
Virtual Network Embedding Approximations:
Leveraging Randomized Rounding

Matthias Rost
TU Berlin, Germany

Email: mrost@inet.tu-berlin.de

Stefan Schmid
University of Vienna, Austria

Email: stefan schmid@univie.ac.at

Abstract—The Virtual Network Embedding Problem (VNEP)
captures the essence of many resource allocation problems
of today’s infrastructure providers, which offer their physical
computation and networking resources to customers. Customers
request resources in the form of Virtual Networks, i.e. as
a directed graph which specifies computational requirements
at the nodes and communication requirements on the edges.
An embedding of a Virtual Network on the shared physical
infrastructure is the joint mapping of (virtual) nodes to physical
servers together with the mapping of (virtual) edges onto paths
in the physical network connecting the respective servers.

This work initiates the study of approximation algorithms for
the VNEP. Concretely, we study the offline setting with admission
control: given multiple request graphs the task is to embed the
most profitable subset while not exceeding resource capacities.
Our approximation is based on the randomized rounding of
Linear Programming (LP) solutions. Interestingly, we uncover
that the standard LP formulation exhibits an inherent structural
deficit when considering general virtual networks: its solutions
cannot be decomposed into valid embeddings. In turn, focusing
on the class of cactus request graphs, we devise a novel LP
formulation, whose solutions can be decomposed into convex
combinations of valid embedding. Proving performance guaran-
tees of our rounding scheme, we obtain the first approximation
algorithm for the VNEP in the resource augmentation model.

We propose two rounding heuristics and evaluate their perfor-
mance in an extensive computational study, showing that these
consistently yield good solutions (even without augmentations).

I. INTRODUCTION

Cloud applications usually consist of multiple distributed
components (e.g., virtual machines, containers), which results
in substantial communication requirements. If the provider
fails to ensure that these communication requirements are met,
the performance can suffer dramatically [1]. Consequently,
over the last years, several proposals have been made to jointly
provision the computational functionality together with ap-
propriate network resources. The Virtual Network Embedding
Problem (VNEP) captures the core of this problem: given a
directed graph specifying computational requirements at the
nodes and bandwidth requirements on the edges, an embedding
of this Virtual Network in the physical network has to be
found, such that both the computational and the network
requirements are met. Figure 1 illustrates two incarnations of
virtual networks: service chains [2] and virtual clusters [3].

We study the offline setting with admission control: given
multiple requests the task is to embed the most profitable
subset while not exceeding resource capacities.

Customer Internet

LB1 LB2Cache

FW

NAT
VM1

VM5

VM4VM3

VM2

Fig. 1. Examples for virtual networks ‘in the wild’. The left graph shows
a service chain for mobile operators [4]: load-balancers route (parts of
the) traffic through a cache. Furthermore, a firewall and a network-address
translation are used. The right graph depicts the Virtual Cluster abstraction for
provisioning virtual machines (VMs) in data centers. The abstraction provides
connectivity guarantees via a logical switch in the center [3].

A. Formal Problem Statement

In the light of the recent interest in Service Chaining [2],
we extend the VNEP’s general definition [5] by consider-
ing different types of computational nodes. We refer to the
physical network as the substrate network. The substrate
GS = (VS , ES) is offering a set T of computational types.
This set of types may contain e.g., ‘FW’ (firewall), ‘x86
server’, etc. For a type τ ∈ T , the set V τS ⊆ VS denotes the
substrate nodes that can host functionality of type τ . Denoting
the node resources by RVS = {(τ, u) |τ ∈ T , u ∈ V τS } and all
substrate resources by RS = RVS ∪ES , the capacity of nodes
and edges is denoted by dS(x, y) > 0 for (x, y) ∈ RS .

For each request r ∈ R, a directed graph Gr = (Vr, Er)
together with a profit br is given. We refer to the respective
nodes as virtual or request nodes and similarly refer to the
respective edges as virtual or request edges. The types of
virtual nodes are indicated by the function τr : Vr → T .

Based on policies of the customer or the provider, the
mapping of virtual node i ∈ Vr is restricted to a set
V r,iS ⊆ V

τr(i)
S , while the mapping of virtual edge (i, j) is

restricted to Er,i,jS ⊆ ES . Each virtual node i ∈ Vr and
each edge (i, j) ∈ Er is attributed with a resource demand
dr(i) ≥ 0 and dr(i, j) ≥ 0, respectively. Virtual nodes and
edges can only be mapped on substrate nodes and edges
of sufficient capacity, i.e. V r,iS ⊆ {u ∈ V τr(i)S |dS(u) ≥ dr(i)}
and Er,i,jS ⊆ {(u, v) ∈ ES |dS(u, v) ≥ dr(i, j)} holds.

We denote by dmax(r, x, y) the maximal demand that a
request r may impose on a resource (x, y) ∈ RS :

dmax(r, τ, u) = max({0} ∪ {dr(i)|i ∈ Vr : τ(i) = τ ∧ u ∈ V r,i
S })

dmax(r, u, v) = max({0} ∪ {dr(i, j)|(i, j) ∈ Er : (u, v) ∈ Er,i,j
S })

In the following the notions of valid mappings (respecting
mapping constraints) and feasible embeddings (respecting
resource constraints) are introduced to formalize the VNEP.

ISBN 978-3-903176-08-9 c© 2018 IFIP

Definition 1 (Valid Mapping). A valid mapping mr of re-
quest r ∈ R is a tuple (mV

r ,m
E
r) of functions mV

r : Vr → VS
and mE

r : Er → P(ES), such that the following holds:
• Virtual nodes are mapped to allowed substrate nodes:
mV
r (i) ∈ V r,iS holds for all i ∈ Vr.

• The mapping mE
r (i, j) of virtual edge (i, j) ∈ Er is

an edge-path connecting mV
r (i) to mV

r (j) only using
allowed edges, i.e. mE

r (i, j) ⊆ P(Er,i,jS) holds.
We denote byMr the set of valid mappings of request r ∈ R.

Definition 2 (Allocations of Valid Mappings). We denote by
A(mr, x, y) the cumulative allocation induced by the valid
mapping mr ∈Mr on resource (x, y) ∈ RS:
A(mr, τ, u) =

∑
i∈Vr,τ(i)=τ,mV

r (i)=u
dr(i) ∀(τ, u) ∈ RVS

A(mr, u, v) =
∑

(i,j)∈Er,(u,v)∈mE
r (i,j)

dr(i, j) ∀(u, v) ∈ ES

The maximal allocation that a valid mapping of request r ∈ R
may impose on a substrate resource (x, y) ∈ RS is denoted
by Amax(r, x, y) = maxmr∈Mr

A(mr, x, y).

Definition 3 (Feasible Embedding). A feasible embedding
of a subset of requests R′ ⊆ R is a collection of valid
mappings {mr}r∈R′ , such that the cumulative allocations on
nodes and edges does not exceed the substrate capacities, i.e.∑
r∈R′ A(mr, x, y) ≤ dS(x, y) holds for (x, y) ∈ RS .

Definition 4 (Virtual Network Embedding Problem). The
VNEP asks for a feasible embedding {mr}r∈R′ of a subset of
requests R′ ⊆ R maximizing the profit

∑
r∈R′ br.

