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Abstract 

Conceptual modeling languages such as BPMN and UML are widely used in industry and academia. Such 
modeling languages are usually introduced in overarching specification documents maintained by 
standardization institutions. Being the primary - often even the single - source of information, such 
specifications are vital for modelers, researchers, and tool vendors. However, how to derive a coherent 
and comprehensive specification was never systematically analyzed. This paper reports on the analysis of 
11 current modeling language specifications with a focus on how metamodels are specified. Identified 
metamodel specification techniques are discussed and their sample usage is illustrated. Thereby, 
individual strengths and weaknesses of each technique are discussed. The contribution of this paper is a 
foundation for increasing the consistency and expressive power of metamodel specifications, ultimately 
leading to an improved understanding and better utilization of modeling languages. 

Introduction 

Conceptual modeling languages such as the Business Process Modeling and Notation (BPMN) and the 
Unified Modeling Language (UML) are widely used in academia and industry. A single cooperation 
usually uses thousands of visual models (Rosemann, 2006) for systems analysis and design. Most 
conceptual modeling languages are introduced in overarching specifications. These specifications are 
therefore vital for: modelers, interested in understanding and applying a modeling language, 
researchers, aiming to evaluate and adapt modeling languages, e.g., to domain-specific purposes 
(Karagiannis et al., 2016), and tool vendors, interested in developing tools for a modeling language. 

While the importance of modeling language specifications is obvious, to the best of our knowledge, 
structure, content, and specification techniques were never systematically analyzed. When creating a new 
modeling language specification, researchers are not guided by any best practice as existing specifications 
differ significantly. All this makes specifications difficult to comprehend. This paper shows that visual 
metamodel representations are a main pillar for specifying the syntax of most of today's modeling 
languages used in practice. The oldest UML specification which was released by the Object Management 
Group (OMG) - version 1.3 in 2000 - uses already a visual metamodel representation. Other modeling 
language specifications were reverting to visual metamodel representations later: e.g. for the BPMN since 
its version 2.0 release in 2011. While the importance of representing the syntax visually is obvious, other 
language aspects such as notation, constraints, serialization formats and execution semantics are 
introduced in specifications, too. Due to limitations of space, we will however focus on the modeling 
language specification by means of visual metamodels in the following. 

The aim of this paper is to identify techniques for visually specifying metamodels. The contribution of this 
paper is of benefit for researchers, aiming to create a modeling language specification; for maintaining 
institutions, intending to improve existing specifications; and for modelers, interested in learning how to 
comprehend relevant information from overarching specifications. Thus, this paper establishes a first step 
toward improved and more comprehensive visual metamodel specifications for modeling languages. To 
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achieve this, current specifications of conceptual modeling languages are systematically analyzed with the 
aim to establish a foundation for metamodel specification techniques. 

The remainder of the paper is structured as follows: In Section 2 foundations of metamodels and related 
work are introduced. Section 3 summarizes the research questions and the applied research methodology. 
The results of the analysis are then presented in Section 4. A discussion of the key findings and some 
recommendations for improving visual metamodel specifications are given in Section 5. The paper closes 
with concluding remarks and some future research directions in Section 6. 

Background and Related Work 

Terminological Foundation 

As the scientific community uses different terms to refer to elements of metamodels, a terminology which 
will be used in the following is established now. The most important terms are visualized in Figure 1. All 
elements which occur in the metamodel are called metaelements or elements of the metamodel. 
Metaelements are either object types - represented by metaclasses - or connector types. Both types can be 
instantiated. Instances of metaclasses become objects in the model layer. Following the definition of 
Karagiannis and Kühn (2002), modeling methods are composed of modeling language, modeling 
procedure, and mechanisms & algorithms. Modeling languages are vital as they constitute a prerequisite 
for the latter two. Consequently, most specifications focus on the modeling language part, more precisely 
on the syntax of a modeling language - often referred in UML/OMG-related literature as abstract syntax. 
The syntax of a modeling language can be specified on different levels of formality. One of the most used 
techniques to formally specify the syntax is by using visual metamodel representations (Bork and Fill, 
2014; Kleppe, 2008). In addition, a modeling language specification comprises notation - often referred in 
UML/OMG-related literature as concrete syntax - and semantics. 

