
VirtuCast: Multicast and Aggregation
with In-Network Processing

An Exact Single-Commodity Algorithm

Matthias Rost, Stefan Schmid

Telekom Innovation Laboratories (T-Labs) & TU Berlin, Germany
{mrost,stefan}@net.t-labs.tu-berlin.de

Abstract. As the Internet becomes more virtualized and software-defined, new
functionality is introduced in the network core: the distributed resources available
in ISP central offices, universal nodes, or datacenter middleboxes can be used to
process (e.g., filter, aggregate or duplicate) data. Based on this new networking
paradigm, we formulate the Constrained Virtual Steiner Arborescence Problem
(CVSAP) which asks for optimal locations to perform in-network processing, in
order to jointly minimize processing costs and network traffic while respecting
link and node capacities.
We prove that CVSAP cannot be approximated (unless NP ⊆ P), and accord-
ingly, develop the exact algorithm VirtuCast to compute optimal solutions to
CVSAP. VirtuCast consists of: (1) a compact single-commodity flow Integer Pro-
gramming (IP) formulation; (2) a flow decomposition algorithm to reconstruct
individual routes from the IP solution. The compactness of the IP formulation
allows for computing lower bounds even on large instances quickly, speeding up
the algorithm significantly. We rigorously prove VirtuCast’s correctness and show
its applicability to solve realistically sized instances close to optimality.

Keywords: Network Virtualization, Network Functions Virtualization, Multicast, In-
Network Aggregation, Data-Center, Middleboxes, ISP, Integer Programming

1 Introduction

Multicast and aggregation are two fundamental functionalities offered by many com-
munication networks. In order to efficiently distribute content (e.g., live TV) to multiple
receivers, a multicast solution should duplicate the content as close to the receivers as
possible. Analogously, in aggregation applications such as distributed network monitor-
ing, data may be filtered or aggregated along the path to the observer, to avoid redundant
transmissions over physical links. Efficient multicasting and aggregation is a mature re-
search field, and many important theoretical and practical results have been obtained
over the last decades. Applications range from IPTV [14] over sensor networks [10,11]
to fiber-optical transport [14].

This paper is motivated by the virtualization trend in today’s Internet, and in par-
ticular by network (functions) virtualization [9] and software-defined networking, e.g.,

(a) 5× 5 Grid Topology (b) Steiner Arborescence (c) Virtual Arborescence

Fig. 1: An aggregation example on a 5 × 5 grid. Terminals are depicted as triangles
and the receiver as a star. The terminals must establish a route towards the receiver,
while multiple data streams may be aggregated by activated processing locations. Such
processing locations are pictured as squares or, in case that an active processing location
is collocated with a terminal, pentagons. In Figure (c), equally colored and dashed edges
represent logical connections (routes), originating at the node with the same color.

OpenFlow [23]. In virtualized environments, resources can be allocated or leased flex-
ibly at the locations where they are most useful or cost-effective: computational and
storage resources available at middleboxes in datacenters [5], in universal nodes, or
in distributed (micro-)datacenters in the wide-area network [7,20,29] can be used for
in-network processing, e.g., to reduce traffic during the MapReduce shuffle phase [6].
Such distributed resource networks open new opportunities on how services can be
deployed. Especially in the context of aggregation and multicasting a new degree of
freedom arises: the sites (i.e., the number and locations) used for the data processing,
becomes subject to optimization.

This paper initiates the study of how to efficiently allocate in-network processing
functionality in order to jointly minimize network traffic and computational resources.
Importantly, for many of these problem variants, classic Steiner Tree models [28] are
no longer applicable [19]. Accordingly, we coin our problem the Constrained Virtual
Steiner Arborescence Problem (CVSAP), as the goal is to install a set of processing
nodes and to connect all terminals via them to a single root.

Example. To illustrate our model, consider the aggregation example depicted in Fig-
ure 1. The terminals must connect to the single receiver (root), while processing func-
tionality can be placed on nodes to aggregate any number of incoming data flows into a
single one. Assuming no costs for placing processing functionality, the problem reduces
to the Steiner Arborescence Problem: the optimal solution, depicted in Figure 1b, uses
16 edges and 9 processing locations, i.e. nodes where data flows are merged. However,
assuming unit edge costs and activation costs of 5 for processing locations, this solution
is suboptimal. Figure 1c depicts a solution which only uses 2 processing locations and
26 edges overall: terminals in the first column directly connect to the receiver, while the
remaining terminals use one of the two processing nodes. Note that we allow for nested
processing of flows: the upper processing node forwards its aggregation result to the
lower processing node, from where the result is then forwarded to the receiver.