B. Related Work

In the last decade, the VNEP has attracted much attention
due to its many applications and the survey [5] from 2013
already lists more than 80 different algorithms for its many
variations [5]. The VNEP is known to be NP-hard and
inapproximable in general (unless P = NP) [6]. Based on the
hardness of the VNEP, most works consider heuristics without
any performance guarantee [5], [7]. Other works proposed
exact methods as integer or constraint programming, coming
at the cost of an exponential runtime [8], [9], [10].

A column generation approach was proposed by Jarray et
al. in [9] to efficiently compute solutions to the VNEP by
generating valid mappings ‘on-the-fly’. We believe that our
decomposable LP formulations may be used to price (i.e.
generate) further valid mappings more efficiently than by using
Mixed-Integer Programming.

Acknowledging the hardness of the general VNEP and the
diversity of applications, several subproblems of the VNEP
have been studied recently by considering restricted graph
classes for the virtual networks and the substrate graph. For
example, virtual clusters with uniform demands are studied in
[11], [3], line requests are studied in [12], [13], [14] and tree
requests were studied in [15], [13].

Considering approximation algorithms, Even et al. em-
ployed randomized rounding in [13] to obtain a constant ap-
proximation for embedding line requests on arbitrary substrate

graphs under strong assumptions on both the benefits and
the capacities. In their interesting work, Bansal et al. [15]
give an nO(d) time O(d2 log (nd))-approximation algorithm
for minimizing the load of embedding d-depth trees based on a
strong LP relaxation inspired by the Sherali-Adams hierarchy.
To the best of our knowledge, no approximation algorithms
are known for arbitrary substrate graphs and classes of virtual
networks containing cyclic substructures.

Bibliographic Note: In our preliminary technical re-
port [16] similar results were presented. The current work
presents a significantly simpler LP formulation and also pro-
vides an extensive computational evaluation. An extended
version of this work, containing all proofs and additional
details on our evaluation, can be found at [17].

Additionally, in our recent technical report [18], the approx-
imation approach presented in this work is extended beyond
cactus request graphs. However, approximating more general
request graphs comes at the price of non-polynomial runtimes.

C. Outline of Randomized Rounding for the VNEP

We shortly revisit the concept of randomized rounding.
Given an Integer Program for a certain problem, randomized
rounding works by (i) computing a solution to its Linear
Program relaxation, (ii) decomposing this solution into convex
combinations of elementary solutions, and (iii) probabilisti-
cally selecting elementary solutions based on their weight.

Accordingly, for applying randomized rounding for
the VNEP, a convex combination of valid mappings
Dr = {(fkr ,mk

r)|mk
r ∈Mr, f

k
r > 0} must be recovered from

the Linear Programming solution for each request r ∈ R,
such that (i) the profit of these convex combinations equals the
profit achieved by the Linear Program and (ii) the (fractional)
cumulative allocations do not violate substrate capacities. To
round a solution, for each request r the mapping mk

r is selected
with probability fkr , rejecting r with probability 1−

∑
k f

k
r .

D. Results and Organization

This paper initiates the study of approximation algorithms
for the VNEP on general substrates and general virtual net-
works. Specifically, we employ randomized rounding to obtain
the first approximation algorithm for the non-trivial class of
cactus graph requests in the resource augmentation model.

Studying the classic multi-commodity flow (MCF) formu-
lation for the VNEP in Section II, we show that its solutions
can only be decomposed for tree requests: request graphs
containing cycles can in general not be decomposed into valid
mappings. This result has ramifications beyond the inability
to apply randomized rounding: we prove that the MCF for-
mulation exhibits an unbounded integrality gap. Investigating
the root cause for this surprising result, we devise a novel
decomposable Linear Programming formulation in Section III
for the class of cactus graph requests. We then present and
prove performance guarantees for our randomized rounding
algorithm in Section IV, obtaining the first approximation
algorithm for the Virtual Network Embedding Problem. Sec-
tion V presents a synthetic computational study, in which

two rounding heuristics are evaluated. Our results indicate
that high-quality solutions can be obtained even without re-
source augmentations. In particular, our heuristical rounding
algorithm achieved 73.8% of the baseline’s profit on average.

II. THE CLASSIC MULTI-COMMODITY FORMULATION
FOR THE VNEP AND ITS LIMITATIONS

In this section, we study the relaxation of the standard multi-
commodity flow (MCF) formulation for the VNEP (cf. [2],
[7]). We first show the positive result that the formulation is
sufficiently strong to decompose virtual networks being trees
into convex combinations of valid mappings. Subsequently, we
show that the formulation fails to allow for the decomposition
of cyclic requests. This not only impacts its applicability
for randomized rounding but renders the formulation useless
for approximations in general: it can be shown that the
formulation’s integrality gap is unbounded (cf. [17]).

A. The Classic Multi-Commodity Formulation

The classic MCF formulation for the VNEP is presented
as Formulation 1 . We first describe its integer variant, which
computes a single valid mapping for each request by using
binary variables. The Linear Programming variant is obtained
by relaxing the binary variables’ domain to [0, 1].

The variable xr ∈ {0, 1} indicates whether request r ∈ R is
embedded or not. The variable yur,i ∈ {0, 1} indicates whether
virtual node i ∈ Vr was mapped on substrate node u ∈ VS .
Similarly, the flow variable zu,vr,i,j ∈ {0, 1} indicates whether
the substrate edge (u, v) ∈ ES is used to realize the virtual
edge (i, j) ∈ Er. The variable ax,yr ≥ 0 denotes the cumulative
allocations of request r ∈ R induced on resource (x, y) ∈ RS .

By Constraint 2, the virtual node i ∈ Vr of request r ∈ R
must be placed on any of the suitable substrate nodes in V r,iS

iff. xr = 1 holds and Constraint 3 forbids the mapping on
nodes which may not host node i. Constraint 4 induces an

Formulation 1: Classic MCF Formulation for the VNEP
max

∑
r∈R

brxr (1)∑
u∈V r,i

S

yur,i= xr ∀r ∈ R, i ∈ Vr (2)∑
u∈VS\V r,i

S

yur,i= 0 ∀r ∈ R, i ∈ Vr (3)


∑

(u,v)∈δ+(u)

zu,vr,i,j

−
∑

(v,u)∈δ−(u)
zv,ur,i,j

=

[
yur,i
−yur,j

]
∀

[
r ∈ R, (i, j) ∈ Er,
u ∈ VS

]
(4)

zu,vr,i,j= 0 ∀

[
r ∈ R, (i, j) ∈ Er,
(u, v) ∈ ES \ Er,i,jS

]
(5)∑

i∈Vr,τr(i)=τ

dr(i) · yur,i= aτ,ur ∀r ∈ R, (τ, u) ∈ RVS (6)∑
(i,j)∈Er

dr(i, j) · zu,vr,i,j= au,vr ∀r ∈ R, (u, v) ∈ ES (7)∑
r∈R

ax,yr ≤ dS(x, y) ∀(x, y) ∈ RS (8)

unsplittable unit flow for each virtual edge (i, j) ∈ Er from
the substrate location to which i was mapped to the substrate
location to which j was mapped. By Constraint 5 virtual edges
may only be mapped on allowed substrate edges. Constraints 6
and 7 compute the cumulative allocations and Constraint 8
guarantees that the substrate resource capacities are respected.
The following lemma states the connectivity property enforced
by Formulation 1 (see [17] for the proof).