 

Figure 1. Terminological foundation metamodel and model elements. 

Related Work 

Recently, e.g. in (Kalnins and Barzdins, 2016; Cicirelli et al., 2016; Bork, 2015), visual metamodel 
representations were used to describe the syntax of modeling languages. The metamodels use different 
concepts such as inheritance, aggregation or composition, which effect the expressiveness of the 
specification. To the best of our knowledge, no scientific work exists which analyses the set of possible 
concepts of visual metamodel specification. Works that focus solely on modeling languages exist in the 
field of business process management. For example, a survey on business process standards is reported in 
(Ko et al., 2009). The authors considered all standards which belong to the business processes domain 
such as interchange formats or execution standards. In total, the survey comprised only two visual 
modeling languages - BPMN and UML. The survey moreover focused on the analysis of their modeling 
capabilities. A survey on business process validity modeling was published by Rosa et al. (2017). The 
survey (van der Aalst, 2013) analyzes business process management as management approach - the 
process languages itself are not analyzed. In Bork and Fill (2014), modeling language specifications are 
analyzed according to their formality, whereas Bork et al. (2018) focusses on analyzing visual 
expressiveness of conceptual modeling languages. Much work exists that targets the development of 
metamodels (e.g., Frank, 2010). Moreover, tool vendors often publish their meta-metamodels. In contrast 
to the aforementioned, this paper focuses on visual specification techniques for metamodels. It is not 
within the scope of this research to analyze constituents, quality, or development of metamodels. 
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Scientific publications which analyze expressiveness and consistency of selected modeling languages are 
also available. For example, in (Allaki et al., 2017) inconsistencies of the UML were analyzed without 
analyzing metamodels. In Henderson-Sellers and Ralyté (2010), selected metamodels used for situational 
method engineering were analyzed. However, general concepts of metamodel representation techniques 
were not analyzed. Several works have been published, focusing on the quality of metamodels, e.g., by 
proposing quality metrics (Ma et al., 2013; Williams et al., 2013; di Rocco et al., 2014). Hinkel et al. 
(2016), provides an empirical investigation on how students evaluated metamodels. 

All of the mentioned works consider the analysis of the modeling language but do not focus on the 
metamodels. So far, no scientific work provides guidance and/or best practices in how to specify modeling 
languages by means of visual metamodel specification techniques. This is a serious research gap, as such 
specifications are the primary - often the single - source of knowledge for heterogeneous stakeholders. 

Research Questions and Research Methodology 

For conducting the analysis, we followed a three-phase research method (Kitchenham and Brereton, 
2013) comprising a planning phase, a conduction phase, and a result phase. In the planning phase the 
research questions as well as the inclusion/exclusion criteria are defined. The conduction phase then 
describes the execution of the analysis. Finally, the results are presented in the result phase. The planning 
and the conduction phase are described in the following two subsections. The rest of the paper then 
comprehensively presents and discusses the results. 

Planning the Analysis 

The term conceptual modeling language (cf. Karagiannis and Kühn, 2002) is applied for languages which 
allow the creation of diagrammatic models (Buchmann and Karagiannis, 2016) - called visual models in 
this paper. The goal of the analysis is to answer the following research question: How are metamodels of 
conceptual modeling languages visually specified in practice? Practice, refers to modeling languages 
which are heavily used in industry. A systematic analysis of modeling language specifications is required 
to answer this research question. We considered specification documents which fulfill the following 
inclusion criteria: Document is declared as specification, definition or standard; Document describes a 
conceptual modeling language; Document describes a metamodel; Document is freely accessible. 

