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Abstract—Software-defined networking is considered a promis-
ing new paradigm, enabling more reliable and formally verifi-
able communication networks. However, this paper shows that
the separation of the control plane from the data plane, which
lies at the heart of Software-Defined Networks (SDNs), can
be exploited for covert channels based on SDN Teleportation,
even when the data planes are physically disconnected.

This paper describes the theoretical model and design of
our covert timing channel based on SDN Teleportation. We
implement our covert channel using a popular SDN switch,
Open vSwitch, and a popular SDN controller, ONOS. Our
evaluation of the prototype shows that even under load at the
controller, throughput rates of 20 bits per second are possible,
with a communication accuracy of approximately 90%. We
also discuss techniques to increase the throughput further.

1. Introduction

In the recent years computer networks have undergone
a transformation to overcome ossification [1]. Existing
communication protocols and architectures were unable to
meet the increasingly stringent requirements, e.g., in terms
of performance but also dependability, of growing networks
such as data center networks and wide area networks [2].

One of the answers to the ossification problem is what
is now known as Software-Defined Networks (SDN) which
is the separation (and consolidation) of the network control
plane from the data plane. SDNs promises innovation,
reduced cost and better manageability [3].

As of today, we witness an increasing interest in SDN
not only in academia and the industry but also by govern-
ments [4]. Several open-source SDN projects have gained
wide-spread adoption by the community, e.g., Open vSwitch
and OpenDayLight are a part of the Linux foundation.
Hardware vendors are also adopting the SDN paradigm and
shipping software programmable network cards [5].

While the literature has demonstrated well how an SDN
can overcome the shortcomings of traditional networks and
while SDNs are rapidly gaining traction, researchers have
also identified new security challenges they introduce. For
example, Hong et al. [6], and Dhawan et al. [7] identified
ways for an attacker to spoof the controller’s view of the
network topology. Jero et al. [8] identified a weakness in the
way controllers bind network identifiers allowing an attacker
to conduct a man-in-the-middle attack.

Those papers show that attacks on the controller can
easily occur from the data plane. The assumption that the
data plane can be compromised, e.g., via trojans, or software
exploits, is not far fetched. For example, Thimmaraju et
al. [9] demonstrated the simplicity of compromising the data
plane of an SDN-based cloud system.

The SDN controller may also be exploited for telepor-
tation, e.g., malicious switches or hosts can communicate
via the control plane and circumvent data plane security
mechanisms [10] to exfiltrate sensitive information. Tele-
portation can also be exploited by physically disconnected
switches, e.g., switches in different geographic locations.
More importantly, teleportation is inherent to an SDN.
Among the teleportation techniques identified [10], out-of-
band forwarding, flow reconfiguration and switch identifica-
tion, only out-of-band forwarding has been explored in the
literature [10]. Switch identification and flow reconfiguration
were described as a Rendezvous Protocol.

Hence in this paper, we go beyond the initial intention of
switch identification teleportation by describing how it can
also be used for covert communication: malicious switches
can transfer a 2048 byte RSA private key file in ∼13 minutes.
In particular, we design, develop and evaluate a time-based
covert channel using the switch identification teleportation.
Our Contributions: We describe the state machine of
switch identification and model it in terms of time delays.
We then design a covert timing channel using our model.
We prototype our design and evaluate its performance and
accuracy. Finally, our study of the OpenFlow handshake
leads us to the observation that it is currently insecure. The
vulnerability received CVE-2018-1000155 and mitigations
have been announced.
Novelty and Related Work: To the best of our knowledge,
this is the first paper that describes a covert timing channel in
an SDN, and OpenFlow-based network in particular. We are
only aware of one other paper dealing with covert channels
in SDN, which is however very different in nature: Hu et
al. [11] proposed to use SDN to improve the detection of
storage covert channels that use the TCP flags for covert
communication. More generally, the study of covert channels
dates back to the 80’s when Simmons [12] introduced the
“Prisoners Problem” and the subliminal channel. Network
based covert channels in local area networks were introduced
by Girling [13], wherein a covert channel based on the inter
frame delay was proposed. Handel et al. [14] conducted an
extensive study on viable covert channels within the OSI
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networking model. A covert channel based on sending an
IP packet or not in a time interval was demonstrated by
Cabuk et al. [15]. More recently, Tahir et al. [16], designed
and developed Sneak-Peek, a high speed covert channel in
data center networks. Their covert channel also utilizes a
delay mechanism wherein the sender’s flow introduces a
delay into the receivers flow over the same network link
thereby covertly communicating information based on the
delay measured by the receiver.
Paper Organization: Section 2 introduces our threat model
followed by a description of our covert channel in Section 3.
We describe the key challenges in Section 4 followed by our
evaluation in Section 5. After a brief discussion is Section 6,
we conclude in Section 7.