Lemma 5 (Local Connectivity Property of Formulation 1).
For any virtual edge (i, j) ∈ Er and any substrate node
u ∈ V r,iS with yur,i > 0, there exists a path Pu,vr,i,j in GS from u

to v ∈ V r,jS with yvr,j > 0, such that the flow along any edge
of Pu,vr,i,j with respect to the variables z·,·r,i,j is greater 0.

The path Pu,vr,i,j can be computed in polynomial time.

B. Decomposing Solutions for Tree Requests

Given Lemma 5, we now present Algorithm 1 to decompose
solutions to the LP Formulation 1 into convex combinations of
valid mappings Dr = {(fkr ,mk

r)|mk
r ∈Mr, f

k
r > 0} (cf. Sec-

tion I-C), if the request’s underlying undirected graph is a
tree. Recall that in the LP formulation the binary variables are
relaxed to take any value in the interval [0, 1].

Given a request r ∈ R, the algorithm processes all vir-
tual edges according to an arbitrary acyclic representation
GAr = (Vr, E

A
r , rr) of the undirected interpretation of Gr

being rooted at rr ∈ Vr. Concretely, the edge set EAr is
obtained from Er by reorienting (some of the) edges, such
that any node i ∈ Vr can be reached from rr. Considering tree
requests for now, GAr is an arborescence and can be computed
by a simple graph search of the underlying undirected graph
starting at rr. We denote by

←−
EAr = Er \EAr the edges whose

orientations were reversed in the process of computing GAr .
The algorithm extracts mappings mk

r of value fkr iteratively,
as long as xr > 0 holds. Initially, in the k-th iteration, none of
the virtual nodes and edges are mapped. As xr > 0 holds, there
must exist a node u ∈ V r,rrS with yrrr,i > 0 by Constraint 2
and the algorithm accordingly sets mV

r (rr) = u. Given this
initial fixing, the algorithm iteratively extracts nodes from the
queue Q which have been already mapped and considers all
outgoing virtual edges (i, j) ∈ EAr . If an outgoing edge (i, j)
is contained in Er, Lemma 5 can be readily applied to obtain
a joint mapping of the edge (i, j) and its head j. If the edge’s
orientation was reversed, i.e. if (i, j) ∈

←−
EAr holds, Lemma 5 is

applied while reversing the flow’s direction (see Lines 13-16).
First, note that by the repeated application of Lemma 5,

the mapping of virtual nodes and edges is valid. As GAr
is an arborescence, each edge and each node of GAr will
eventually be mapped and hence mk

r is a valid mapping. The
mapping value fkr is computed as the minimum of the mapping
variables Vk used for constructing mk

r . Reducing the values
of the mapping variables together with the allocation variables
~ar (Lines 20-21), the Constraints 2-7 continue to hold.

As the decomposition process continues as long as xr > 0
holds and in the k-th step at least one variable’s value is set
to 0, the algorithm terminates with a complete decomposition

Algorithm 1: Decompositioning MCF solutions for Tree Requests
Input : Tree request r ∈ R, solution (xr, ~yr, ~zr,~ar) to LP

Formulation 1, acyclic reorientation GAr = (Vr, E
A
r , rr)

Output: Convex combination Dr = {Dk
r = (fkr ,m

k
r)}k

1 set Dr ← ∅ and k ← 1
2 while xr > 0 do
3 set mk

r = (mV
r ,m

E
r) ← (∅, ∅)

4 set Q = {rr}
5 choose u ∈ V r,rrS with yur,rr > 0 and set mV

r (rr) ← u
6 while |Q| > 0 do
7 choose i ∈ Q and set Q ← Q \ {i}
8 foreach (i, j) ∈ EAr do
9 if (i, j) ∈ Er then

10 compute
−→
P u,v
r,i,j connecting mV

r (i) = u to v ∈ V r,jS

11 according to Lemma 5
set mV

r (j) = v and mE
r (i.j) =

−→
P u,v
r,i,j

12 else
13 let ←−z v

′,u′

r,i,j , zu
′,v′

r,j,i for all (u′, v′) ∈ ES
14 compute

←−
P v,u
r,i,j connecting mV

r (i) = v to u ∈ V r,jS

15 according to Lemma 5
set
−→
P u,v
r,j,i = reverse(

←−
P v,u
r,i,j)

16 set mV
r (i) = u and mE

r (j, i) =
−→
P u,v
r,j,i

17 set Q ← Q∪ {j}

18 set Vk ←

(
{xr} ∪ {y

mV
r (i)

r,i |i ∈ Vr}
∪ {zu,vr,i,j |(i, j) ∈ Er, (u, v) ∈ mE

r (i, j)}

)
19 set fkr ← minVk
20 set v ← v − fkr for all v ∈ Vk
21 set ax,yr ← ax,yr − fkr ·A(mk

r , x, y) for all (x, y) ∈ RS
22 add Dk

r = (fkr ,m
k
r) to Dr and set k ← k + 1

23 return Dr

for which
∑
k f

k
r = xr holds. Furthermore, the algorithm has

polynomial runtime, as in each iteration at least one variable is
set to 0 and the number of variables for request r is bounded
by O(|Er| · |ES |). Hence, we obtain the following:

Lemma 6. Given a virtual network request r ∈ R, whose
underlying undirected graph is a tree, Algorithm 1 decomposes
a solution (xr, ~yr, ~zr,~ar) to the LP Formulation 1 into valid
mappings Dr = {(mk

r , f
k
r)}k, such that the following holds:

• The decomposition is complete, i.e. xr =
∑
k f

k
r holds.

• The decomposition’s resource allocations are bounded by
~ar: ax,yr ≥

∑
k f

k
r ·A(mk

r , x, y) holds for (x, y) ∈ RS .

C. Limitations of the Classic MCF Formulation

Above it was shown that LP solutions to the classic MCF
formulation can be decomposed into convex combinations of
valid mappings if the underlying graph is a tree. This does
not hold anymore when considering cyclic virtual networks:

Theorem 7. Solutions to the standard LP Formulation 1 can
in general not be decomposed into convex combinations of
valid mappings if the virtual networks contain cycles.

Proof. In Figure 2 we visually depict an example of a solution
to the LP Formulation 1 from which not a single valid mapping
can be extracted. The validity of the depicted solution follows
from the fact that the virtual node mappings sum to 1 and

Request Gr

i

jk

Substrate GS LP Solution

u1

u2

u3

u4

u5

u6

0:5i

0:5j

0:5k

0:5i

0:5j

0:5k

0:5i

0:5j

0:5k

Decomposition Attempt

0:5k

0:5k

Fig. 2. Example showing that solutions to the LP Formulation 1 can in general
not be decomposed into convex combinations of valid mappings. Request r
is a simple cyclic graph which shall be mapped on the substrate graph GS .
We assume following node mapping restrictions V r,i

S = {u1, u4}, V r,j
S =

{u2, u5}, V r,k
S = {u3, u6}. The LP solution with xr = 1 is depicted

as follows. Substrate nodes are annotated with the mapping of virtual nodes.
Hence, 0.5i at node u1 indicates yu1

r,i = 1/2, i.e. that virtual node i is mapped
with 0.5 on substrate node u1. Substrate edges are colored according to the
color of virtual links mapped onto it. Virtual links are all mapped using flow
values 1/2. Accordingly, for example zu1,u2

r,i,j = 1/2 holds.

each virtual node connects to its neighboring node with half
a unit of flow. Assume for the sake of contradiction that the
depicted solution can be decomposed. As virtual node i ∈ Vr
is mapped onto substrate node u1 ∈ VS , and u2 ∈ VS is
the only neighboring node with respect to variables zr,i,j that
hosts j ∈ Vr, there must exist a mapping (mV

r ,m
E
r) with

mV
r (i) = u1 and mV

r (j) = u2. Similarly, mV
r (k) = u3 must

hold. However, for mV
r (i) = u1, the virtual node k must be

mapped to u6, as otherwise the embedding of (k, i) cannot
lead to substrate node u1. Hence the virtual node k ∈ Vr must
be mapped both on u6 and u3. As this is not possible, and
the same argument holds when considering the mapping of i
onto u4, no valid mapping can be extracted.