Our approach for finding relevant specifications was twofold: First, institutions which specify modeling 
languages are well known: OMG and OpenGroup. We systematically analyzed the specifications published 
on their websites. Next, we conducted a systematic keyword search on www.google.com with the query 
(Modeling Language) AND (Specification OR Definition OR Standard OR Description OR 
Documentation). The search was conducted in June 2017. For each combination of terms, we analyzed 
the first ten pages of the search result. For our analysis, scientific databases such as DBLP or Google 
Scholar were not focused, because modeling language specifications are usually published by maintaining 
institutions. We explicitly excluded scientific publications that only propose incomplete specifications or 
extensions of existing modeling languages (e.g. UML profiles). Lastly, we excluded specifications that 
were not written in English and/or not revised since 01.01.2012. These exclusion criteria were established 
for ensuring that only complete and current modeling languages are considered. 

Conducting the Analysis 

The results of the Google keyword search referred several times to pages such as Rosetta Standards1 or 
IDEF2 which enforce a registration before one can access the specifications. If the registration was free of 
charge we created an account. The Climate Science Modelling Language (CSML)3 was not accessible and 
therefore not analyzed. The Object Process Methodology (OPM) specification is not freely available. 
However, a working draft version is accessible which we used for our survey. 

                                                             

1 https://resources.gs1us.org/rosettanet, last accessed: 26.02.2018 

2 http://www.idef.com/, last accessed: 24.02.2018 

3 http://csml.badc.rl.ac.uk/, last accessed: 22.02.2018 
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All specifications that met all inclusion criteria were classified as being relevant. Heading and 
introduction sections were read in order to ensure that the inclusion criteria IC 1 and IC 2 are fulfilled. 
Two specification documents were found for the BPMN: one from the OMG and one from the ISO. 
Similarly, there exists an UML specification from ISO and one from OMG. In both cases, the specification 
documents from the OMG were used. The Decision Modeling Notation (DMN) introduces two languages: 
the Decision Requirements Diagram (DRD) which has a graph-based structure and decision tables which 
have no such structure. Thus, only the DRD was analyzed. In total, 17 relevant specifications were found. 
On the websites of OMG and OpenGroup further 6 relevant specifications have been identified. 

In a second step, the 23 specifications have been systematically evaluated along the exclusion criteria by 
reading the introduction section and by cross-reading the following sections. Furthermore, the table of 
contents has been considered to identify the scope of the specification. This evaluation step followed a 
peer-review process by the authors, thereby classifying the specifications using three categories: 
complying to the exclusion criteria, not complying to the exclusion criteria and further evaluation 
needed. For example, the System Structure Modeling Language (S2ML) specification required further 
evaluation as it has a strong focus on the introduced textual language - not on the conceptual modeling 
language. Also the business motivation model (BMM) specification required further evaluation because of 
the limited notation. The specifications belonging to this category were evaluated independently again 
and afterwards discussed by the authors to come to a decision. Finally, 11 specifications which comply 
with the search criteria have been identified (see Table 1). 

Metamodel Specification Techniques 

By analyzing the 11 modeling language specifications with a focus on how the metamodels have been 
specified, six visual metamodel specification techniques have been classified which will be discussed and 
their sample usage illustrated in the following. 

Slicing Metamodels 

Metamodels are usually large and cannot be represented in one single figure/diagram. Thus, 
specifications such as UML and ArchiMate use a representation technique which will be referred to in the 
following as slicing. The metamodel is decomposed into multiple slices. Each slice has at least one 
element which is part of another slice enabling the complete metamodel to be re-constructed by merging 
the slices. An example is shown in Figure 2, where the complete metamodel is decomposed into three 
slices. Each slice has one element which is part of another slice - classes A and D. 

 

Figure 2. Metamodel decomposition into slices. 

 

A further distinction between redundant slicing and non-redundant slicing is introduced. In the example 
depicted in Figure 2, the non-redundant slicing approach is used as exactly one element of each slice is 
used in another slice. By contrast, redundant slicing refers to cases in which several elements of one slice 
are part of another slice. All analyzed specifications use the redundant slicing approach. An example from 
BPMN (BPMN, 2018) is depicted in Figure 3. In both slices, attributes and relationships of the elements 
BaseElement and Documentation are present. 
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Figure 3. Example slides from the BPMN. 

