDFizer several related approaches exist. For example, in [Ka06] an approach for
semantic lifting of metamodels was introduced. Thereby, the authors transfer metamodels
to ontologies using mapping patterns. Based on this mapping metamodels are transferred to
ontologies.

In the following we investigate approaches which make use of the model weaving paradigm.
The previously mentioned seven different approaches by Hinkelmann [Hi15] do not fulĄll
all described requirements for model weaving as stated above - a detailed discussion of
them is out of the scope of this paper. However, they are closely related to this direction. In
the following, we focus on the three most relevant types. In all of them it is implied that
model elements contain references to ontology concepts: (i) Indirect Linkage: Following
this approach, the whole ontology is represented as a visual model called semantic transit

model. The connections between the model and the ontology are established using additional
hyperlink attributes in the model. (ii) Direct and Indirect Linkage: This is a combination
of the indirect linkage approach and the so-called semantic tunnel approach. It retrieves
ontology concepts via a webservice (semantic tunnel). Thereby, only selected concepts
are represented in the semantic transit model. The model elements have again hyperlink
attributes for referencing ontology concepts. Based on these references additional ontology
concepts can be retrieved and offered to the user. (iii) Loose Coupling: This approach
introduces an intermediate ontology that acts as a reference for connecting it to model
elements.

In summary it can be stated that existing approaches have achieved various ways for
transforming conceptual models to ontology formats. However, an approach for transforming
conceptual models to RDF with a special focus on (i) adaptability (ii) semantic enrichment for
linking them to existing ontology and data repositories and (iii) adequacy for non-technical
users is missing so far.

3 Transformation via Visual Annotations

The main motivation for our work is based on the assumption that potentially large
repositories of conceptual models already exist in an organization which are used by

Transforming Enterprise Models to Linked Data 59

human actors and technical systems alike, cf. [WH01]. These models are usually stored in
vendor-speciĄc formats and there is a lack of machine-processable semantic speciĄcations of
the model content. Rather than remodelling all existing models with an adequate modeling
language - which would be costly - we could semantically enrich the existing models.
Therefore, we Ąrst need to provide means for a semantic enrichment of these models to
align them with existing data and ontology schemas. Semantic annotations have been shown
as a solution that does not require changes in the models nor the underlying modeling
language [Fi11]. As depicted in Figure 2, we use annotations that are stored in visual
Annotation Models on the Configuration Layer of our approach. Thereby, they conĄgure
the RDF serialization of conceptual models. The annotations have references to both,
model concepts and ontology schema concepts. The RDF serialization itself belongs to the
second layer called Standardized Semantic Representation Layer. The resulting RDF can
subsequently be merged with other ontologies or queried, which is foreseen in the Analysis

Layer.

Activity 1

Activity 3

Activity I Activity II

Activity 2
Model A

Model B

Conceptual Models Annotation Models

Mapping Model A

Modeling

Element

Modeling

Element

Modeling

Element

Semantic

Element

Semantic

Element

Semantic

Element

Class A

OWL Model A

OWL Model B

Ontology Models

Property I Property II

Class A

Property II

Class B

Atom C

Rule Models

Atom B

Atom A

V

Atom CAtom B V

Export to RDF

Export to OWL 2 (incl. SWRL Rules)

SeMFIS-
SWRL

RDFizer

D2RQ

Rule-based Application

SWRL Modelling Method

OWL SWRL

RDFizer

Instances

Rules

OWL

URI
Reference

Rule Model A

Rule Model B

Business
Process

Rule

Risk
Knowledge

Base
Annotationis input for is input for

Ontology

exported to

Ontology

exported to

generatesSimulation

Reports

Productive
Systems

input for

applied on

External
Ontology

used for

improvement

referse to

elements

Business
Process

Risk
Knowledge

Base
Annotationis input for is input for

Risk Aware
Busines Process

Ontology

Rule based Report
Configuration

Risk Report
OntologyReports

used for
improvement

input for

generates
References
to elments

generates External
Ontology

1 23

5 4

78

6a 7a

Ask customer for written
explanation or make

official note

Forward all forms to IT
department for scanning

Opening a Bank account

BPMS Models Annotation Models

Opening a Bank account –
Risk Knowledge base

Modeling

Element

Modeling

Element

Modeling

Element

Semantic

Element

Semantic

Element

Semantic

Element

Annotated

Element

OWL Risk Knowledge Base

Ontology Models

hasProgram(?activity,?code)

Rule Models

TechnicalFailure(?risk)

AnnotatedElement(?activity)

Report Configuration Rules

Deposit amount
greater than
100.00EUR?

Perform final check of
information

6

...

...

<<Human Failure>>

Human Risk 1

<<Technical Failure>>

IT Risk 1

<<Triangular

Distribution>>

Distribution 1

<<Triangular

Distribution>>

Distribution 2

Technical

Failure

Human

Failure

Triagular

Distribution

hasRisk(?activity,?risk)

V

hasRiskDistribution(?risk,?dist
ribution)

...

Business
Process

Risk
Knowledge

Base
Annotationis input for is input for

Rule

referse to

elements

OWL/RDF
Ontology

OWL
Ontology

Risk Aware Busines
Process OWL Ontology

+ SWRL Rules

Risk Report OWL
Ontology Database

SeMFIS

OWL-XML
Export

OWL Ontology
Merge

Inference Rules for
Risk Report
generation

SeMFISReport

XSLT

OWLAPI

SWRLAPI
OWLAPI

Report Generation

S
e

M
F

IS

Activity Risk Distribution

Forward all... IT Risk 1
Triangular

Distribution

...