This non-decomposability also induces large integrality
gaps, as proven in our extended technical report [17].

Theorem 8. The integrality gap of the MCF formulation is
unbounded. This even holds under infinite substrate capacities.

III. NOVEL DECOMPOSABLE LP FORMULATION

In this section, we present a novel LP formulation and its
accompanying decomposition algorithm for the class of cactus
request graphs, i.e. graphs for which cycles intersect in at most
a single node (in its undirected interpretation). Accordingly,
these graphs can be uniquely decomposed into cycles and a
single forest (cf. Lemma 9 below).

Before delving into the details of our novel LP formula-
tion, we discuss our main insight on how to overcome the
limitations of the MCF formulation and accordingly how to
derive decomposable formulations. To this end, it is instruc-
tive, to revisit the non-decomposable example of Figure 2
by applying the decomposition Algorithm 1 on the depicted
LP solution. Concretely, we consider the acyclic reorientation
GAr = (Vr, E

A
r , rr) with EAr = {(i, k), (i, j), (j, k)}, such

that i is the root, rr = i. Assuming that i is initially mapped
on node u1, Algorithm 1 will map edges (i, k) and (i, j)
first, setting mV

r (k) = u6 and mV
r (j) = u2 However, when

the edge (j, k) is processed, k must be mapped on substrate
node u3 6= mV

r (k) and the algorithm hence fails to produce
a valid mapping. Accordingly, to avoid such diverging node
mappings, our key idea is to decide the mapping location of
nodes with more than one incoming edge (with respect to the
request’s acyclic reorientation) a priori.

By considering only cactus request graphs, this can be
implemented rather easily as exactly one node of each cycle
has more than one incoming edge: one only needs to ensure
compatibility of node mappings for this node. To resolve po-
tential conflicts for the mapping of this unique cycle target, our
formulation employs multiple copies of the MCF formulation
for the respective cycle subgraph. Specifically, considering
a cycle with virtual target node k, we instantiate one MCF
formulation per substrate node w ∈ V r,kS onto which k can be
mapped. Accordingly, this yields at most |VS | many copies and
for each of these copies k is fixed to one specific (substrate)
mapping location. Accordingly, as the mapping location of k
is fixed to a specific node, valid mappings for the respective
cycles can always be extracted from such a MCF copy: the
mappings of k cannot possibly diverge.

A. Cactus Request Graph Decomposition and Notation

We decompose cactus request graphs as follows (cf. [17]).
Lemma 9. Consider a cactus request graph Gr and its acyclic
reorientation GAr of Gr. The graph GAr can be uniquely
partitioned into subgraphs {GA,C1

r , . . . , GA,Cn
r }tGA,Fr , s.t.:

1) The subgraphs {GA,C1
r , . . . , GA,Cn

r } correspond to the
(undirected) cycles of Gr and GA,Fr is the forest remain-
ing after removing the cyclic subgraphs. We denote the
index set of the cycles by Cr = {C1, . . . , Cn}.

2) The subgraphs partition the edges of EAr : an edge
(i, j) ∈ EAr is contained in exactly one of the subgraphs.

3) The edge set EA,Ck
r of each cycle Ck ∈ Cr can itself be

partitioned into two branches BCk
1 and BCk

2 , such that
both lead from sCk

r ∈ V A,Ck
r to tCk

r ∈ V A,Ck
r .

Additionally, we denote by GCk
r and GFr the subgraphs that

agree with Er on the edge orientations and use V Ck

S,t = V r,t
Ck
r

S

to denote the substrate nodes on which tCk
r can be mapped.

B. Novel LP Formulation for Cactus Requests

Our novel Formulation 2 uses the a priori partition of GAr
into cycles GA,Ck

r and the forest GA,Fr to construct MCF
formulations for the respective subgraphs: for the subgraph
GFr a single copy is used (cf. Constraint 10) while for the
cyclic subgraphs a single MCF formulation is employed per
potential target location V Ck

S,t (cf. Constraint 11). We index the
variables of these sub-LPs by employing square brackets.

To bind together these (at first) independent MCF formu-
lations, we reuse the variables ~x, ~y, and ~a introduced already
for the MCF formulation. We refer to these variables, which
are defined outside of the sub-LP formulations, as global
variables and do not index these. As we only consider the
LP formulation, all variables are continuous.

The different sub-formulations are linked as follows. We
employ Constraint 12 to enforce the setting of the (global)
node mapping variables (cf. Constraint 2 of Formulation 1).
By Constraints 13 and 14, the node mappings of the sub-
LPs for mapping the subgraphs must agree with the global
node mapping variables. With respect to cyclic subgraphs, we
note that Constraint 14 allows for distributing the global node

mappings to any of the |V Ck

S,t | formulations: only the sum of
the node mapping variables must agree with the global node
mapping variable. Constraint 15 is of crucial importance for
the decomposability: considering the sub-LP for cycle Ck and
target node w ∈ V Ck

S,t , it enforces that the target node tCk
r of the

cycle Ck must be mapped on w. Thus, in the sub-LP [Ck, w]
both branches BCk

1 and BCk
2 of cycle Ck are pre-determined

to lead to the node w. Lastly, for computing node allocations
the global node mapping variables are used (cf. Constraint 16)
and for computing edge allocations the sub-LP formulations’
allocations are considered (cf. Constraint 17).
C. Decomposing Solutions to the Novel LP Formulation

We now show how to adapt the decomposition Algorithm 1
to decompose solutions to Formulation 2.

To decompose the LP solution for a request r the acyclic
reorientation GAr , which was also used for constructing the
LP, must be handed over to the decomposition algorithm.

As the novel LP formulation does not contain (global)
edge mapping variables, the edge mapping variables used
in Lines 10 and 13 of Algorithm 1 must be substituted by
edge mapping variables of the respective sub-LP formulations.
Concretely, as each edge of the request graph Gr is covered
exactly once, it is clear whether a virtual edge (i, j) ∈ Er
is part of GFr or a cyclic subgraph GCk

r . If (i, j) ∈ GFr
holds, then the edge mapping variables z·,·r,i,j [Fr] are used.
If on the other hand the edge (i, j) ∈ Er is covered in the
cyclic subgraph GCk

r , then there exist |V Ck

S,t | many sub-LPs to
choose the respective edge mapping variables from. To ensure
the decomposability, we proceed as follows.