2. Threat Model

We consider a threat model where OpenFlow switches
can be malicious. For example, the attacker compromises
the switch by exploiting a (parsing) vulnerability [9], or
the attacker compromises the supply-chain and introduces
hardware trojans into the switches [17]. The objective of the
malicious switches is to covertly communicate information,
e.g., private keys, confidential meta-data, attack coordination,
even in the presence of security mechanisms, e.g., firewalls,
in the data and control plane. The attacker chooses covert
communication instead of overt to persist and remain unde-
tected in the network, e.g., an Advanced Persistent Threat
(APT).

We place no restrictions on what a malicious switch can
and cannot do. For instance, the switch can send fake Open-
Flow messages, it can arbitrarily deviate from the OpenFlow
specification, and it can even use multiple identifiers, all at the
risk of being detected. However, the position of the malicious
switches in the network is not under the control of the
attacker. For example, the malicious switches are separated
by a firewall that prevents bi-directional communication,
or the switches are physically disconnected (geographically
separated). However, the malicious switches are connected to
the same logically centralized controller. In order to covertly
communicate, the malicious switches have been programmed
to recognize some data and timing patterns.

The OpenFlow controller and its applications on the other
hand are trusted entities and are available to the switches,
e.g., they are based on static and dynamic program analyses.
The OpenFlow channel is reliable and may be encrypted.

3. A Covert Channel using Teleportation

Covert channels are communication channels that were
not designed with the intention for communication [18].
They can be used to bypass security policies, thereby
leading to unauthorized information disclosure [19]. A covert
timing channel is one wherein a sender and receiver “use
an ordering or temporal relationship among accesses to a
shared resource” [18] to covertly communicate with each
other. In the following we describe how switch identification
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Figure 1: Message sequence pattern for the OpenFlow
handshake and switch identification teleportation when the
controller denies the second switch a connection.

teleportation can be used as a covert timing channel in a
software-defined network using the OpenFlow protocol.
Switch Identification Teleportation: In an OpenFlow
network, the switch typically initiates a TCP connection with
the OpenFlow controller as shown in Fig. 1. If TLS/SSL
is configured, the connection is further authenticated and
subsequent messages exchanged are encrypted as well. Once
the transport connection is established, the switch sends
the controller an OpenFlow Hello message. The controller
responds with a Hello message. These messages are used
to negotiate the OpenFlow version to be used. Next, the
controller sends the switch a Features-Request message. The
switch replies with a Features-Reply message. The Features-
Reply message includes a Datapath ID (DPID) field that
uniquely identifies the switch to the controller. After process-
ing the Features-Reply message, the OpenFlow connection
is considered established, and ready for operation [20].

A fundamental requirement of an SDN is for the con-
troller to uniquely identify the switches in the network which
is achieved by the switch providing “identity” information,
e.g., DPID in the Features-Reply message, to the controller.
Switch identification teleportation is the outcome of two
switches connecting to the same logical controller using the
same DPID [10]. We have identified 4 possible outcomes
when this occurs in OpenFlow: i) The controller denies a
connection with the second switch; ii) The controller accepts
the connection with the second switch, and terminates the first
switch’s connection; iii) The controller accepts connections
for both switches; iv) The controller accepts connections
for both switches, however, each switch receives a different
Role-request message. Only in outcomes i, ii and iv can the
malicious switches infer if the DPID it used is already in
use by another switch. The message sequence pattern for
the OpenFlow handshake and outcome i is shown in Fig. 1.



3.1. Single Bit Transfer

From the message sequence pattern in Fig. 1, switch s2
can infer a binary value of 1 if it gets disconnected, and a
binary value of 0 if it is able to connect, thereby received
one bit of data. We can precisely describe the states and
transitions to transfer one bit value as state machines for
the sender and receiver resp. Additionally, we can precisely
describe a time-based model to transfer one bit value that
can be leveraged to design a channel to transfer multiple bits.
In the following we describe the state transition model and
time model to transfer one bit. Following that, we describe
our algorithms to transfer multiple bits.

3.1.1. State Transition Model. The state transition model
for switch identification involves a sender and receiver. As
the names imply, the sender sends a binary bit value by either
connecting to the controller or not. Similarly, the receiver
receives a binary bit value by detecting whether its OpenFlow
connection to the controller is allowed or denied.