Activity Risk Distribution

Forward all... IT Risk 1
Triangular

Distribution

...

generates

SeMFIS

JavaRule/Ontology Processing

Business
Process
Model

Risk
Knowledge

Base
Annotationis input for is input for

Risk Aware
Business Process
Representation

Rule based Report
Configuration

Risk Report
DatabaseReports

used for
improvement

input for

generates
references

to elements

generates

1 23

5 4

78

6

generates

Opening a Bank account

BPMS Models

Annotation Models

Opening a Bank account –
Risk Knowledge base

OWL Ontology

Ontology Models

JavaRule/Ontology Processing

Deposit amount
greater than
100.00EUR?

Ask customer
for written

explanation or
make official

note

Forward all forms to
IT department for

scanning

Perform final
check of

information

Class: instance
Instance:
HumanRisk

Class: Class
Instance:
AnnotatedEle
ment

Class: Activity
Instance:
Perform final
check of
information

HumanRisk1IT-Risk1

Human FailureTechnical Failure

Annotated ElementTriangular Distribution

Distribution 1 Distribution 2

Conceptual
Model

Ontology
Model

Annotation
Model

is input for

is input for

used for
improvement

generates

References
to elements

23

RDFizer
XSLT

OWL/RDF Ontology
RDF-XML

 OWL
XSLT

OWL Ontology
OWL-XML

OWLAPI
Java Library

SPARQL/SQWRL

is input for is input for

export to export to

merge

1

2

SeMFIS

Conceptual
Model

Ontology
Model

Annotation
Model

is input for is input for

Class: Activity
Instance: applies to
all instances

Class: Activity
Instance: Forward all
forms to IT
department for
scanning

Class: Activity
Instance: Perform
final check of
information

Class: Class
Instance:
BPMNActivity

Class: Class
Instance:
ForwardingActivity

Class: Property
Instance:
hasSubsequent
Activity

Class: Property
Instance:
hasExecutionTime

RelationClass:
Subsequent
Instance: applies to
all instances

Class: Activity
Instance: applies to
all instances
Attribute:
Execution time

11

44

55 66

77

Analysis Layer

Standardized Semantic Representation Layer

Configuration Layer

Analysis Layer

Standardized Semantic
Representation Layer

Configuration Layer

Fig. 2: Overview of the Three-layered Approach for Transforming Conceptual Models to
RDF

As the annotations are created as visual models, the provision of a corresponding visual
modeling language is required. For describing the visual modeling language as well
as the transformations to RDF in a non-ambiguous way we will revert to the FDMM
formalism [FRK12] in the following. A summary of the notation and the elements of the
visual language - which are described using FDMM - is given in Table 1.

3.1 FDMM Core Concepts

For formally describing modeling languages, different formalisms have been introduced Ű
e.g. for EMF [Sc08] or in the OCL speciĄcation4. We decided to use the FDMM formalism
as it aligns well with the concepts used in the ADOxx metamodeling platform, which we
used later for the implementation and evaluation of our approach [FRK12].

FDMM describes metamodels MM using four components MM=〈MT, �
, domain, range, card〉. Each metamodel consists of a set model types MT which
are used to create a set of model instances mt. Each model type MTi consists of a set of
object types OT

i , which have in turn a set of attributes Ai. Each attribute is assigned a datatype

4 http://www.omg.org/spec/OCL/2.0/

60 Benedikt Pittl, Hans-Georg Fill

from the set DT
i . So, in FDMM a model type is described as follows: MTi=〈OT

i ,D
T
i Ai〉. �

is an ordering on the set of object types OT
i for deĄning an object type hierarchy similar to

inheritance hierarchies in object-orientation. domain is a function which assigns attributes
to object types. The range function assigns datatypes to attributes while the card function
deĄnes the cardinality of attribute values. Models mti consist of triples τ representing
the model content. The Ąrst element of a triple t ∈ τ represents an instance of an object
type, the second component represents an attribute,and the last component represents the
attribute value. Due to limited space we do not describe FDMM in more detail here - for
more information we refer to [FRK12].

3.2 Formalizing Visual Annotations in FDMM

The visual modeling language for annotations consists of a single model type MTAnnot .
This model type has a set of object types OT

Annot
which have a set of attributes AAnnot

which have in turn data types DT
Annot

. The object types used in the model type are described
in the following equation. In FDMM, model connectors such as isInputFor and refersTo are
also considered as object types.

OT
Annot ={ModelRef erence,ConnectorRef erence, AttributeRef erence,

OntologyRef erence, Annotator, AnnotationElement,

ModelRef erences, isInputFor, re f ersTo}

(1)

All the attributes used in the object types are part of the set AAnnot .

AAnnot ={Name, AllClassInstances, InstanceRef erence, AttributeName,

ConnectorName, AnnotationType, isInputFor- f rom,

isInputFor-to,OntologySchemaConceptRef erence,

re f ersTo- f rom, re f ersTo-to}

(2)

The datatypes of the attributes are summarized in the set DT
Annot

. Enumanntype represents an
enumeration list.