If the edge (i, j) ∈ EAr is the first edge of GCk
r to be mapped

in the k-th iteration, the mapping variables z·,·r,i,j [Ck, w] be-

Formulation 2: Novel LP for Cactus Requests

max
∑
r∈R

brxr (9)

Cons. (2) - (7) for GFr on
variables (xr, ~yr, ~zr,~ar)[Fr]

∀r ∈ R (10)

Cons. (2) - (7) for GCk
r on

variables (xr, ~yr, ~zr,~ar)[Ck, w]
∀r ∈ R, Ck ∈ Cr, w ∈ V Ck

S,t (11)

xr=
∑

u∈V r,i
S

yur,i ∀r ∈ R, i ∈ Vr (12)

yur,i= yur,i[F] ∀r ∈ R, i ∈ V Fr , u ∈ V
r,i
S (13)

yur,i=
∑
w∈tCk

r

yur,i[Ck, w] ∀

[
r ∈ R, i ∈ Vr, u ∈ V r,iS ,

Ck ∈ Cr : i ∈ V Ck
r

]
(14)

0= yu
r,t

Ck
r

[Ck, w] ∀

[
r ∈ R, Ck ∈ Cr, w ∈ V Ck

S,t ,

u ∈ V Ck

S,t \ {w}

]
(15)

aτ,ur =
∑

i∈Vr,τr(i)=τ

dr(i) · yur,i ∀r ∈ R, (τ, u) ∈ RVS (16)

au,vr = au,vr [F] +
∑

Ck∈Cr,w∈V
Ck
S,t

au,vr [Ck, w] ∀r ∈ R, (u, v) ∈ ES (17)

∑
r∈R

ax,yr ≤ dS(x, y) ∀(x, y) ∈ RS (18)

longing to an arbitrary target node w, with ym
V
r (i)

r,i [Ck, w] > 0,
are used. Such a node w exists by Constraint 14.

If another edge (i′, j′) of the same cycle was already
mapped in the k-th iteration, the same sub-LP as chosen before
is considered. Accordingly, the mapping of cycle target nodes
cannot conflict and as these are the only nodes with potential
mapping conflicts, the returned mappings are always valid.

To successfully iterate the extraction process, the steps
taken in Lines 18 - 21 of Algorithm 1 must be adapted to
consider the sub-LP variables. Again, as in each iteration at
least a single variable of the LP is set to 0 and as the novel
Formulation 2 contains at most O(|VS |) times more variables
than the MCF Formulation 1, the decomposition algorithm still
runs in polynomial-time. Hence, we conclude that the result
of Lemma 6 carries over to the novel LP Formulation 2 for
cactus request graphs and state the following theorem.
Theorem 10. Given a solution (xr, ~yr, ~zr,~ar) to the novel LP
Formulation 2 for a cactus request graph Gr, the solution can
be decomposed into a convex combination of valid mappings
Dr={(mk

r , f
k
r)}k in polynomial-time, such that:

• The decomposition is complete, i.e. xr =
∑
k f

k
r holds.

• The decomposition’s resource allocations are bounded by
~ar: ax,yr ≥

∑
k f

k
r ·A(mk

r , x, y) holds for (x, y) ∈ RS .

IV. APPROXIMATION VIA RANDOMIZED ROUNDING

Above we have shown how optimal convex combinations
for the VNEP can be computed for cactus requests. Given
these convex combinations, the pseudo-code of our approxi-
mation for the VNEP is presented as Algorithm 2.

The algorithm first performs a preprocessing in Lines 1-3
by removing all requests which cannot be fully (fractionally)
embedded in the absence of other requests, as these can never
be part of any feasible solution. In Lines 4-6 an optimal
solution to the novel LP Formulation 2 is computed and
afterwards decomposed into convex combinations. Then, in
Lines 7-9, the rounding is performed: for each request r a
mapping mk

r is selected with probability fkr . Importantly, the
sum of probability may not sum to 1, i.e. with probability
1−

∑
k f

k
r the request r is not embedded.

The rounding procedure is iterated as long as the constructed
solution is not of sufficient quality or until the number of
maximal rounding tries is exceeded. Concretely, we seek
(α, β, γ)-approximate solutions which achieve at least a factor

Algorithm 2: Randomized Rounding for the VNEP

1 foreach r ∈ R do // preprocess requests
2 compute LP Formulation 2 for request r maximizing xr
3 if xr < 1 then remove request r from the set R
4 compute LP Formulation 2 for R maximizing

∑
r∈R br · xr

5 foreach r ∈ R do // perform decomposition
6 compute Dr = {(fkr ,mk

r)}k from LP solution

7 do // perform randomized rounding
8 foreach r ∈ R select mk

r with probability fkr
9 while

(
solution is not (α, β, γ)-approximate and
maximal rounding tries are not exceeded

)

of α ≤ 1 times the optimal (LP) profit and exceed node and
edge capacities by at most factors of β ≥ 1 and γ ≥ 1,
respectively. In the following we derive parameters α, β, and
γ for which solutions can be found with high probability.

Note that Algorithm 2 is indeed a polynomial-time algo-
rithm, as the size of the novel LP Formulation 2 is polynomi-
ally bounded and can hence be solved in polynomial-time.

A. Probabilistic Guarantee for the Profit

For bounding the profit achieved by the randomized round-
ing scheme, we recast the profit achieved in terms of random
variables. The discrete random variable Yr ∈ {0, br} models
the profit achieved by the rounding of request r ∈ R. Accord-
ing to our rounding scheme, we have P(Yr = br) =

∑
k f

k
r

and P(Yr = 0) = 1−
∑
k f

k
r . We denote the overall profit by

B =
∑
r∈R Yr with E(B) =

∑
r∈R br ·

∑
k f

k
r . Denoting the

profit of an optimal LP solution by BLP, we have BLP = E(B)
due to the decomposition’s completeness (cf. Theorem 10).

By preprocessing the requests and confirming that each
request can be fully embedded, the LP will attain at least the
maximal profit of any of the considered requests:
Lemma 11. E(B) = BLP ≥ maxr∈R br holds.

We employ the following Chernoff bound over continuous
variables to bound the probability of achieving a small profit.
Theorem 12 (Chernoff Bound [19]). Let X =

∑n
i=1Xi,

Xi ∈ [0, 1], be a sum of n independent random variables.
For any 0 < ε < 1, the following holds:

P
(
X ≤ (1− ε) · E(X)

)
≤ exp(−ε2 · E(X)/2)

Theorem 13. Let BIP denote the profit of an optimal solution.
Then P(B < 1/3 · BIP) ≤ exp(−2/9) ≈ 0.8007 holds.
Proof. Let b̂ = maxr∈R br be the maximum benefit among the
pre-processed requests. We consider random variables Y ′r =
Yr/b̂, such that Y ′r ∈ [0, 1] holds. Let B′ =

∑
r∈R Y

′
r = B/b̂.

As E(B) = BLP ≥ b̂ holds (cf. Lemma 11), we have
E(B′) ≥ 1. Choosing ε = 2/3 and applying Theorem 12 on
B′ we obtain P

(
B′ ≤ (1/3) · E(B′)

)
≤ exp(−2 · E(B′)/9).