Referencing Metamodels 

The slicing metamodel specification technique comes with a serious issue. If elements of the metamodel 
are present in multiple slices, redundancy is inevitable. Moreover, if at all places, all aspects of the 
element are specified, i.e., not only the name but also attributes and relationships to other elements, 
comprehension by humans is impeded and inconsistencies after metamodel revisions are likely. 

In order to avoid these issues, six out of the 11 analyzed specifications such as for URN (URN, 2018) use 
special reference elements - see Table 1. Such reference elements contain only the name of the metamodel 
element while omitting additional information such as attributes. Thus, any element is only once specified 
in detail but can be referenced multiple times throughout the metamodel specification. Such reference 
elements reduce redundancy. Consequently, reference metamodel specifications can be considered a 
specialized form of slicing metamodels. 

Generic Metamodels 

Generic metamodels do not describe the syntax of the modeling language - their only purpose is to foster 
understanding of the structure of the metamodel by providing generic concepts. ArchiMate (ArchiMate, 
2018) extensively uses generic metamodels as an example visualized in Figure 4 shows.  

          

Figure 4. Generic metamodel (left) and business layer metamodel (right) of ArichMate. 

Figure 4 (left) depicts the generic metamodel with abstract metaclasses Internal Behavior Element and 
Passive Structure Element while Figure 4 (right) shows the metamodel of the business layer, mixing real 
metaclasses (e.g., Business Service) with semantic containers of the generic metamodel (e.g., Business 
Internal Behavior Element). The latter metamodel uses specifications of the classes depicted in former. 

Notation-aware Metamodels 

Usually, metamodels describe the syntax of a modeling language without considering the notational 
aspects. However, the analysis revealed notation-aware metamodels which combine the specification of 
syntax with notation (abstract with concrete syntax in UML terminology). Such metamodels distinguish 
between conventional metaclasses and specific metaclasses for the notational aspects. The latter 
metaclasses have no semantics, they contain attributes that are solely relevant for the notation. 
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Figure 5. Generic notation-aware metamodels (left) and sample in URN (right). 

 

Figure 5 (left) shows a generic structure of a notation-aware metamodel. Classes A and B are conventional 
metaclasses whereas the classes Size and Style are specific metaclasses for the notation. For example, the 
style class might have a boolean attribute which indicates if the metaclass is filled with a color or not. The 
URN specification (URN, 2018) uses such notation-aware metamodels. Figure 5 (right) shows how the 
metaclass ComponentRef is being connected to the notation-specific metaclass Size. It needs to be stated, 
that the URN specification was the only one out of the 11 analyzed that uses such notation-aware 
metamodels. As such metamodels are however commonly used e.g., in scientific publications that cover 
metamodels (Ferstl et al., 2016), we consider this technique as being noteworthy. 

Matrix Metamodels 

Four out of the 11 analyzed specifications use matrices instead of or in addition to visual metamodel 
representations - see Table 1. Such matrices show on both axes the metaclasses of the modeling language 
which can be instantiated by a modeler and the allowed connections between them. Figure 6 (left) shows 
an excerpt of a matrix specification of LML (LML, 2018). Action, Artifacts, and Asset are metaclasses. 
Resource is a subclasses - indicated by the brackets. The connector types which are surrounded by the 
brackets - i.e., consumes, produces and seizes - are only valid to be used between the sublcasses. Thus, 
instances of the Resource metaclass can be connected to instances of the Action metaclass by an instance 
of the consumes connector type. 

  

Figure 6. Matrix (left) and tabular (right) specification technique usage in LML  

Tabular Metamodels 

This technique also represents the metamodel in a textual way. For a specific metaclass, the table lists all 
attributes with data types, the allowed connector types, and optional inheritance relationships. The LML 
specification (LML, 2018) uses such tabular specifications. An example is depicted in Figure 6 (right), 
showing an excerpt of the specification of the metaclass Action. Eight out of the 11 analyzed specifications 
use a simplified table. Most of them use the table in addition to the visual metamodel to specify the 
semantics of the metaclasses by means of their attributes - see Table 1. 