In our model, we make the following assumptions. We
assume that the sender and receiver use an a priori agreed
upon DPID (one that is not used in the network), a time
to connect to the same OpenFlow controller and a time
interval ∆. ∆, is the total time the sender and receiver use
to send and receive resp. a bit value. The sender and receiver
have synchronized their clocks. We discuss synchronization
further in Sec. 4.1. The receiver in particular, is always able
to connect to the controller a short δoffset time after the
sender. The controller, behaves according to outcome i (see
Switch Identification Teleportation). The receiver infers a
binary bit value of 1, if its OpenFlow connection is denied,
i.e., the sender connected to the controller before the receiver.
The receiver infers a binary bit value of 0, if its OpenFlow
connection is accepted, i.e., the sender did not connect to
the controller.

The sending and receiving of bit information can be
described in more detail by defining a set of states and
transitions for the sender and receiver resp., as shown in
Fig. 2. The sender starts data transmission with an agreed
upon DPID, by entering into the Idle state. To send a 0, it
simply remains in the Idle state. To send a 1, it transitions
to the OpenFlow-established state via the Set-Controller
transition. Set-Controller involves initializing internal objects,
e.g., rconn and vconn data structures in Open vSwitch, in
order to initiate a transport (e.g., TCP) connection to the
controller at a specific IP and port address. It also involves
establishing the TCP and OpenFlow connection with the
controller. Once the OpenFlow connection is established,
the sender waits for a timeout δws, to move into the
Timeout-reached state. From there, the sender enters into the
OpenFlow-disconnected state by tearing down the TCP and
OpenFlow connection, and deleting its controller information.
From thereon, the sender completes a bit transfer by entering
back into the Idle state. The sender’s state diagram is depicted
in Fig. 2a.

The receiver also starts with the same DPID to enter into
the Idle state. Unlike the sender, the receiver must always at-

tempt to connect to the controller to receive a 0 or a 1. It waits
for δoffset time to enter the Offset-reached state before it sets
the controller to enter into the OpenFlow-established state,
similar to the sender. If the receiver’s OpenFlow connection
is denied, it will enter into the OpenFlow-disconnected state
resulting in its OpenFlow and transport connection being
terminated. If the receiver’s OpenFlow connection is accepted,
it will enter into the OpenFlow-accepted state resulting in
its OpenFlow connection being sustained. Regardless of the
outcome, the receiver waits δdelay time, thereby transitioning
to the Reached-check-status-timeout state. From there, the
receiver checks the OpenFlow connection status. It enters the
Got-1 state if it was disconnected, i.e., it got a 1. It enters
the Got-0 state if it was accepted, i.e., it got a 0. From there
on the receiver deletes its controller information, resulting
in the OpenFlow and transport connection being torn down
if it is still present. Depending on the value of ∆, there may
still be time left, hence the receiver waits δwr, till the end
of time interval, to enter the Timeout-reached state. It then
completes the reception by moving back into the Idle state.
The state diagram for the receiver is shown in Fig. 2b.

3.1.2. Transition Delays. To leverage switch identification
as a covert timing channel we must first establish the time
it takes for the sender to send a 1—as sending a 0 requires
the sender to remain in the Idle state—and the receiver to
receive a bit value. We define a time interval ∆, as the time
the sender and receiver use to send and receive resp. a binary
bit value.

∆ comprises of the several state transitions described
for the sender and receiver (Sec. 3.1.1). We can construct a
time-based model by considering the transitions as delays
or timeouts for the sender and receiver that can be used
to analyze the performance of our covert channel. In the
following we define the various delays and timeouts for the
sender and receiver state transitions.

1) δs: The time the sender takes to send a binary bit
value.

2) δr: The time the receiver takes to receive a binary
bit value.

3) δsc: The time to transition from the Idle state to the
OpenFlow-established state.

4) δdc: The time to move from the OpenFlow-
established state to OpenFlow-disconnected state.

5) δoffset: A timeout value the receiver waits before
it sets the controller.

6) δof -deny : The time to move from OpenFlow-
established to OpenFlow-disconnected when the
connection is denied.

7) δdelay: A timeout value the receiver waits before it
checks the OpenFlow connection status.

8) δchk-conn : The time the receiver takes to determine
a 0 or 1 by checking the OpenFlow connection
status.

9) δws = ∆ − δs: A timeout value the sender waits
before moving from the OpenFlow-established state
to OpenFlow-disconnected.



(a) Sender (b) Receiver

Figure 2: State diagram for the sender and receiver to send/receive one binary value.