Plugging in the minimal value of E(B′), i.e. 1, into the
equation we obtain: P

(
B′ ≤ (1/3) · E(B′)

)
≤ exp(−2/9)

and by linearity P
(
B ≤ (1/3) · E(B)

)
≤ exp(−2/9).

Denoting the profit of an optimal solution by BIP and
observing that BIP ≤ BLP holds as the linear relaxation yields
an upper bound, we have BIP/3 ≤ E(B)/3. Accordingly, we
conclude that, P

(
B ≤ (1/3) · BIP

)
≤ exp(−2/9) holds.

B. Probabilistic Guarantee for Resource Augmentations

In the following, we analyze the probability that a rounded
solution exceeds substrate capacities by a certain factor.

We first note that dmax(r, x, y) ≤ dS(x, y) holds for
all resources (x, y) ∈ RS and all requests r ∈ R. We
model the allocations on resource (x, y) ∈ RS by re-
quest r ∈ R as random variable Ar,x,y ∈ [0, Amax(r, x, y)].
By definition, we have P(Ar,x,y = A(mk

r , x, y)) = fkr
and P(Ar,x,y = 0) = 1−

∑
k f

k
r . Furthermore, we denote by

Ax,y =
∑
r∈RAr,x,y the random variable capturing the

overall allocations on resource (x, y) ∈ RS .

E(Ax,y) =
∑
r∈R

∑
k f

k
r ·A(r, x, y) holds by Theorem 10,

we obtain E(Ax,y) ≤ dS(x, y) for all resources (x, y) ∈ RS .
We employ Hoeffding’s inequality to upper bound Ax,y .

Theorem 14 (Hoeffding’s inequality [19]). Let X=
∑n
i=1Xi,

Xi ∈ [ai, bi], be a sum of n independent random variables.
The following holds for any t ≥ 0:

P(X − E(X) ≥ t) ≤ exp(−2t2/(
∑

i
(bi − ai)2))

Lemma 15. Consider a resource (x, y) ∈ RS and 0 < ε ≤ 1,
such that dmax(r, x, y)/dS(x, y) ≤ ε holds for r ∈ R. Let
∆(x, y) =

∑
r∈R:dmax(r,x,y)>0(Amax(r, x, y)/dmax(r, x, y))2.

P(Ax,y ≥ δ(λ) · dS(x, y)) ≤ λ−4 (19)

holds for δ(λ) = 1 + ε ·
√

2 ·∆(x, y) · log(λ) and any λ > 0.

Proof. We apply Hoeffding with t = (1− δ(λ)) · dS(x, y):

P(Ax,y − E(Ax,y) ≥ (1− δ(λ)) · dS(x, y))

≤ exp
(−4 · ε2 · log(λ) ·∆(x, y) · d2S(x, y)∑

r∈R
(Amax(r, x, y))2

)

≤ exp
(−4 · ε2 · log(λ) ·∆(x, y) · d2S(x, y)∑

r∈R:dmax(r,x,y)>0

(Amax(r, x, y))2

)

≤ exp
(−4 · ε2 · log(λ) ·∆(x, y) · d2S(x, y)∑

r∈R:dmax(r,x,y)>0

(ε · dS(x, y) ·Amax(r, x, y)/dmax(r, x, y))2

)

≤ exp
(−4 · log(λ) ·∆(x, y)∑

r∈R:dmax(r,x,y)>0

(Amax(r, x, y)/dmax(r, x, y))2

)
= λ−4

The second inequality holds, as Amax(r, x, y) > 0
implies dmax(r, x, y) > 0. For the third inequality,
Amax(r, x, y)≤ ε ·dS(x, y) ·Amax(r, x, y)/dmax(r, x, y) is used,
which follows from the assumption dmax(r, x, y) ≤ ε ·dS(x, y)
and dmax(r, x, y) > 0. In the next step, ε2 ·d2S(x, y) is reduced
from the fraction. As the denominator equals ∆(x, y) by
definition, the final equality follows. Lastly, we utilize that
the expected allocation E(Ax,y) is upper bounded by the
resource’s capacity dS(x, y) to obtain Equation 19.

Given Lemma 15, we obtain the following corollary.

Corollary 16. Let ε ≤ 1 be chosen minimally, such that
dmax(r, x, y)/dS(x, y) ≤ ε holds for all resources (x, y) ∈ RS
and all requests r ∈ R. Let ∆(X) = max(x,y)∈X ∆(x, y),

β =(1 + ε ·
√

2 ·∆(RVS) · log(|VS | · |T |)) , and

γ =(1 + ε ·
√

2 ·∆(ES) · log(|ES |)) .
The following holds for all node resources (τ, u) ∈ RVS and
edge resources (u, v) ∈ ES , respectively:

P(Aτ,u ≥ β · dS(τ, u)) ≤(|VS | · |T |)−4 (20)

P(Au,v ≥ γ · dS(u, v)) ≤|ES |−4 (21)

Proof. First, note that ε is chosen over all resources and
requests and that ∆(RVS) ≥ ∆(τ, u) and ∆(ES) ≥ ∆(u, v)
hold for (τ, u) ∈ RVS and (u, v) ∈ ES , respectively. Equa-
tions 20 and 21 are then obtained from Lemma 15 by setting
λ = |VS | · |T | for nodes and λ = |ES | for edges.

C. Approximation Result

Given the probabilistic bounds established above, the main
approximation result is obtained via a union bound.

Theorem 17. Assume |VS | ≥ 3. Let β and γ be defined as
in Corollary 16. Algorithm 2 returns (α, β, γ)-approximate
solutions for the VNEP (restricted on cactus request graphs)
of at least an α = 1/3 fraction of the optimal profit, and
allocations on nodes and edges within factors of β and γ of
the original capacities, respectively, with high probability.

Proof. We employ the following union bound argument. Em-
ploying Corollary 16 and as there are at most |VS | · |T | node
resources and at most |VS |2 edges, the joint probability that
any resource exceeds their respective capacity by factors of β
or γ is upper bounded by (|VS | · |T |)3 + |VS |2 ≤ 1/27 + 1/9
for |VS | ≥ 3. By Theorem 13 the probability of not finding a
solution achieving an α = 1/3 fraction of the optimal objective
is upper bounded by exp(−2/9). Hence, the probability to not
find a (α, β, γ)-approximate solution within a single round is
upper bounded by exp(−2/9) + 1/9 + 1/27 ≤ 19/20. The
probability to return a suitable solution within N ∈ N rounding
tries is lower bounded by 1−(19/20)N and Algorithm 2 yields
approximate solutions for the VNEP with high probability.

D. Discussion & Proposed Heuristics

Theorem 17 yields the first approximation algorithm for
the profit variant of the VNEP. However, the direct ap-
plication of Algorithm 2 to compute (α, β, γ)-approximate
solutions is made difficult by the cumbersome definition
of the terms ∆(RVS) and ∆(ES). Specifically, computing
β and γ exactly requires enumerating all valid mappings,
which is not feasible. Hence, to directly apply Algorithm 2,
the respective values have to be estimated. Considering
∆(RVS), the following upper bound can be easily established:
∆(RVS) ≤ |R| ·maxr∈R |Vr|. However, plugging this bound
into the definition of β yields rather large resource violations
of β ∈ O(ε ·

√
|R| ·maxr∈R |Vr| · log(|VS | · |T |)).