Discussion 

In the following, a comprehensive discussion of the key observations is performed which then leads to a 
critical reflection on strengths and weaknesses of each of the identified specification techniques and 
ultimately to some recommendations for improving modeling language specifications in the future. 
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Observations 

Table 1 summarizes the specification techniques used by the analyzed modeling languages. Nine 
specifications use visual metamodel representations, eight specifications use tables and four specifications 
use matrices. Out of the eight analyzed specifications that use slicing metamodels, six used referencing 
elements to indicate the relationships between the metamodel slices. Generic metamodels were used by 
ArchiMate extensively, whereas notation-aware metamodels have been used by URN. 
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ArchiMate 3.0.1 OpenGroup Y Y N Y N Y Y 

BPMN 2.02 OMG Y Y Y N N Y Y 

CMMN 1.1 OMG Y Y Y N N N Y 

DMN 1.1 OMG Y Y Y N N Y Y 

IFML 1.0 OMG Y Y N N N N Y 

LML 1.1 LML N - - - - Y Y 

OPM 522 ISO Y N N N N N Y 

S2ML 1.0 OpenAltaRica N - - - - N N 

UML 2.5 OMG Y Y Y N N N Y 

URN Z.151 ITU-T Y Y Y N Y N N 

VDML 1.5 OMG Y Y Y N N N N 

 Table 1. Metamodel specification techniques used in practice  

Interestingly, even for those specifications maintained by the same institutions, i.e., the Object 
Management Group (OMG), and/or even sharing the same meta-metamodel, e.g., IFML, UML, and 
VDML, significant differences have been identified. These differences not only reflect the metamodel 
specification techniques but also the extent to which syntax, semantics, and notation of a modeling 
language are specified (not further discussed in this paper).  

The slicing approach is widely used in the analyzed specifications. Only the OPM specification, which 
introduces a single visual metamodel in the specification called metamodel overview, does not use slicing. 
This is of course related to the size of the metamodels. For most modeling languages, the visual 
representation of the complete metamodel is just not feasible. Surprisingly, none of the specifications 
used a tree based representation for the metamodels such as employed by Ecore-based metamodels4. 

As Table 1 shows, specifications usually use several metamodel specification techniques in combination 
whereby matrices and tables are used to summarize the syntax introduced by visual metamodels - the only 
exceptions are the LML and the OPM. In general, all of the specification techniques have their strengths 
and weaknesses. This is why the analyzed specifications all use a combination of those techniques. There 
exists no 'one size fits it all' specification technique.  

                                                             

4 Ecore is the meta-metamodel used within the Eclipse EMF project. 
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Critical Reflection and Recommendations 

In the following, a critical reflection on the core strengths and weaknesses of the six identified metamodel 
specification techniques is given. Based on this reflection, practical and theoretical implications are 
derived. 

Slicing Metamodels are commonly used throughout the analyzed specifications, because of the sheer 
size of the metamodels. In most cases, it is just not feasible to visualize the complete metamodel on one 
figure/page in a comprehensible form. Hence, decomposition is inevitable. Redundant and non-
redundant slicing foster understanding of how the slices fit together in order to cognitively re-construct 
the overarching metamodel. Due to the inherent redundancy, consistency needs to be considered. 

Referencing Metamodels moderate the redundancy issue of slicing metamodels by limiting the slice to 
only one element which is not specified in detail but only as a reference. In this regard, referential 
integrity needs to be considered, i.e., changes in the referenced element may have an impact on the 
referencing element. 

Generic Metamodels enable semantic de-/composition of overarching metamodels. In this regard, 
they contribute to a richer decomposition of complex metamodels into slices. At the same time, they 
might also increase the complexity as new concepts are introduced to metamodels that are actually not 
part of the modeling language. 

Notation-aware Metamodels enable the metamodels to not only cover the syntax (abstract syntax) 
but also the notation (concrete syntax) of metaelements. A single point of information can be realized 
while at the same time diluting the expressive power of metamodels. A clear separation between the solid 
syntactic metaelements and their possibly interchangable graphical representation is advisable. 