DT
Annot ={String, Enumanntype = {instanceOf , isEqualTo, isBroaderThan,

isNarrowerThan, isSubclassOf , isSuperclassOf ,

isInstanceUsingFromClass, isInstanceUsingToClass}}

(3)

We have deĄned an ordering of the object types similar to an inheritance hierarchy to avoid
the duplicate speciĄcation of attributes:

AnnotationElement � InstanceType

OntologyRef erence � AnnotationElement

Annotator � AnnotationElement

ModelRef erences � AnnotationElement

ConnectorRef erence � ModelRef erences

ModelRef erence � ModelRef erences

AttributeRef erence � ModelRef erence

(4)

Transforming Enterprise Models to Linked Data 61

The object type InstanceType can be considered as a super-object type
similar to the class Object in Java - so we did not list it explicitly in
OT

Annot
. Attributes and their value ranges were speciĄed using the FDMM

domain and range functions [FRK12]: domain(Name) = {AnnotationElement },

domain(AllClassInstances) = {ModelRef erences}, domain(InstanceRef erence) =

{ModelRef erences}, domain(AttributeName) = {AttributeRef erence}, domain

(AnnotationType) = {Annotation}, domain(OntologySchemaConceptRef erence) =

{OntologyRef erence}, domain(isInputFor- f rom) = {isInputFor }, domain (isInputFor-to)

= {isInputFor }, domain(re f ersTo- f rom) = {re f ersTo}, domain (re f ersTo-to) = {re f ersTo}.

range(Name) = {String}, range(AllClassInstances) = {true, f alse}, range(InstanceRef erence)

= {InstanceType}, range(AttributeName) = {Enumattribute names }, range(AnnotationType) =

{Enumannotation type }, range(OntologySchemaConceptRef erence) = {InstanceType}, range(

isInputFor- f rom) = {ModelRef erences}, range(isInputFor-to) = {Annotator }, range(

re f ersTo- f rom) = {Annotator }, range(re f ersTo-to) = {OntologyRef erence}. In FDMM the
cardinality function - abbreviated with card - deĄnes how many attribute values an object
type can have. In our modeling type all attributes have at most one value. Therefore, we do
not list the cardinality functions explicitly here.

3.3 Graphical Notation

The graphical notation of the described object types is depicted in Table 1. There are
three different object types which have hyperlinks to classes, connectors and attributes of
conceptual models: The Model Reference (MREF) object type has a hyperlink to model
elements (instances of object types except connectors). The Attribute Reference (AREF)
object type has a hyperlink to attributes of model elements and the Connector Reference
(CREF) object type has a hyperlink to instances of connectors, which are object types in
FDMM. All three object types have further attributes for a more precise description of the
type of linkage which should be established. For example, the MREF, AREF as well as
the CREF object type have an attribute applies to all instances. This attribute indicates
if the reference is only representative for the model element to which the MREF, AREF
or CREF instances points to, or if it is representative for all instances of the same object
type in the conceptual model. Instances of the object type Annotator are the connecting
link between CREF, AREF and MREF elements which reference to contents of conceptual
models and elements which reference to ontology schema concepts. The latter are instances
of the OREF object type in our visual language. Annotator elements contain additional
information regarding the type of linkage which is established. The connectors shown on the
lower right corner of Table 1 are the connectors for constructing annotations. An example
of an annotation created with our visual language is shown in the use case (section 5).

Similar to the transit model approach described in [Hi15] we make use of visual ontology
models. This means that we represent ontologies such as OWL ontologies or frames
ontologies as visual models. To ensure interoperability with applications such as Stanford

62 Benedikt Pittl, Hans-Georg Fill

Graphical Notation Description Graphical Notation Description

MREF- references
to instances of
model object types
(non-connectors)
FDMM:
ModelReference∈

OT
Annot

AREF- references
to attributes of
instances of object
types
FDMM:
AttributeReference∈

OT
Annot

CREF- references
to instances of
model object types
(connectors)
FDMM:
ConnectorReference∈

OT
Annot

OREF- references
to ontology schema
concepts
FDMM:
OntologyReference∈

OT
Annot

Connector between
MREF, CREF or
AREF and Annota-
tor
FDMM:
isInputFor∈ OT

Annot

Annotator- connecting
MREF, AREF, CREF
elements with OREF
elements
FDMM:
Annot∈ OT

Annot
Connector between
Annotator and
OREF
FDMM:
refersTo∈ OT

Annot

Tab. 1: Overview of the Object Types Used in the Visual Language for Creating Annotations

Protégé we developed an import as well as an export function to standardized ontology
serialization syntaxes (e.g. OWL-XML).

3.4 Transformation Rule in FDMM

After the annotations are created they are used in the standardized semantic representation
layer to transform the annotated conceptual models to an RDF ontology. For a better
understanding of how the transformation works we present in the following an exemplary
transformation rule for annotations. It is assumed that an annotation model is present in
which an MREF element is connected with an OREF element via an annotator element of
type instanceOf. The MREF elements reference elements in the conceptual model and the
OREF element corresponding ontology concepts.

The function get AttributeValue returns the attribute value t3 (third component) of a
triple t ∈ τ whereby mti ∈ µMT(MTAnnotation). We used FDMM also for describing OWL
ontologies (mtOWL ∈ µMT(MTOWL)) as well as the resulting RDF ontologies (mtRDF ∈

µMT(MTRDF)). Similarly, we described the conceptual model mtREF ∈ µMT(MTREF) to
which the MREF element refers to in FDMM. The Id attribute of the referenced elements

Transforming Enterprise Models to Linked Data 63

represents a unique identiĄer. A sample transformation rule is then speciĄed as follows (the
structure of the other rules is similar):

Transformation Rule to RDF described in FDMM: Annotation which connects MREF
elements with OREF elements via an annotator of type instanceOf
∀mt ∈ µMT(MTAnnotation)
∀mref ∈ µO(MREF, MTAnnotation) |(mref, AllClassInstances, f alse) ∈ β(mt)
∀schemaConcept ∈ O |(