10) δwr = ∆− δr: A timeout value the receiver waits
before moving from the OpenFlow-disconnected
state to the Idle state.

Using the above definitions, we can now compute the
time to send and receive a 0 or 1. The total time to send a 0
or 1 is shown in Eq. 1. As we can see, it takes more time to
send a 1 compared to a 0. In Eq. 2, we can see the time it
takes to receive a 0 or a 1. In particular, the different delay
is δof -deny for the 1. For the sender and receiver to operate
correctly, we require the inequality shown in Eq. 3 to hold,
i.e., the time interval ∆ must not be less than the total time
to send or receive a binary bit value.

Additionally, for the receiver to correctly detect a 0 and
1, we require the inequalities as shown in Eq. 4 and 5
to hold. The former equation states that δoffset must be
greater than the time it takes for the sender to enter the
OF-established state. This is to ensure that the receiver does
not connect before the sender when the sender wants to send
a 1. The latter equation states that the minimum amount of
time it can wait before checking the OpenFlow connection
status is 0, and the maximum time it can wait depends on
the time interval, the time elapsed so far, and the time for
the remaining transitions to complete. The δdelay gives the
receiver the flexibility of waiting for some amount of time
before checking the status of the OpenFlow connection. For
example, checking the connection status at ∆/2, i.e., at the
middle of the time interval, may be better than checking
it at ∆/4. Hence, the receiver can set δdelay such that, the
OpenFlow connection status is checked at a point where the
connection is most stable.

δs =

{
0, to send 0

δsc + δdc, to send 1
(1)

δr =


δoffset + δsc + δdelay
+δchk-conn + δdc, to get 0

δoffset + δsc + δof -deny
+δdelay + δchk-conn + δdc, to get 1

(2)

δs ≤ δr ≤ ∆ (3)

δoffset ≥ δsc (4)

0 ≤ δdelay ≤ ∆− (δoffset + δsc

+δof -deny + δchk-conn + δdc)
(5)

3.2. From One Bit to Multiple Bits

Until now, we have described how the sender can transmit
only a single bit value to the receiver. To receive the single
bit value, the sender and receiver need to be synchronized,
i.e., the sender and receiver must know the exact time at
which the time interval ∆ begins and ends. To this end,
we assume the sender and receiver synchronize their clocks
using the same network time protocol (NTP) time server.
Furthermore, we assume the sender and receiver a priori
agree upon specific times at which they will initiate their
covert communication.

In order to be useful, a covert channel should provide a
sender with the ability to transmit several kilobytes of data,
e.g., an RSA private key file. Accordingly, in the following,
we extend our discussion from a single bit transmission to
multiple bits. First, the sender and receiver must agree upon
an encoding/decoding scheme, e.g., ASCII. Second, they
must also agree upon a method to signal the start and end
of a message. To do so, we use a frame-based transmission
method. In particular, the sender encodes a message M into
into frames F , of length Fl, and transmits the frames. The
receiver, decodes each frame received to obtain the sent
message.

For simplicity, we consider a frame with at least one SoF
(Start of Frame) bit, and at least seven data bits (e.g., ASCII
characters can be represented in 7 bits). The SoF bit is used
by the sender to signal the receiver that a frame transmission
begins which is followed by data bits. We assume that the
SoF bit is a binary 1, and if the receiver gets this value at the



Algorithm 1 To send binary data as frames.
Require: Message M , Frame-length Fl, Frames F , Time-

interval ∆, Start-time t
1: initialize(sender)
2: for frame ∈ F do
3: set-controller . Send SoF bit
4: Wait δws

5: for bit ∈ frame do
6: if (bit==0) then
7: delete-controller . Send 0
8: else
9: set-controller . Send 1

10: Wait δws

11: delete-controller

agreed upon time and time interval, it will begin receiving
data bits. The data bits can be 0 or 1 depending on how the
message is encoded. To indicate the end of a message, the
sender sends a frame with all the data bits as 0. When the
receiver receives such a frame, it will terminate execution.
The above steps are specified as algorithms for the sender
and receiver in Alg. 1 and 2 resp.

The sender’s algorithm, accepts several inputs, e.g., M
is the message to be transmitted, Fl is the frame length, e.g.,
8, F is the list of frames that are to be sent, ∆ is the time
interval, and t is the transmission start-time. The input values
for the receiver are the same frame length, time interval and
start-time as the sender.