2

Contribution. We introduce the Constrained Virtual Steiner Arborescence Problem
(CVSAP) which captures the trade-off between traffic optimization benefits and in-
network processing costs arising in virtualized environments, and which also gener-
alizes many classic in-network processing problems related to multicasting and aggre-
gation. We prove that CVSAP cannot be approximated unless NP ⊆ P holds and
therefore focus on obtaining provably good solutions for CVSAP in non-polynomial
time. To this end we introduce the algorithm VirtuCast, which is based on Integer Pro-
gramming (IP) and allows to obtain optimal solutions. The advantage of VirtuCast lies
in the fact that even for large problem instances, when optimal solutions cannot be com-
puted in reasonable time, our approach bounds the gap to optimality as lower bounds
are computed on the fly.

VirtuCast consists of two components: a single-commodity IP formulation which
can be solved by branch-and-cut methods and a decomposition algorithm to construct
the routing scheme. Our IP formulation not only uses a smaller number of variables
compared to alternative multi-commodity IP formulations, but also yields good linear
relaxations in practice, speeding up the branch-and-bound algorithm (see [26] for an
in-depth discussion).

Our main contribution is the constructive proof that any solution to our IP formu-
lation can be decomposed to yield a valid routing scheme connecting all terminals via
processing nodes to the root. This is intriguing, as the single-commodity flow in the
network is not restricted to directed acyclic graphs (cf. Figure 1c). In fact, as already
shown in [19], forbidding directed acyclic graphs (DAGs) may yield suboptimal solu-
tions only. Rather, we allow for the iterative processing of flows, such that processing
nodes may be connected to other processing nodes.

To implement VirtuCast, we have developed a branch-and-cut framework, includ-
ing a primal heuristic. Due to space constraints, we refer the interested reader to our
technical report [26] for a detailed discussion of the implementation as well as for the
full computational evaluation.

Overview. We formally introduce CVSAP and show its inapproximability in Section 2.
We continue by presenting our VirtuCast algorithm in Section 3. In Section 4 we shortly
outline the results of our computational study. We conclude this paper with summariz-
ing related work in Section 5.

2 The Constrained Virtual Steiner Arborescence Problem

The Constrained Virtual Steiner Arborescence Problem (CVSAP) generalizes several
in-network processing problems related with multicasting and aggregation of data where
processing locations can be chosen to reduce traffic. As using (or leasing) in-network
processing capabilities comes at a certain cost (e.g., the corresponding resources cannot
be used by other applications), there is a trade-off between additional processing and
traffic reduction. In contrast to the classic Steiner Tree Problems [28], our model dis-
tinguishes between nodes that merely relay traffic and nodes that may actively process
flows. Informally, the task is to construct a minimal cost spanning arborescence on the

3

set of active processing nodes, sender(s) and receiver(s), such that edges in the arbores-
cence correspond to paths in the original graph. As edges in the arborescence represent
logical links (i.e. routes) between nodes, we refer to the problem as Virtual Steiner Ar-
borescence Problem. Based on the notion of virtual edges, the underlying paths may
overlap and may use both the nodes and edges in the original graph multiple times (cf.
Figure 1c). We naturally adopt the notion of Steiner nodes in our model, and refer to
processing nodes contained in the virtual arborescence as active Steiner nodes. As will
be discussed at the end of this section, the multicast case can be easily reduced to the
aggregation case. Hence, in the following we only introduce the variant of CVSAP in
which data flows are directed towards the root. The following notations will be used
throughout this paper.

Notation. In a directed graph G = (VG, EG) we denote by PG the set of all simple,
directed paths in G. Given a set of simple paths P , we denote by P[e] the subset of
paths of P that contains edge e. We use the notation P = 〈v1, v2, . . . , vn〉 to denote the
directed path P of length |P | = n where Pi , vi ∈ VG for 1 ≤ i ≤ n and (vi, vi+1) ∈
EG for 1 ≤ i < n. We denote the set of outgoing and incoming edges, restricted on a
subset F ⊆ EG in G, by δ+F (v) = {(v, u) ∈ F} and δ−F (v) = {(u, v) ∈ F} for v ∈ V .
We naturally extend this definition to sets: δ+F (W) = {(v, u) ∈ F |v ∈W,u /∈W} and
δ−F (W) = {(u, v) ∈ F |v ∈W,u /∈W} respectively. We abridge f((y, z)) to f(y, z) for
functions defined on tuples.