∃inputConnector |(inputConnector, isInputFor- f rom, mref) ∈ β(mt)∧
∃annotation |(inputConnector, isInputFor-to, annotation) ∈ β(mt)∧
∃re f ersToConnector |(re f ersToConnector, re f ersTo- f rom, annotation) ∈ β(mt)∧
∃ore f |(re f ersToConnector, re f ersTo-to, ore f) ∈ β(mt)∧
(ore f ,OntologySchemaConceptRef erence, schemaConcept) ∈ β(mt)
)

∀modelElement ∈ {getAttributeValue(i) |i ∈ {β(mt) |t1 = mref
∧ t2 = InstanceRef erence}}

=⇒
∃mtRDF ∈ µMT(MTRDF)∧
∃t ∈ β(mtRDF) |(
t1 ∈ µO(Description, MTRDF)∧
(t1, rd f : about, y) ∈ β(mtRDF) |(modelElement, Id, y) ∈ β(mtREF)∧
(t1, rd f : type, x) ∈ β(mtRDF) |(schemaConcept, Id, x) ∈ β(mtOWL)
)

In the same way we created FDMM-based rules for all kinds of annotations, i.e. with CREF
elements for referencing connectors and AREF elements for referencing attributes. Due to
the space limit these are omitted here.

4 Technical Implementation

Based on the FDMM speciĄcations we prototypically implemented the approach using
the SeMFIS platform [Fi17] to evaluate its technical feasibility. The reasons for using
the ADOxx based SeMFIS platform are besides familiarity due to previous projects with
this platform twofold: (i) ADOxx is open and (ii) ADOxx is widely used in the modeling
community e.g. for the process modeling toolkit ADONIS. We extended SeMFIS with our
RDF transformation approach. Additionally, we implemented an OWL-XML import/export
function. The implementation follows a three-layer approach as shown in Figure 3. The
model types were implemented using the ADOxx development toolkit underlying SeMFIS.
The transformation rules were encoded using XSLT. In addition, a Java component was
created for merging the OWL and RDF ontologies.

The following numbers correspond to the numbers used in Figure 3. (1,2) First, the
conceptual models are created or loaded. Additionally, the visual ontology model is created
from scratch or imported from an existing ontology Ąle. (3) After the conceptual model as
well as the ontology model are in place, annotations are created using the visual language

64 Benedikt Pittl, Hans-Georg Fill

Activity 1

Activity 3

Activity I Activity II

Activity 2
Model A

Model B

Conceptual Models Annotation Models

Mapping Model A

Modeling

Element

Modeling

Element

Modeling

Element

Semantic

Element

Semantic

Element

Semantic

Element

Class A

OWL Model A

OWL Model B

Ontology Models

Property I Property II

Class A

Property II

Class B

Atom C

Rule Models

Atom B

Atom A

V

Atom CAtom B V

Export to RDF

Export to OWL 2 (incl. SWRL Rules)

SeMFIS-
SWRL

RDFizer

D2RQ

Rule-based Application

SWRL Modelling Method

OWL SWRL

RDFizer

Instances

Rules

OWL

URI
Reference

Rule Model A

Rule Model B

Business
Process

Rule

Risk
Knowledge

Base
Annotationis input for is input for

Ontology

exported to

Ontology

exported to

generatesSimulation

Reports

Productive
Systems

input for

applied on

External
Ontology

used for

improvement

referse to

elements

Business
Process

Risk
Knowledge

Base
Annotationis input for is input for

Risk Aware
Busines Process

Ontology

Rule based Report
Configuration

Risk Report
OntologyReports

used for
improvement

input for

generates
References
to elments

generates External
Ontology

1 23

5 4

78

6a 7a

Ask customer for written
explanation or make

official note

Forward all forms to IT
department for scanning

Opening a Bank account

BPMS Models Annotation Models

Opening a Bank account –
Risk Knowledge base

Modeling

Element

Modeling

Element

Modeling

Element

Semantic

Element

Semantic

Element

Semantic

Element

Annotated

Element

OWL Risk Knowledge Base

Ontology Models

hasProgram(?activity,?code)

Rule Models

TechnicalFailure(?risk)

AnnotatedElement(?activity)

Report Configuration Rules

Deposit amount
greater than
100.00EUR?

Perform final check of
information

6

...

...

<<Human Failure>>

Human Risk 1

<<Technical Failure>>

IT Risk 1

<<Triangular

Distribution>>

Distribution 1

<<Triangular

Distribution>>

Distribution 2

Technical

Failure

Human

Failure

Triagular

Distribution

hasRisk(?activity,?risk)

V

hasRiskDistribution(?risk,?dist
ribution)

...

Business
Process

Risk
Knowledge

Base
Annotationis input for is input for

Rule

referse to

elements

OWL/RDF
Ontology

OWL
Ontology

Risk Aware Busines
Process OWL Ontology

+ SWRL Rules

Risk Report OWL
Ontology Database

SeMFIS

OWL-XML
Export

OWL Ontology
Merge

Inference Rules for
Risk Report
generation

SeMFISReport

XSLT

OWLAPI

SWRLAPI
OWLAPI

Report Generation

S
e

M
F

IS

Activity Risk Distribution

Forward all... IT Risk 1
Triangular

Distribution

...

Activity Risk Distribution

Forward all... IT Risk 1
Triangular

Distribution

...

generates

SeMFIS

JavaRule/Ontology Processing

Business
Process
Model

Risk
Knowledge

Base
Annotationis input for is input for

Risk Aware
Business Process
Representation

Rule based Report
Configuration

Risk Report
DatabaseReports

used for
improvement

input for

generates
references

to elements

generates

1 23

5 4

78

6

generates

Opening a Bank account

BPMS Models

Annotation Models

Opening a Bank account –
Risk Knowledge base

OWL Ontology

Ontology Models

JavaRule/Ontology Processing

Deposit amount
greater than
100.00EUR?