The widely used Matrix Metamodels have several drawbacks. For example, the representation of class 
hierarchies is limited, multiplicities or cardinalities cannot be represented properly, and connector types 
such as composition and non-composition cannot be represented intuitively. On the other side, matrix 
representations enable to gain an immediate overview of how metaclasses can be related to each other by 
means of connector types. Thus, matrices may need to be accompanied by another technique to create a 
comprehensive specification. 

Tabular Metamodels usually create redundancy. For example, connector types including their 
attributes which are used for connecting several metaclasses have to be re-introduced for each class. 
However, tabular metamodels are powerful when used to specify the attributes of metaclasses. 

Based on these results, some practical and theoretical implications for improving modeling language 
specifications in the future are derived. As modeling languages are under continuous revision and 
extension, we believe this research make a meaningful contribution to create better specifications. 

Completeness. The analysis revealed not only the heterogeneous set of used techniques but also a lack 
of completeness. Connectors and/or attributes are not specified precisely. This is a serious deficit as only 
complete specifications enable proper understanding, utilization, and tooling. We recommend to check 
whether for each metaelement syntax, semantics, and notation are specified completely. 

Consistency. The analysis revealed several weaknesses e.g., with regards to the inconsistent usage of 
metaclasses, connector types, and alternative notations. Moreover, specification techniques are not used 
consistently, impeding comprehension the specification. We recommend to consistently use one/a set of 
specification techniques throughout the whole specification and to decide, which specification technique 
to employ for which facets of the modeling language. 

Separation of Concerns. Based on the analysis, we can suggest that it is best to separate syntax, 
semantics, and notation of a modeling language and specify them using the most suitable specification 
technique. We recommend to use slicing and referencing metamodels as a powerful and compact 
technique for specifying syntactic aspects, whereas tables are good for specifying the semantics and 
notation of a modeling language. 

Technique Mix. All investigated specifications use two or more techniques throughout the document. 
When done in a meaningful way, this enables the combination of the positive aspects of each of them 
while comprising a comprehensive modeling language specification. We recommend to use a mix of 
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specification techniques in order to utilize the respective strengths of the techniques in order to specify 
certain modeling language aspects. 

Preamble. What is important is that the reader of the specification is aware of the structure and 
techniques used within the specification. This contributes to a better and faster comprehension of the 
actual modeling language. We recommend to provide an extended preamble of the specifications where 
not only the used terminology but also the applied specification techniques are introduced. 

From a theoretical standpoint, this research establishes a taxonomy of different currently used visual 
metamodel specification techniques. Based on these results, researchers are enabled to create a theory on 
e.g., the perceived usefulness or the ease of use of different specification techniques. The influence of 
different techniques on comprehension and learnability of modeling languages needs to be researched in 
the future. The paper at hand establishes a mandatory foundation for such studies. 

Conclusion 

To the best of our knowledge no research exists that provides some guidance in how to specify modeling 
languages. Due to the wide adoption of such language specifications both in academia and industry, this is 
a serious research gap. This paper contributes bridging that gap by systematically analyzing 11 current 
specifications with a focus on the visual metamodel specification techniques. After a thorough 
introduction of the identified techniques with samples from the specifications and a critical reflection, the 
paper provides practical and theoretical implications for improving metamodel specifications. This 
research is of great value for three stakeholders: i) researchers, aiming to create a specification for a 
conceptual modeling language; maintaining institutions, intending to improve existing specifications; 
and modelers, interested in learning how to comprehend relevant information out of overarching 
specification documents. 

In future research we aim to broaden the scope of the analysis in order to incorporate further modeling 
language aspects like notation and semantics. First results indicate, that also for those aspects 
heterogeneous specification techniques can be identified. Moreover, we aim to apply the findings to draft 
concrete improvements for existing specifications. We are aware of the limitations of the current study. It 
is therefore our goal to empirically underpin our recommendations by interviewing users on how they 
perceive different modeling language specification techniques. Thus, this research establishes the 
foundation for theory-development with regards to perceived usefulness and ease of use of metamodel 
specification techniques. 
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