Formal Problem Statement. We model the physical infrastructure as capacitated, di-
rected networkG = (VG, EG, cE , uE), where uE : EG → N defines integral capacities
and cE : EG → R+ defines real-valued, positive costs on the edges. On top of this net-
work, we define an abstract request RG = (r, S, T, ur, cS , uS), where T ⊆ VG defines
the set of terminals that need to be connected with the root r ∈ VG \ T , for which an
integral capacity ur ∈ N is given. The set S ⊆ VG \ ({r} ∪ T) denotes the set of pos-
sible Steiner sites, i.e. nodes at which processing nodes may be activated. Such Steiner
sites are attributed with a positive cost cS : S → R+ that is incurred upon using it, and
an integral capacity uS : S → N. It should be noted that we require the sets S and T
to be disjoint for terminological reasons. A node v ∈ S ∪ T can easily be modeled by
introducing a new node vT ∈ T and letting v ∈ S such that vT is only connected to v
with cE(vT , v) = 0 and uE(vT , v) = 1.

In the aggregation scenario considered henceforth the terminals hold data that needs
to be forwarded to the root (the single receiver) while data may be aggregated at active
Steiner nodes. The capacities on the Steiner sites (and on the root) limit the number of
flows that can be actively processed: any number of incoming flows less than or equal
to uS(s) can be merged into a single flow by s ∈ S upon activation. To model both
routing decisions and paths taken, we introduce the concept of Virtual Arborescences:

Definition 1 (Virtual Arborescence). Given a directed graph G = (VG, EG) and a
root r ∈ VG, a Virtual Arborescence (VA) on G is defined as TG = (VT , ET , r, π)
where {r} ⊆ VT ⊆ VG, ET ⊆ VT × VT , r is the root and π : ET → PG maps each
edge in the virtual arborescence on a simple directed path P ∈ PG such that

4

(VA-1) (VT , ET , r) is an arborescence rooted at r with edges directed towards r
(VA-2) for all (u, v) ∈ ET the directed path π(u, v) connects u to v in G.

A link (v, w) ∈ ET represents a logical connection between nodes v and w while
the function π(v, w) = P defines the route taken to establish this link: in Figure 1c
equally colored and dashed paths represent edges of the Virtual Arborescence. Note
that the directed path P must, pursuant to the orientation (v, w) of the logical link in
the arborescence, start with v and end atw. Using the concept of Virtual Arborescences,
we can concisely state the problem we are attending to.

Definition 2 (Constrained Virtual Steiner Arborescence Problem). Given a directed
capacitated network G = (VG, EG, cE , uE) and a request RG = (r, S, T, ur, cS , uS)
as above, the Constrained Virtual Steiner Arborescence Problem (CVSAP) asks for a
minimal cost Virtual Arborescence TG = (VT , ET , r, π) satisfying the following con-
ditions:

(CVSAP-1) {r} ∪ T ⊆ VT and VT ⊆ {r} ∪ S ∪ T ,
(CVSAP-2) for all terminals t ∈ T holds δ+ET (t) = 1,

(CVSAP-3) for the root δ−ET (r) ≤ ur holds,

(CVSAP-4) for all activated Steiner sites s ∈ S ∩ VT holds δ−ET (s) ≤ uS(s) and
(CVSAP-5) for all edges e ∈ EG holds | (π(ET)) [e]| ≤ uE(e).

Any VA TG satisfying CVSAP-1 - CVSAP-5 is said to be a feasible solution. The cost
of a Virtual Arborescence is defined to be

CCVSAP(TG) =
∑
e∈EG

cE(e) · | (π(ET)) [e]|+
∑

s∈S∩VT

cS(s) ,

where | (π(ET)) [e]| is the number of times an edge is used in different paths.

In the above definition, CVSAP-1 states that terminals and the root must be included
in VT , whereas non Steiner sites are excluded. We identify VT \ ({r} ∪ T) with the set
of active Steiner nodes. Condition CVSAP-2 states that terminals must be leaves in
TG and CVSAP-3 and CVSAP-4 enforce degree constraints in TG. The term π(ET) in
Condition CVSAP-5 determines the set of all used paths and consequently π(ET)[e]
yields the set of paths that use e ∈ ET . As π is injective and maps on simple paths,
Condition CVSAP-5 enforces that edge capacities are not violated.

The following theorem motivates our approach in Section 3, namely to search for
provably good solutions in non-polynomial time.

Theorem 1. Checking whether a feasible solution for CVSAP exists is NP-complete.
Thus, unless NP ⊆ P holds, there cannot exist an (approximation) algorithm yielding
a feasible solution in polynomial time.