Ask customer
for written

explanation or
make official

note

Forward all forms to
IT department for

scanning

Perform final
check of

information

Class: instance
Instance:
HumanRisk

Class: Class
Instance:
AnnotatedEle
ment

Class: Activity
Instance:
Perform final
check of
information

HumanRisk1IT-Risk1

Human FailureTechnical Failure

Annotated ElementTriangular Distribution

Distribution 1 Distribution 2

Conceptual
Model

Ontology
Model

Annotation
Model

is input for

is input for

used for
improvement

generates

References
to elements

23

RDFizer
XSLT

OWL/RDF Ontology
RDF-XML

 OWL
XSLT

OWL Ontology
OWL-XML

OWLAPI
Java Library

SPARQL/SQWRL

is input for is input for

export to export to

merge

1

2

SeMFIS

Conceptual
Model

Ontology
Model

Annotation
Model

is input for is input for

Class: Activity
Instance: applies to
all instances

Class: Activity
Instance: Forward all
forms to IT
department for
scanning

Class: Activity
Instance: Perform
final check of
information

Class: Class
Instance:
BPMNActivity

Class: Class
Instance:
ForwardingActivity

Class: Property
Instance:
hasSubsequent
Activity

Class: Property
Instance:
hasExecutionTime

RelationClass:
Subsequent
Instance: applies to
all instances

Class: Activity
Instance: applies to
all instances
Attribute:
Execution time

11

44

55 66

77

Analysis Layer

Standardized Semantic Representation Layer

Configuration Layer

Analysis Layer

Standardized Semantic
Representation Layer

Configuration Layer

Fig. 3: Overview of the Technical Implementation

introduced in the previous section. Thereby, the content of conceptual models is linked with
ontology schema constructs using annotations. (4) The annotations created with the visual
language are used to conĄgure the RDF serialization. Therefore transformation rules as
exemplary introduced in the previous section are applied. (5) The transformation results in
an RDF ontology containing the model elements for which we created annotations. The
RDF ontology does not contain schema constructs but only instances. (6) It is thus possible
to export the visual ontology model to which the annotations reference as an OWL ontology.
(7) Then we get two ontologies: an RDF ontology (see (5)) and an OWL ontology (see (6)).
Both ontologies can be merged. This is accomplished using the Java library OWLAPI. The
resulting ontology then contains both, the OWL ontology including the schema constructs,
as well as the instances stored as RDF triples. This ontology can then be processed using
further semantic tools and techniques such as reasoners, query or rule engines.

5 Evaluation through a Use Case

In addition to the evaluation of the technical feasibility, we applied the approach to a use
case to assess whether it can be used in a practical scenario.

For this purpose we reverted to an account opening business process that has been previously
used within the Open Models Initiative5 - see [KMM16] for more information. Figure 4
shows an excerpt of the process model which was created with the domain-speciĄc modeling
language BPMS [KJS96]. Typically, models in such domain-speciĄc languages are stored
in an internal, platform-dependent serialization format, which makes machine-processing
difficult. Therefore, the use of a standardized format is beneĄcial. Hence, we annotated
the process model with OWL ontologies as shown in the right part in Figure 4. The
depicted OntoRule Ontology ontology is an excerpt of the process ontology developed

5 http://www.semĄs-platform.org/

Transforming Enterprise Models to Linked Data 65

within the OntoRules project6. We further created an ontology called user ontology with
the data property hasExecutionTime. The lines shown in Figure 4 depict references as used
in the MREF, CREF and OREF elements. To keep the Figure simple we have not shown
the references of the AREF elements. As the annotation model shows, the process activity
of the process model is annotated with the OWL class Task. Further, we used an AREF
element for the annotation of the execution time attribute. It is annotated with the OWL
dataproperty hasExecutionTime. The connector of the type Subsequent, which connects
activities in a business process model, is annotated with the follows OWL property.

<rdf:Description rdf:about= "NS#Forward all forms to IT department for scanning">

 <follows rdf:resource= NS#Perform final check of information
</rdf:Description>

<rdf:Description rdf:about= "NS#Perform final check of information">

 <follows rdf:resource=[
</rdf:Description>

Activity 1

Activity 3

Activity I Activity II

Activity 2
Model A

Model B

Conceptual Models Annotation Models

Mapping Model A

Modeling

Element

Modeling

Element

Modeling

Element

Semantic

Element

Semantic

Element

Semantic

Element

Class A

OWL Model A

OWL Model B

Ontology Models

Property I Property II

Class A

Property II

Class B

Atom C

Rule Models

Atom B

Atom A

V

Atom CAtom B V

Export to RDF

Export to OWL 2 (incl. SWRL Rules)

SeMFIS-
SWRL

RDFizer

D2RQ

Rule-based Application

SWRL Modelling Method

OWL SWRL

RDFizer

Instances

Rules

OWL

URI
Reference

Rule Model A

Rule Model B

Business
Process

Rule

Risk
Knowledge

Base
Annotationis input for is input for

Ontology

exported to

Ontology

exported to

generatesSimulation

Reports

Productive
Systems

input for

applied on

External
Ontology

used for

improvement

referse to

elements

Business
Process

Risk
Knowledge

Base
Annotationis input for is input for

Risk Aware
Busines Process

Ontology

Rule based Report
Configuration

Risk Report
OntologyReports

used for
improvement

input for

generates
References
to elments

generates External
Ontology

1 23

5 4

78

6a 7a

Ask customer for written
explanation or make

official note

Forward all forms to IT
department for scanning

Opening a Bank account

BPMS Models Annotation Models

Opening a Bank account –
Risk Knowledge base

Modeling

Element

Modeling

Element

Modeling

Element

Semantic

Element

Semantic

Element

Semantic

Element

Annotated

Element

OWL Risk Knowledge Base

Ontology Models

hasProgram(?activity,?code)

Rule Models

TechnicalFailure(?risk)

AnnotatedElement(?activity)

Report Configuration Rules

Deposit amount
greater than
100.00EUR?