For every frame to be sent, the sender first sends a SoF bit
for that frame by connecting to the controller. Similarly the
receiver waits for δoffset time before attempting to receive
the SoF bit. If its connection is denied, it will begin receiving
data bits. After sending the SoF bit, the sender sends data
bits: if sending a 0, it disconnects from the controller, if
sending a 1, it connects to the controller. It then waits till the
end of the timing interval before sending the next data bit.
The receiver detects the data bits in a frame by connecting
to the controller, and waiting for δdelay time before checking
whether its OpenFlow connection was allowed or not. If
the connection was accepted, it will append a 0 to the data
bits received in the frame, otherwise it will append a 1. The
receiver then deletes the controller, and then waits δwr, i.e.,
till the end of the time interval before connecting to the
controller again.

Once the sender has sent the data bits of a frame, it will
wait δws time, i.e., for the next time interval to send the next
frame. The receiver detects the end of a message when it
has received a frame with all the data bits zeroed, thereby
terminating the while loop at the receiver. The receiver can
then decode the binary data to reveal the message sent.

4. Design and Performance Challenges

Our covert channel design requires us to overcome several
non-trivial challenges. Hence, we discuss the most important
challenges that affects our design in this section before
transitioning to our implementation. We also cast light on
factors that affect the performance of our design.

Algorithm 2 To receive binary data as frames.
Require: Frame-length Fl, Time-interval ∆, Start-time t

1: initialize(receiver)
2: while End of message not received do
3: Wait δoffset
4: set-controller . Receive SoF bit
5: Wait δdelay
6: Check OpenFlow connection state
7: if OpenFlow denied then . Got SoF bit
8: Wait δwr

9: for bit ∈ Fl do
10: set-controller . Get data bit
11: Wait δdelay
12: Check OpenFlow connection state
13: if OpenFlow accepted then
14: frame += “0” . Got 0
15: elseframe += “1” . Got 1

16: delete-controller
17: Wait δwr

18: if frame ==“0000000” then
19: End of message received
20: Break . Terminate reception
21: else
22: M+ = frame . Append frame to message

4.1. Synchronization

One of the main problems in designing a covert timing
channel is synchronization. Lack of synchronization can
lead to the receiver obtaining inaccurate information, thereby
reducing the accuracy of the channel. The sender and receiver
must share a reference clock to ensure that the the algorithms
start at the same time. To this end, we use NTP (as it easily
available for today’s popular operating systems) and the
same NTP server to synchronize the clocks of the sender
and receiver to achieve at least millisecond accuracy [21].
Since the sender and receiver clocks can slowly drift apart
their clocks must be periodically synchronized with the same
NTP server.

When the clocks are synchronized, the SoF bit(s) in each
frame sent synchronizes the receiver with the sender enabling
the receiver to obtain the data bits. During the transmission
of a frame, we introduce the δws and δwr times for the
sender and receiver resp. at the end of a time interval for
synchronization across time intervals in a frame. Furthermore,
between frames the sender and receiver can synchronize again
by waiting, for example for the next second. This inter frame
delay adds another layer of synchronization to enable the
sender and receiver to send and receive resp. the SoF bit(s)
accurately.

4.2. Determining the Time Interval ∆ and Delays

The time interval in which the sender and receiver send
and receive a bit leads to the achievable throughput of the
channel. As the time interval reduces, the probability of an
error occurring increases, e.g., the receiver may check the
connection status before receiving the TCP FIN from the
controller. Furthermore, system and network artefacts can



non-deterministically influence the state transitions resulting
in errors. Hence, the challenge here is to determine a time
interval as small as possible within an acceptable level of
accuracy (≥ 95%). We empirically identify suitable time
intervals in Sec. 5 based on our prototype implementation.
However, in the real-world, the channel would have to start
with a programmed value, e.g., 1s, and later be negotiated.

Recall Sec. 3.1.2, there are several delays involved in
our timing channel. The delays for one network system,
may not be applicable elsewhere. Delays such δsc, δdc,
δof -deny , and δchk-conn , depend on the system and network
conditions. Moreover, they are not under the control of the
sender/receiver. The timeouts δoffset and δdelay although
bounded (see Eq. 4 and 5 resp.) can be tuned by the receiver.
Hence, we evaluate 3 different δdelay values in Sec. 5.