Proof. We give a reduction on the decision variant of set cover. Let U denote the uni-
verse of elements and let S ⊆ 2U denote a family of sets covering U . To check whether
a set cover using at most k many sets exists, we construct the following CVSAP in-
stance. We introduce a terminal tu for each element u ∈ U and a Steiner site sS for

5

each S ∈ S. A terminal tu is connected by a directed link to each Steiner site sS iff.
u ∈ S. Each Steiner site sS is connected to the root r. We set the capacity of the root
to k and capacities of Steiner sites to |U |. It is easy to check that there exists a feasible
solution to this CVSAP instance iff. there exists a set cover of less than k elements.

Similarly to the above definitions, CVSAP can be defined for multicasting applica-
tions in which the task is to distribute a single data item from the root (single sender) to
terminals (receivers) via processing nodes (with routing capability) that may duplicate
the data and route it to several different destinations. To obtain a formal definition for
this scenario, edges in the VA must be oriented away from the root and δ−(·) must be
replaced by δ+(·) and vice versa in Definition 2. Subject to this slight adaption, the root
and active Steiner nodes can reproduce an incoming stream, such that terminals must
receive this stream. By essentially reversing the direction of edges, the multicasting
version of CVSAP can be reduced to the aggregation version presented above.

3 VirtuCast Algorithm

In this section we present the Algorithm VirtuCast to solve CVSAP. VirtuCast first
computes a solution for a single-commodity flow Integer Programming formulation
and then constructs the corresponding Virtual Arborescence. Even though our IP for-
mulation can be used to compute the optimal solution for any CVSAP instance, feasible
solutions to our IP formulation already yield feasible solutions to CVSAP. This allows
to derive near-optimal solutions during the solution process. Our single-commodity ap-
proach improves dramatically upon naive multi-commodity flow formulations and en-
ables us to solve realistically sized instances in the first place (see [26] for a discussion).

3.1 IP Formulation

Our IP (see IP-CVSAP) is based on an extended graph containing a single super source
o+ and two distinct super sinks o−S and o−r (see Definition 3). While o−r may only
receive flow from the root r, all possible Steiner sites s ∈ S are connected to o−S .
Distinguishing between these two super sinks is necessary, as we will require activated
Steiner nodes to not absorb all incoming flow, but forward at least one unit of flow
towards o−r , which will ensure connectivity.

Definition 3 (Extended Graph). Given a directed network G = (VG, EG, cE , uE)
and a request RG = (r, S, T, ur, cS , uS) as introduced in Section 2, we define the
extended graph Gext = (Vext, Eext) as follows

(EXT-1) Vext , VG ∪ {o+, o−S , o−r } ,

(EXT-2) Eext , EG ∪ {(r, o−r)} ∪ ES−

ext ∪ ES+

ext ∪ ET+

ext ,

where ES−

ext , S × {o−S }, ES+

ext , {o+} × S and ET+

ext , {o+} × T . We define
ER

ext , Eext \ ES−

ext , such that edges towards o−S are excluded in ER
ext.

6

Further Notation. To clearly distinguish between variables and constants, we typeset
constants in bold font: instead of referring to cE , cS and uE , ur, uS we use cy and uy,
where y may either refer to an edge or a Steiner site. Similarly, we use uy where y may
either refer to an edge, the root or a Steiner site. We abbreviate

∑
y∈Y fy by f(Y). We

use Y + y to denote Y ∪ {y} and Y − y to denote Y \ {y} for a set Y and a singleton y.
For f ∈ ZEext

≥0 we define the flow-carrying subgraph Gf
ext , (V f

ext, V
f

ext) with V f
ext , Vext

and V f
ext , {e|e ∈ Eext ∧ f(e) ≥ 1}.

The IP Model. The IP formulation IP-CVSAP uses an integral single-commodity flow.
We define flow variables fe ∈ Z≥0 for each edge e ∈ Eext in the extended graph (see IP-
11). As we use an aggregated flow formulation, that does not model routing decisions
explicitly, we show in Section 3.2 how this single-commodity flow can be decomposed
into paths for constructing an actual solution for CVSAP.

The binary variable xs ∈ {0, 1} (see IP-10) decides, whether a Steiner site s ∈ S is
activated. By Constraint IP-8, each terminal t ∈ T is forced to send a single unit of flow,
as flow conservation is enforced on all original nodes v ∈ VG (see IP-1). Therefore, all
flow originating at o+ must be forwarded to one of the super sinks o−r or o−S , while not
violating link capacities (see IP-7).