Perform final check of
information

6

...

...

<<Human Failure>>

Human Risk 1

<<Technical Failure>>

IT Risk 1

<<Triangular

Distribution>>

Distribution 1

<<Triangular

Distribution>>

Distribution 2

Technical

Failure

Human

Failure

Triagular

Distribution

hasRisk(?activity,?risk)

V

hasRiskDistribution(?risk,?dist
ribution)

...

Business
Process

Risk
Knowledge

Base
Annotationis input for is input for

Rule

referse to

elements

OWL/RDF
Ontology

OWL
Ontology

Risk Aware Busines
Process OWL Ontology

+ SWRL Rules

Risk Report OWL
Ontology Database

SeMFIS

OWL-XML
Export

OWL Ontology
Merge

Inference Rules for
Risk Report
generation

SeMFISReport

XSLT

OWLAPI

SWRLAPI
OWLAPI

Report Generation

S
e

M
F

IS

Activity Risk Distribution

Forward all... IT Risk 1
Triangular

Distribution

...

Activity Risk Distribution

Forward all... IT Risk 1
Triangular

Distribution

...

generates

SeMFIS

JavaRule/Ontology Processing

Business
Process
Model

Risk
Knowledge

Base
Annotationis input for is input for

Risk Aware
Business Process
Representation

Rule based Report
Configuration

Risk Report
DatabaseReports

used for
improvement

input for

generates
references

to elements

generates

1 23

5 4

78

6

generates

Annotation Models

Opening a Bank account –
Risk Knowledge base

OntoRule Ontology

Ontology Processing

Forward all forms to
IT department for

scanning

Perform final
check of

information

Class: instance
Instance:
HumanRisk

Class: Class
Instance:
AnnotatedEle
ment

Class: Activity
Instance:
Perform final
check of
information

HumanRisk1IT-Risk1

Human FailureTechnical Failure

Annotated ElementTriangular Distribution

Distribution 1 Distribution 2

Conceptual
Model OntologyAnnotation

is input for

is input for

used for
improvement

generates

References
to elements

1 23

SeMFIS
RDFizer

OWL/RDF
Ontology

SeMFIS
OWL

Export

OWL
Ontology

OWLAPI

Conceptual Model as
Ontology

5 6

7

is input for is input for

export to
export to

merge to

Conceptual
Model OntologyAnnotationis input for is input for

Class: Activity
Instance: applies to
all instances

Class: Activity
Instance: Forward all
forms to IT
department for
scanning

Class: Class
Instance: Task

Class: Class
Instance:
ForwardingActivity

Opening a Bank account

BPMS Model

Annotation Model Ontology Models

follows

hasExecutionTime

Task

Standardized Semantic Representation Layer

Configuration Layer

Analysis Layer

SELECT ?predecessor WHERE {

?predecessor er:follows er:Forward all forms to IT department for scanning}

Class: Property
Instance: follows

RelationClass:
Subsequent
Instance: applies to
all instances

Class: Activity
Instance: applies to
all instances
Attribute:
Execution time

Class: Property
Instance:
hasExecutionTime

User Ontology

<rdf:Description rdf:about= "NS#Forward all forms to IT department for scanning">

 <follows rdf:resource= NS#Perform final check of information
</rdf:Description>

<rdf:Description rdf:about= "NS#Perform final check of information">

 <follows rdf:resource=[
</rdf:Description>

OntoRule Ontology

Forward all forms to
IT department for

scanning

Perform final
check of

information

Class: Activity
Instance: applies to
all instances

Class: Class
Instance: Task

Opening a Bank account

BPMS Model

Annotation Model Ontology Models

follows

hasExecutionTime

Task

Standardized Semantic

Representation Layer

Configuration Layer

Analysis LayerSELECT ?predecessor WHERE {

?predecessor er:follows er:Forward all forms to IT department for scanning}

Class: Property
Instance: follows

RelationClass:
Subsequent
Instance: applies to
all instances

Class: Activity
Instance: applies to
all instances
Attribute:
Execution time

Class: Property
Instance:
hasExecutionTime

User Ontology

Fig. 4: Overview of Use Case Showing Excerpts of an Annotation Model Instance (left),
of a Process Model in BPMS Notation (top right), Two Ontology Models (mid right), the
Resulting RDF Representation, and a Sample Query in SPARQL

Based on these visual annotations, the XSLT stylesheets together with the Java component
as described in the previous section transform the process model into an RDF serialization.
This is depicted in the standardized semantic representing layer in Figure 4. Listing 1 shows
a more detailed excerpt of the resulting RDF. For all annotated model elements, RDF
resources are created including the corresponding types. The connector reference leads
to the creation of the follows property. Similarly, the annotation of the attribute leads to
the creation of the hasE xecutionTime property. The serialized RDF can be analyzed as
shown in the last layer of Figure 4. An example query using the SPARQL query language is

6 http://ontorule-project.eu/resources/assembler/process-ontology-and-facts.owl

66 Benedikt Pittl, Hans-Georg Fill

Listing 1: Excerpt of the RDF Serialization of the Use Case Example - namespaces were neglected

<rdf:Description rdf:about= "NS#Forward all forms to IT department for scanning" >

<rdf:type rdf:resource= "NS#Task" />

<follows rdf:resource= "NS#Perform final check of information" />

<hasExecutionTime rdf:datatype="http://www.w3.org/2001/XMLSchema#string" >
00:000:00:03:00

</hasExecutionTime>
</rdf:Description>
<rdf:Description rdf:about= "NS#Perform final check of information" >

<rdf:type rdf:resource= "NS#Task" />

<follows rdf:resource= "NS#Forward remaining forms to inspection department" />

<hasExecutionTime rdf:datatype="http://www.w3.org/2001/XMLSchema#string" >
00:000:00:02:00

</hasExecutionTime>
</rdf:Description>

shown in Listing 2. This query selects all predecessor activities of the Perform final check

of information activity.