To overcome estimating β and γ, we propose the following:
Vanilla Rounding: A fixed number of solutions is

rounded at random as in Line 7 of Algorithm 2. Afterwards,
the best solution is returned according to some metric. In
particular, in Section V we study the metric returning the
solution of highest profit among the solutions minimizing the
maximal resource augmentation.

Heuristical Rounding: In most settings resource augmen-
tations are to be avoided based on their negative impact on
the customer’s Quality-of-Service. Hence, to obtain solutions
not violating any resource’s capacity, we propose to adapt
the rounding scheme by simply discarding selected mappings,
whose addition would exceed resource capacities. To increase
the diversity of found solutions, the order in which requests
are processed is permuted before each rounding iteration.

V. EXPLORATIVE COMPUTATIONAL STUDY

We now complement our formal approximation result in
the standard multi-criteria model with resource augmentation

with an extensive computational study. Specifically, we study
the performance of vanilla rounding and heuristical rounding
without resource augmentations as introduced above.

As we are not aware of any systematic evaluation of
the profit maximization in the offline settings, we present a
synthetic but extensive computational study. Specifically, we
have generated 1,500 offline VNEP instances with varying
request numbers and varying demand-to-capacity ratios. For
all instances, baseline solutions were computed by solving the
Mixed-Integer Programming Formulation 1.

We restrict our discussion to our main results and refer the
reader to our technical report at [17] for additional details.
We have implemented all presented algorithms in Python 2.7
employing Gurobi 7.5.1 to solve Mixed-Integer Programs and
Linear Programs. Our source code is freely available at [20].
All experiments were executed on a server equipped with Intel
Xeon E5-4627v3 CPUs running at 2.6 GHz.

A. Instance Generation

We use the GÉANT topology1 as substrate network. It
consists of 40 nodes and 122 edges. We consider a single
node type and set node and edge capacities uniformly to 100.

a) Request Topology Generation: Cactus graph requests
are generated by (i) sampling a random binary tree of maxi-
mum depth 3, (ii) adding additional edges randomly as long
as they do not refute the cactus property as long as such edges
exist, and (iii) orienting edges arbitrarily.

We only consider requests containing at least 3 nodes.
According to our generation parameters, the expected number
of nodes and edges is 6.54 and 7.28, respectively. On average,
61% of the edges lie on a cycle.

b) Mapping Restrictions: To force the virtual networks
to span across the whole substrate network, we restrict the
mapping of virtual nodes to one quarter of the substrate nodes:
each virtual node can be mapped on ten substrate nodes. The
mapping of virtual edges is not restricted.

c) Demand Generation: We control the demand-to-
capacity ratio of node and edge resource using a node resource
factor NRF and an edge resource factor ERF. The request’s
demands are drawn from an exponential distribution and
afterwards normalized, such that the following holds:∑

r∈R

∑
i∈Vr

dr(i) =NRF ·
∑

u∈VS

dS(u)

ERF ·
∑

r∈R

∑
(i,j)∈Er

dr(i, j) =
∑

(u,v)∈ES

dS(u, v)

The resource factors can be best understood under the
assumption that all requests are embedded. Under this assump-
tion, a resource factor NRF = 0.6 implies that the node load
– averaged over all substrate nodes – equals exactly 60%. As
virtual edges can be mapped on arbitrarily long paths (even
of length 0), the edge resource factor should be understood as
follows: the ERF equals ‘the number of substrate edges that
each virtual edge may use’. In particular, a factor ERF = 0.5
implies that if each virtual edge spans exactly 0.5 substrate
edges, then edge resource utilization equals exactly 100%.

1Obtained from http://www.topology-zoo.org/ (version March 2012) .

Hence, while increasing the NRF renders node resources more
scarce, increasing the ERF reduces edge resource scarcity.

d) Profit Computation: To correlate the profit of a re-
quest with its size, its resource demands, and its mapping re-
strictions, we compute for each request its minimal embedding
costs as follows. The cost c(u, v) of using an edge (u, v) ∈ VS
equals the geographical distance of its endpoints. The cost of
nodes is set uniformly to c(·, u) =

∑
(u,v)∈ES

c(u, v)/|VS |
for all u ∈ VS . Hence, the total node cost equals the
total edge cost. Defining the cost of a mapping mr to be∑

(x,y)∈RS
A(mr, x, y) · c(x, y), we compute the minimum

cost embedding for each request r ∈ R using an adaption
of Mixed-Integer Program 1 and set br accordingly.

e) Parameter Space: We consider the following param-
eters |R| ∈ {40, 60, 80, 100}, NRF ∈ {0.2, 0.4, 0.6, 0.8, 1.0},
ERF ∈ {0.25, 0.5, 1.0, 2.0, 4.0} and generate 15 instances per
parameter combination, yielding 1, 500 instances overall.

B. Computational Results

We first present our baseline results and then study the
performance of vanilla rounding and heuristical rounding.

a) Baseline MIPMCF: To obtain a near-optimal baseline
solution for each of the 1,500 instances, we employ Gurobi
7.5.1 to solve the Mixed-Integer Programming Formulation 1
(using a single thread). We terminate the computation after 3
hours or when the objective gap falls below 1%, i.e. when the
constructed solution is provably less than 1% off the optimum.
On average the runtime per instance is 129.8 minutes [17].

Figure 3 gives an overview on these baseline solutions. In
particular, based on the a priori profit computation, the number
of requests which can be feasibly embedded is shown together
with the acceptance ratio which on average lies around 75%.
The rightmost plot depicts the objective gap, i.e. the quality
guarantee proven by Gurobi, which is (on average) 6.8%.

b) Solving LP Formulation 2: To apply the rounding
algorithms presented in Section IV-D, our novel LP Formula-
tion 2 needs to be solved. Again, we employ Gurobi 7.5.1,
specifically its Barrier algorithm with crossover. Figure 4
depicts the averaged runtime to solve the LP as well as to
construct the LP. The latter is not negligible as the formulation
contains up to 1,000k variables for some instances. The
runtime increases from around 2 minutes for |R| = 40 to
around 7 minutes for |R| = 100. The maximally observed
runtime in our experiments amounted to roughly 18 minutes.

c) Vanilla Rounding RRMinLoad: We first consider the
performance of vanilla rounding. Concretely, we report on
the best solution found within 1,000 rounding iterations, i.e.
the solution minimizing resource augmentations and breaking
ties among these by returning the solution of highest profit.
Figure 5 (left) depicts the results. As can be seen, the al-
gorithm achieves a profit between 50% and 140% compared
to the best solution constructed by the MIP, while exceeding
resource capacities mostly by 25% to 125% of the resource’s
capacity. The edge resource factor has a distinctive impact: for
ERF = 4.0 maximal resource loads mostly lie below 75%.