4.3. Frame-based Transmission

Our design uses a frame-based method to transfer data
from the sender to the receiver. The smallest frame size
we consider is 8 bits long: 1 SoF bit and 7 data bits. The
size of this frame can change, e.g., we can send 14 or 28
data bits as well. Sending more data bits in a frame reduces
the overhead of sending the SoF bit. We can also increase
the number of SoF bits to ensure the receiver can get the
data bits. However, increasing the number of bits in a frame
increases the probability of errors within a frame. We do
not consider error correction in our design although it can
be introduced, e.g., using Hamming codes. However, we
do include a minimal set of error detections at the receiver
which we describe next.
Receiver misses the start bit of the frame: Several reasons
can affect the receiver from missing the SoF bit of a frame. In
such cases the receiver simply remains idle for the remainder
of the time that is necessary to transmit an entire frame.
End of Transmission: For simplicity, the sender indicates
the end of transmission via a special EoM (End of Message)
frame. This design choice comes with a couple of challenges
for the receiver to correctly terminate. First, if the receiver
misses the SoF bit of the EoM frame, then it will continue
to expect to receive frames. To address this problem, we
define a threshold number of consecutive frames, e.g., 5,
the receiver does not receive beyond which the receiver
terminates reception. Second, the receiver can incorrectly
detect a 1 as a 0 due to synchronization issues for example.
As a result, the receiver may detect the EoM prematurely
and stop receiving data even though the sender continues to
send data. We cannot address this case as it is a limitation
of our design to not include the length of the message to be
received.

4.4. Influence of the Controller

The OpenFlow controller that is used to covertly commu-
nicate is beyond the control of the sender and receiver. Hence,
the accuracy and performance of our channel is limited by
the controller that operates the OpenFlow network.

Load on the Controller: Typically, there are more switches
connected to the controller than just the sender and the
receiver of the covert channel. If the communication between
the benign switches and the controller is frequent and
voluminous, the sender and receiver will experience non-
deterministic delays in connecting/disconnecting (δsc, δdc and
δof -deny ) to the controller, thereby reducing the performance
(throughput and accuracy) of the channel.
Controller Architecture: The system and software architec-
ture of the controller also influences our design. For example,
the controller could be single threaded or multi-threaded.
The former can lead to long delays, whereas the latter can
lead to non-determinism due to the scheduler.
Path to the Controller: Network paths not under the control
of the sender and receiver can influence the performance of
our channel. For example, buffers in switches can be filled
up by other network packets resulting in packet loss and
hence errors in the received bits.

5. Evaluation

To obtain deeper insights and validate our expectations
of our covert channel, we prototyped our design using Open
vSwitch [22] and ONOS [23]. Furthermore, we designed
a set of experiments based on the challenges described
in the previous section to characterize the performance
of our channel. We begin with a brief description of our
implementation, and then describe the experiments.

5.1. Implementation

We used Open vSwitch (OvS) as our sender and receiver
OpenFlow switches. We only modified the (OpenFlow)
connection handling of OvS so that after it disconnects
from the controller, it waits for 4 seconds to reconnect. To
set/delete controller information, and configure the DPID,
we used the ovs-vsctl tool that ships with OvS. We then
implemented the sender and receiver algorithms (Alg. 1 and
2) as python scripts. In doing so, we traded performance
for simplicity which we consider acceptable for the sake
of prototyping and evaluation. Our implementation is only
meant to demonstrate the feasibility of our attack.

We synchronized the system clocks of the sender and
receiver using our university’s NTP time server. To encode
and decode the messages, we used the ASCII scheme. We
implemented an adaptive inter-frame delay synchronization
scheme in which the sender sends a frame only at the start
of the next second.

5.2. Setup and Methodology

Our evaluation setup comprised of three (sender, receiver
and controller) Dell PowerEdge 2950 servers with 4 core
Intel(R) Xeon(TM) CPU 3.73GHz processors and 16 GB of
RAM each. The sender and receiver were directly connected
to the controller. For OpenFlow load generation, we used
a fourth server running directly connected to the controller.



All these servers used dedicated ports to connect to a
management switch that was used for orchestration from
a fifth server to conduct the evaluation. All systems ran
Ubuntu 14.04.5 LTS. For the sender and receiver, we used
Open vSwitch 2.7. For the controller, we used ONOS 1.10.2.

Based on our covert timing channel design the objectives
of the evaluation are the following. First, we want to establish
time intervals that achieve high accuracy and throughput.
Second, we want to determine the influence the frame length
has on the accuracy, e.g., do shorter frames have fewer errors
than longer frames? Third, we want to measure the influence
of δdelay on the accuracy and throughput of our channel e.g.,
is there a δdelay value for which the time interval can be
smaller? Finally, we want to measure the accuracy of our
channel when there is load on the controller.