Listing 2: Example of SPARQL Query on an RDF Representation of a Model from the Use Case

SELECT ?predecessor WHERE {
?predecessor ns:follows ns:Perform Ąnal check of information
}
Result: ns:Forward all forms to IT department for scanning

6 Discussion

With the technical realization of the approach and its application to a use case we can
conclude that the presented approach is useful for semantically enriching existing visual
models ex-post. Thereby, neither the models nor the used ontologies have to be modiĄed
with the creation of annotations. Thus, the annotations are not limited by the type of model
or ontology. However, in the described implementation, the ontologies have to be imported
as visual models in order to use our annotation approach. The described weaving approach
requires however that the modeling tool used for it supports model references. Hence, tools
which do not support model references have to be adapted to realize the loosely coupled
semantic annotation approach. A performance analysis is part of our further research.

In summary we can derive a number of beneĄts as well as also some drawbacks of the
approach in its current version. These are listed in Table 2.

Transforming Enterprise Models to Linked Data 67

Benefits Drawbacks

⊕ Customization of RDF generation with
visual annotations

⊖ Visual annotations may become complex
to handle

⊕ Independent of the used modeling lan-
guage for conceptual models

⊖ Direct annotation references to ontology
concepts not implemented yet

⊕ Types of annotations are extendable ⊖ Semantics of annotation types needs to be
provided separately via rules

⊕ Annotations are re-usable ⊖ Ontology schema concepts are required

⊕ OWL import/export options exist ⊖ RDF-serialization for non-OWL ontolo-
gies not implemented yet

Tab. 2: BeneĄts and drawbacks of the introduced approach

Usability test and economical analysis are two aspects which are out of the scope of this
paper but which have to be done before implementing the approach in industry modeling
tools. The linking mechanism - from the visual annotation to model elements - is probably
the most challenging feature. This is because the linking mechanism has to be generic so
that model elements created with different modeling languages and tools can be referenced.
Further, we see the support of different ontologies - as described in Table 2 - as an important
feature to make the approach feasible.

The introduced approach enables institutions to semantically enrich their existing models
created with different modeling tools. Hence, they save costs for remodelling and stan-
dardizing the existing models. However, the introduced approach requires human-created
annotations so that institutions face a trade-off between costs for remodelling and costs for
creating semantic annotations.

7 Conclusion and Further Research

In this paper we introduced a model weaving approach for transforming conceptual models
to RDF. For this purpose we introduced a visual modeling language for creating model
annotations. The annotations are neither limited to a speciĄc kind of conceptual model nor
to a speciĄc kind of ontology. The technical feasibility of the approach has been shown by
implementing it on the SeMFIS platform and applying it to a use case.

In our future research we want to develop further types of annotations and introduce ontology
references which point directly to ontology schema constructs, e.g. as contained in an
ontology repository. In this way the transformation of ontologies to visual models could be
omitted. Another aspect that will be investigated will be the usability of the approach. For
this purpose especially the procedures of annotating existing models will have to be tested
with users to judge whether the used modeling language is adequate in a practical setting.
Economical as well as usability analysis are part of our further research.

68 Benedikt Pittl, Hans-Georg Fill

References

[APW08] Awad, Ahmed; Polyvyanyy, Artem; Weske, Mathias: Semantic querying of business pro-
cess models. In: Enterprise Distributed Object Computing Conference, 2008. EDOCŠ08.
12th International IEEE. IEEE, pp. 85Ű94, 2008.

[BB12] Belghiat, Aissam; Bourahla, Mustapha: Transformation of UML models towards OWL
ontologies. In: Sciences of Electronics, Technologies of Information and Telecommuni-
cations (SETIT), 2012 6th International Conference on. IEEE, pp. 840Ű846, 2012.

[BHB09] Bizer, Christian; Heath, Tom; Berners-Lee, Tim: Linked Data - The Story So Far. Int. J.
Semantic Web Inf. Syst., 5(3):1Ű22, 2009.

[BK15] Buchmann, Robert Andrei; Karagiannis, Dimitris: Pattern-based Transformation of
Diagrammatic Conceptual Models for Semantic Enrichment in the Web of Data. In:
19th International Conference in Knowledge Based and Intelligent Information and
Engineering Systems, KES 2015, Singapore, 7-9 September 2015. pp. 150Ű159, 2015.

[BK16] Buchmann, Robert A.; Karagiannis, Dimitris: Enriching Linked Data with Semantics from
Domain-SpeciĄc Diagrammatic Models. Business & Information Systems Engineering,
58(5):341Ű353, 2016.

[Cr01] CraneĄeld, Stephen: Networked Knowledge Representation and Exchange using UML
and RDF. J. Digit. Inf., 1(8), 2001.

[DFBV06] Del Fabro, M. Didonet; Bézivin, Jean; Valduriez, Patrick: Weaving Models with the
Eclipse AMW plugin. In: Eclipse Modeling Symposium, Eclipse Summit Europe. volume
2006, 2006.