40 60 80 100
Number of Requests

0.25

0.5

1.0

2.0

4.0

Ed
ge

 R
es

ou
rc
e
Fa

ct
or

MIPMCF: #Feasible Requests

0

20

40

60

80

100

40 60 80 100
Number of Requests

0.25

0.5

1.0

2.0

4.0

Ed
ge

 R
es

ou
rc

e
Fa

ct
or

MIPMCF: #Embedded / #Feasible [%]

0

20

40

60

80

100

40 60 80 100
Number of Requests

0.25

0.5

1.0

2.0

4.0

Ed
ge

 R
es

ou
rc

e
Fa

ct
or

MIPMCF: Objective Gap [%]

0
2
4
6
8
10
12
14
16

Fig. 3. Overview on baseline results computed using the MIP Formulation 1. Each cell averages the results over
75 instances. The feasibility of requests is obtained from (cost-optimally) embedding the requests to compute the
profit a priori. The center plots depicts the acceptance ratio restricted to the feasible requests. The solution’s quality
is depicted on the right: the gap heavily depends on the edge resource factor but is on average less than 7%.

40 60 80 100
Number of Requests

0.25

0.5

1.0

2.0

4.0

Ed
ge

 R
es

ou
rc

e
Fa

ct
or

LPnovel: Total Runtime [min]

0

2

4

6

8

10

Fig. 4. Solution time of the novel
LP Formulation 2 (including the con-
struction time for the LP) using the
Barrier algorithm of Gurobi 7.5.1.

60 80 100 120 140
Profit(RRMinLoad)/Profit(MIPMCF) [%]

100

125

150

175

200

225

M
ax

Lo
ad

(R
R M

in
Lo

ad
) [

%
]

Vanilla Rounding Performance

ERF
0.25
0.5
1.0
2.0
4.0

40 60 80 100
Number of Requests

0.25

0.5

1.0

2.0

4.0

Ed
ge
 R
es
ou
rc
e
Fa
ct
or

Heuristic Rounding Performance
Profit(RRHeuristic)/Profit(MIPMCF) [%]

50

60

70

80

90

100

Fig. 5. Overview on results obtained using vanilla and heuristical rounding.
Left: Solutions obtained via vanilla rounding minimizing the load. Each point
corresponds to a single instance and is colored according to the instance’s edge
resource factor. 7 of 1,500 results lie outside the depicted area.
Right: The averaged profit of solutions obtained via heuristical rounding
compared to the best baseline solution. Each cell averages 75 instances.

d) Heuristical Rounding RRHeuristic: The results of the
heuristical rounding are presented in Figure 5 (right). Again,
1,000 rounding iterations were considered. While for low
edge resource factors, i.e. scarce edge resources, the solutions
achieve around 65% of the profit of the MIP baseline, for
larger edge resource factors, the relative performance exceeds
80%. Furthermore, the performance improves when increasing
the number of requests. Overall, the average relative perfor-
mance with respect to the baseline solutions is 73.8%, with
the minimal one being 22.3%.

VI. CONCLUSION

This paper has initiated the study of approximation algo-
rithms for the Virtual Network Embedding Problem supporting
arbitrary substrate graphs and supporting virtual networks
containing cycles. To obtain the approximation, we have
derived a strong LP formulation for cactus request graphs.
Our computational evaluation shows the practical significance
of our work: obtained solutions achieve (on average) around
74% of the baseline’s profit while not augmenting capacities.

We note that the developed approximation framework is
independent of the how LP solutions are computed and de-
composed. In particular, while the LP formulation presented
in this paper is only applicable for cactus request graphs, our
formulation can be generalized to arbitrary request graphs [18].

ACKNOWLEDGEMENTS

This work was partially supported by Aalborg University’s
PreLytics project as well as by the German BMBF Software
Campus grant 01IS1205.

We thank Elias Döhne, Alexander Elvers, and Tom Koch
for their significant contribution to our implementation [20].

REFERENCES

[1] J. C. Mogul and L. Popa, “What we talk about when we talk about cloud
network performance,” ACM SIGCOMM CCR, vol. 42, no. 5, 2012.

[2] S. Mehraghdam, M. Keller, and H. Karl, “Specifying and placing chains
of virtual network functions,” in Proc. 3rd IEEE CloudNet, October
2014.

[3] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards
predictable datacenter networks,” in ACM SIGCOMM Computer Com-
munication Review, vol. 41, no. 4. ACM, 2011, pp. 242–253.

[4] J. Napper, W. Haeffner, M. Stiemerling, D. R. Lopez, and
J. Uttaro, “Service Function Chaining Use Cases in Mobile
Networks,” Internet-Draft, Apr. 2016. [Online]. Available: https:
//tools.ietf.org/html/draft-ietf-sfc-use-case-mobility-06

[5] A. Fischer, J. Botero, M. Till Beck, H. de Meer, and X. Hesselbach,
“Virtual network embedding: A survey,” Comm. Surveys Tutorials, IEEE,
vol. 15, no. 4, 2013.

[6] M. Rost and S. Schmid, “Charting the Complexity Landscape of Virtual
Network Embeddings,” in Proceedings IFIP Networking, 2018.

[7] N. Chowdhury, M. Rahman, and R. Boutaba, “Virtual network em-
bedding with coordinated node and link mapping,” in Proc. IEEE
INFOCOM, 2009.

[8] R. Hartert et al., “A declarative and expressive approach to control
forwarding paths in carrier-grade networks,” in SIGCOMM, 2015.

[9] A. Jarray and A. Karmouch, “Decomposition approaches for virtual
network embedding with one-shot node and link mapping,” IEEE/ACM
Transactions on Networking, vol. 23, no. 3, pp. 1012–1025, 2015.

[10] M. Rost, S. Schmid, and A. Feldmann, “It’s About Time: On Optimal
Virtual Network Embeddings under Temporal Flexibilities,” in Proc.
IEEE IPDPS, 2014, pp. 17–26.

[11] M. Rost, C. Fuerst, and S. Schmid, “Beyond the stars: Revisiting virtual
cluster embeddings,” in Proc. ACM SIGCOMM Computer Communica-
tion Review (CCR), 2015.

[12] G. Even, M. Medina, and B. Patt-Shamir, “Online path computation
and function placement in sdns,” in Proc. International Symposium on
Stabilization, Safety, and Security of Distributed Systems (SSS), 2016.

[13] G. Even, M. Rost, and S. Schmid, “An approximation algorithm for path
computation and function placement in sdns,” in Proc. SIROCCO, 2016.

[14] T. Lukovszki and S. Schmid, “Online admission control and embedding
of service chains,” in Proc. 22nd SIROCCO, 2015.

[15] N. Bansal, K.-W. Lee, V. Nagarajan, and M. Zafer, “Minimum conges-
tion mapping in a cloud,” in Proc. ACM PODC, 2011.

[16] M. Rost and S. Schmid, “Service chain and virtual network em-
beddings: Approximations using randomized rounding,” Tech. Rep.
arXiv:1604.02180 [cs.NI], April 2016.

[17] ——, “Virtual Network Embedding Approximations: Leveraging Ran-
domized Rounding,” Tech. Rep. arXiv:1803.03622 [cs.NI], March 2018.

[18] ——, “(FPT-)Approximation Algorithms for the Virtual Network Em-
bedding Problem,” Tech. Rep. arXiv:1803.04452 [cs.NI], March 2018.

[19] D. P. Dubhashi and A. Panconesi, Concentration of measure for the
analysis of randomized algorithms. Cambridge University Press, 2009.

[20] E. Döhne, A. Elvers, T. Koch, and M. Rost, “Source code for
the evaluation presented in this work,” https://github.com/vnep-approx/
evaluation-ifip-networking-2018.