The general methodology we undertake is the following.
The controller runs ONOS with the default applications
activated. We program the sender and receiver with a specific
start time t, time interval ∆, offset δoffset = 5 ms, check
the connection status at ∆/2 ms and frame length Fl. The
sender then sends a 64 byte message Ms and the receiver
receives a message Mr. We then restart ONOS and OvS, and
clean up the OvS database before we repeat the measurement.
We collect ten such measurements for the configured values.
We measure accuracy as the similarity between Mr and Ms

using the edit distance or Levenshtein distance [24].
For load on the controller, we use OFCProbe [25] as

our OpenFlow topology and packet generator. We configure
OFCProbe to emulate 20 switches that trigger Packet-Ins to
the controller following a Poisson distribution (λ=1). After
OFCProbe has started the Packet-in generation, we wait for
one minute before we start the sender and receiver, to avoid
any warm-up effects from OFCProbe and ONOS.

5.3. Experiments

Following the aforementioned methodology, we now
describe the experiments and their results.
Effect of Timing Interval ∆: We set the frame length
Fl = 7, and measure the accuracy for time intervals from
30 ms up to 100 ms. The results are shown in Fig. 3.

The results depict that our channel can achieve nearly
100% accuracy for time intervals greater than 60 ms when
there is no load on the controller. For ∆ = 60 ms, we have a
throughput of approximately 16.67 bps. What we can also see
is that as the time interval increases the accuracy increases,
which is what we expected. Another distinct observation is
that for the values configured, our channel cannot operate
below 40 ms because the receiver gets the EoM prematurely,
(it detects only 0 in the data bits).
Effect of Frame Length Fl: To measure the influence of
the frame length on the accuracy we chose the following
values: 7, 14 and 28. Note that these values represent the
number of data bits in the frame, i.e., 1, 2, and 4 ASCII
characters resp. We use only one SoF bit in the frame. We
repeat the measurements for time intervals from 30-100 ms.
The results from this experiment are depicted in Fig. 3.
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Figure 3: Channel accuracy for time intervals 30-100 ms,
and frame lengths 7, 14 and 28 when δoffset = 5ms,
OpenFlow status is checked at ∆/2, and there is no load on
the controller.
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Figure 4: Channel accuracy for time intervals 30-100 ms, and
frame lengths 7, 14 and 28 when δoffset = 5ms, OpenFlow
status is checked at 2∆/3, and there is no load on the
controller.

Indeed, the frame lengths we used show us that as the
frame length increases the accuracy drops. Longer frame
lengths result in fewer frames but more data per frame
being sent. Hence, if the receiver misses the SoF bit for
Fl = 14, it misses twice as many characters compared to
Fl = 7. Moreover, the chance of incorrect bit detection (bit-
flips) increases with larger frames. We analyzed the errors
and observed that indeed as the frame length increases, the
number of bit-flips increase, and the number of missed SoF
bits also increase. To address the problem of missing the
start bit we can introduce redundant SoF bits.
Effect of δdelay in Checking Connection Status: We
now investigate how δdelay influences the throughput and
accuracy of our channel. Recall from Sec. 3.1.2 that this
value is the time the receiver waits before it checks the
status of the OpenFlow connection. Until now, we checked
the connection status at ∆/2. Hence, in this experiment we
check the connection status at 2∆/3 and ∆/3 for frame
lengths 7, 14 and 28, and time intervals 30-100 ms. The
results for 2∆/3 and ∆/3 are shown in Fig. 4 and 5 resp.

When we check the status at 2∆/3, the 40 ms time
interval operates at nearly 100 % accuracy. Moreover, the
accuracy for this δdelay value performs better compared to
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Figure 5: Channel accuracy for time intervals 30-100 ms,
and frame lengths 7, 14 and 28 when δoffset = 5ms,
OpenFlow status is checked at ∆/3, and there is no load on
the controller.
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Figure 6: Channel accuracy for time intervals 30-100 ms, and
frame lengths 7, 14 and 28 when δoffset = 5ms, OpenFlow
status is checked at ∆/2, and there is load on the controller.

our baseline value of ∆/2. When we check the status at
∆/3, we observe a negative influence on the channel, i.e.,
time intervals 50-70 ms are not effective. In particular, we
note that the 70 ms time interval is the operational edge
when δdelay is at ∆/3. The reason for these marked changes
is the following: The time at which the receiver checks the
OpenFlow connection status is crucial. Done too soon, it
is likely to detect a zero, and done too late, it is likely to
detect a one.