[DFJ05] Del Fabro, Marcos Didonet; Jouault, Frédéric: Model transformation and weaving in the
AMMA platform. Proceedings of GTTSE, 2006, 2005.

[EKO07] Ehrig, Marc; Koschmider, Agnes; Oberweis, Andreas: Measuring similarity between
semantic business process models. In: Proceedings of the fourth Asia-PaciĄc conference
on Comceptual modelling-Volume 67. Australian Computer Society, Inc., pp. 71Ű80,
2007.

[Fi11] Fill, Hans-Georg: On the Conceptualization of a Modeling Language for Semantic Model
Annotations. In: Advanced Information Systems Engineering Workshops - CAiSE 2011
International Workshops, London, UK, June 20-24, 2011. Proceedings. pp. 134Ű148,
2011.

[Fi12] Fill, Hans-Georg: An Approach for Analyzing the Effects of Risks on Business Processes
using Semantic Annotations. In: 20th European Conference on Information Systems,
ECIS 2012, Barcelona, Spain, June 10-13, 2012. p. 111, 2012.

[Fi17] Fill, Hans-Georg: SeMFIS: A Ćexible engineering platform for semantic annotations of
conceptual models. Semantic Web, 8(5):747Ű763, 2017.

[FRK12] Fill, Hans-Georg; Redmond, Timothy; Karagiannis, Dimitris: FDMM: A Formalism for
Describing ADOxx Meta Models and Models. In: ICEIS 2012 - Proceedings of the
14th International Conference on Enterprise Information Systems, Volume 3, Wroclaw,
Poland, 28 June - 1 July, 2012. pp. 133Ű144, 2012.

Transforming Enterprise Models to Linked Data 69

[Ga04] Gasevic, Dragan; Djuric, Dragan; Devedzic, Vladan; Damjanovic, Violeta: Converting
UML to OWL ontologies. In: Proceedings of the 13th international conference on World
Wide Web - Alternate Track Papers & Posters, WWW 2004, New York, NY, USA, May
17-20, 2004. pp. 488Ű489, 2004.

[Hi15] Hinkelmann, Knut: Modeling Framework for BPaaS. CloudSocket, December
2015. https://www.cloudsocket.eu/documents/10182/20690/CloudSocket-D3.1-
BPaaS+Design+Environment+Research/91a3c2ae-6394-482a-940e-d0186e82f7f6, Ac-
cessed on 13-04-2017.

[Jo06] Jouault, Frédéric; Allilaire, Freddy; Bézivin, Jean; Kurtev, Ivan; Valduriez, Patrick: ATL:
a QVT-like transformation language. In: ACM SIGPLAN symposium on Object-oriented
programming systems, languages, and applications. ACM, pp. 719Ű720, 2006.

[Ka06] Kappel, Gerti; Kapsammer, Elisabeth; Kargl, Horst; Kramler, Gerhard; Reiter, Thomas;
Retschitzegger, Werner; Schwinger, Wieland; Wimmer, Manuel: Lifting metamodels to
ontologies: A step to the semantic integration of modeling languages. In: International
Conference on Model Driven Engineering Languages and Systems. Springer, pp. 528Ű542,
2006.

[KB16] Karagiannis, Dimitris; Buchmann, Robert Andrei: Linked Open Models: Extending
Linked Open Data with conceptual model information. Inf. Syst., 56:174Ű197, 2016.

[KJS96] Karagiannis, Dimitris; Junginger, Stefan; Strobl, Robert: Introduction to Business Process
Management Systems Concepts. In: Business process modelling, pp. 81Ű106. Springer,
1996.

[KMM16] Karagiannis, Dimitris; Mayr, Heinrich C.; Mylopoulos, John, eds. Domain-SpeciĄc
Conceptual Modeling, Concepts, Methods and Tools. Springer, 2016.

[My92] Mylopoulos, John: Conceptual modelling and Telos. Conceptual Modelling, Databases,
and CASE: an Integrated View of Information System Development, New York: John
Wiley & Sons, pp. 49Ű68, 1992.

[Ro06] Rosemann, Michael: Potential pitfalls of process modeling: part A. Business Process
Management Journal, 12(2):249Ű254, 2006.

[Sc08] Schätz, Bernhard: Formalization and rule-based transformation of EMF Ecore-based
models. In: International Conference on Software Language Engineering. Springer, pp.
227Ű244, 2008.

[TF07] Thomas, Oliver; Fellmann, Michael: Semantic EPC: Enhancing Process Modeling Using
Ontology Languages. In: Proceedings of the Workshop on Semantic Business Process and
Product Lifecycle Management SBPM 2007, held in conjunction with the 3rd European
Semantic Web Conference (ESWC 2007), Innsbruck, Austria, June 7, 2007. 2007.

[vDDM13] van Dongen, Boudewijn F.; Dijkman, Remco M.; Mendling, Jan: Measuring Similarity
between Business Process Models. In: Seminal Contributions to Information Systems
Engineering, 25 Years of CAiSE, pp. 405Ű419. 2013.

[WH01] Whitman, Larry; Huff, Brian: On the Use of Enterprise Models. International Journal of
Flexible Manufacturing Systems, 13(2), 2001.

70 Benedikt Pittl, Hans-Georg Fill

https://www.cloudsocket.eu/documents/10182/20690/CloudSocket-D3.1-BPaaS+Design+Environment+Research/91a3c2ae-6394-482a-940e-d0186e82f7f6
https://www.cloudsocket.eu/documents/10182/20690/CloudSocket-D3.1-BPaaS+Design+Environment+Research/91a3c2ae-6394-482a-940e-d0186e82f7f6