Based on our design, detecting a 1 as a 0 reduces the
accuracy more than detecting a 0 as a 1: missing the SoF
bit (1) can lead to missing the entire frame, and detecting
zeros for all the data bits results in the EoM. Combining
the two can drastically bring down the accuracy which is
evidenced when we check the status at ∆/3.
Effect of Message Length |M |: To ensure that our channel
can sustain longer messages, we measured the accuracy of
sending 512 and 1024 byte messages with and without load.
The accuracy in each case was very close to the 64 byte
message, hence we chose not to show the results here.
Effect of Load on the Controller: Having determined
time intervals, frame lengths and δdelay values with close to
100 % accuracy, we compare them with measurements when
the controller is under load, as real OpenFlow network can
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Figure 7: Channel accuracy for time intervals 30-100 ms, and
frame lengths 7, 14 and 28 when δoffset = 5ms, OpenFlow
status is checked at 2∆/3, and there is load on the controller.

operate with more than two switches. Fig. 6 and 7 illustrate
the results from this experiment.

Naturally, load on the controller reduces the accuracy of
our channel. Other switches trigger events at the controller
which introduces queuing and processing delays for the
sender’s and receiver’s messages. This introduces errors for
time intervals that were previously highly accurate, e.g., 60
ms and checking the OpenFlow connection at ∆/2 (Fig. 6)
drops to roughly 10% when the controller is under load.
Although there is a drop in the accuracy when we check the
connection at 2∆/3 (Fig. 7), the smaller time intervals, e.g.,
50 ms can still operate at or above 90% accuracy.

6. Discussion

Our evaluation demonstrated that switch identification
teleportation can be a highly accurate channel for low
throughput covert communication in our setup. We also
showed that it depends on several factors, e.g., ∆, δdelay , and
the system and network conditions. Nonetheless, techniques
to detect teleportation in general, and a covert timing channel
such as the one presented in this paper are crucial for net-
works with high security demands. Hence, we briefly discuss
detection possibilities. We also describe some limitations and
possible improvements for our design and implementation.
Detection and Mitigation: To the best of our knowledge,
firewalls and intrusion detection systems do not monitor the
OpenFlow sessions. Even if they are, detecting teleportation
attacks are non-trivial as they follow the normal pattern of
(encrypted) OpenFlow sessions. Preventing switch identifica-
tion teleportation is exacerbated by the fundamental require-
ment that switches need to uniquely identify themselves to
the controller, and that the controller must allow only a single
DPID in the network. However, the attack can be deterred
if OpenFlow connections are secured via the following
hardened authentication scheme: unique TLS certificates for
switches, white-list of switch DPIDs at controllers [26] which
also includes the switches’ respective public-key certificate
identifier, and lastly a controller mechanism that verifies the
DPID announced in the OpenFlow handshake is over the
TLS connection with the associated (DPID) certificate.



Limitations and Improvements: Indeed, our prototype
implementation achieves throughput rates in the order of
tens of bits per second. However, it is reasonable to assume
that the throughput can be increased by, implementing our
algorithms in OvS which is programmed in ‘C’, or using
another controller. Consequently, the delays, e.g., δsc, will
be reduced as the response time to events will be faster, e.g.,
we will not have to rely on vsctl and ovsdb to set/delete the
controller. A novel approach to increase the throughput which
we have not measured is for the sender and receiver to initiate
several concurrent connections to the controller using unique
DPIDs for each connection. In this manner, the sender can
send as many bits as connections are made, thereby increasing
the throughput by the number of connections. Our channel
also comes with some system and network level limitations
that are difficult to overcome, e.g., time to establish a TCP
connection, packet loss along the path to the controller, etc.
Furthermore, our design is for uni-directional communication
and does not include error correction. A channel from the
receiver back to the sender where the receiver acknowledges,
e.g., every frame, can boost the accuracy of the channel.

7. Conclusions

In this paper, we described the design, implementation
and evaluation of a novel covert timing channel based on the
switch identification teleportation technique. Our prototype
implementation of our design can achieve throughput rates of
up-to 20 bits per second, with an accuracy of approximately
90% even when there is load at the controller. This means that
a 2048 byte RSA private key file can be transferred in nearly
13 minutes. Although our proof-of-concept implementation
is a low bandwidth channel, we discussed techniques to
increase the throughput.

Software-defined networks have become the standard
way of doing networking in large data centers, and service
provider networks are also moving towards such an architec-
ture and paradigm. With Advanced Persistent Threats (APTs)
becoming an increasing problem, covert channels such as
the one described in this paper become more relevant, e.g.,
private keys bought in the black market are used for phishing
and malware campaigns. Hence, we must design and develop
mechanisms to detect and prevent teleportation attacks that
gives APTs a way to covertly communicate or exfiltrate data
to a command and control center.
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