As the definition of CVSAP requires that each terminal t ∈ T establishes a path to
r, we need to enforce connectivity; otherwise active Steiner nodes would simply absorb
flow by directing it towards o−S . To prohibit this, we adopt well-known Connectivity
Inequalities IP-2 [18] and Directed Steiner Cuts IP-3? [16]. Our connectivity inequali-
ties (see IP-2) state that each set of nodes containing a Steiner site s ∈ S must emit at

Integer Program IP-CVSAP

minimize CIP(x, f)=
∑

e∈EG

cefe +
∑
s∈S

csxs (IP-OBJ)

subject to f(δ+Eext
(v)) = f(δ−Eext

(v)) ∀ v ∈ VG (IP-1)

f(δ+
ER

ext
(W))≥xs ∀W ⊆ VG, s ∈W ∩ S 6= ∅ (IP-2)

f(δ+
ER

ext
(W))≥ 1 ∀W ⊆ VG, T ∩W 6= ∅ (IP-3?)

fe ≥xs ∀ e = (s, o−S) ∈ E
S−
ext (IP-4?)

fe ≤usxs ∀ e = (s, o−S) ∈ E
S−
ext (IP-5)

f
(r,o−r)

≤ur (IP-6)

fe ≤ue ∀ e ∈ EG (IP-7)

fe =1 ∀ e ∈ ET+

ext (IP-8)

fe =xs ∀ e = (o+, s) ∈ ES+

ext (IP-9)

xs ∈{0, 1} ∀ s ∈ S (IP-10)

fe ∈Z≥0 ∀ e ∈ Eext (IP-11)

7

least one unit of flow in ER
ext, if s is activated. As ER

ext does not contain edges towards
o−S , this constraint therefore enforces that there exists a path in Gf

ext from each activated
Steiner node s to the root r. Analogously, Constraint IP-3? enforces that there exists a
path from each terminal t ∈ T towards r in Gf

ext. The directed Steiner cuts constitute
valid inequalities which are implied by IP-1 and IP-2 (see [26] for the proof). How-
ever, these cuts can strengthen the model by improving the LP-relaxation during the
branch-and-cut process. As discussed in [26], including these constraints substantially
improved the quality of lower bounds in our computational evaluation. As they are not
needed for proving the correctness and could technically be removed, we mark them
with a ? (star).

As a Steiner node s ∈ S is activated iff. xs = 1, Constraint IP-9 requires activated
Steiner nodes to receive one unit of flow while being able to maximally absorb us many
units of flow by forwarding it to o−S (see IP-5). Furthermore, by IP-5 inactive Steiner
sites may not absorb flow at all. The Constraint IP-4? requires active Steiner nodes to at
least absorb one unit of flow. This is a valid inequality, as activating a Steiner site s ∈ S
incurs a non-negative cost. We introduce this constraint here, as it specifies a condition
needed in the proof of correctness later on.

Constraint IP-6 defines an upper bound on the amount of flow that the root may
receive and the objective function IP-OBJ mirrors the CVSAP cost function (see Def-
inition 2). We denote with FIP = {(x, f) ∈ {0, 1}S × ZEext

≥0 |IP-1 - IP-11} the set of
feasible solutions to IP-CVSAP.

3.2 Decomposition Algorithm

Given a feasible solution (x̂, f̂) ∈ FIP for IP-CVSAP, Algorithm Decompose constructs
a feasible solution T̂G ∈ FCVSAP for CVSAP. Similarly to well-known algorithms for
computing flow decompositions for simple s-t flows (see e.g. [2]), our algorithm iter-
atively deconstructs the flow into paths from the super source o+ to one of the super
sinks o−S or o−r and reduces flow along the found paths to yield a solution to a subprob-
lem. However, as IP-CVSAP does not pose a simple flow problem, we constantly need
to ensure that Connectivity Inequalities IP-2 hold after removing flow in Gf̂

ext. We first
present Algorithm Decompose in more detail and then prove its correctness.

Synopsis of Algorithm. Algorithm Decompose constructs a feasible VA T̂G given a
solution (x̂, f̂) ∈ FIP. In Line 2, T̂G is initialized without any edges but containing all
the nodes the final solution will consist of, namely the root r, the terminals T and the
activated Steiner nodes {s ∈ S|xs = 1}.

Unconnected terminals in T̂ are connected iteratively. For an unconnected terminal
t ∈ T̂ the path generation procedure from Line 6 to 14 computes a path P from o+

via t to o−S or o−r . If the path P terminates in o−r then t is connected to r. Otherwise,
if P terminates in o−S , then the second last node of P is an active Steiner node and t is
connected to it (see Line 18). During the path generation procedure the flow variables f̂
are decremented. If the second last node of P was indeed an active Steiner node s ∈ Ŝ
and s does not forward any flow towards o−S anymore, s itself is added to the set of
unconnected terminals (see Line 16). Note that in Line 18 the (virtual) edge (t, P|P |−1)

8

Algorithm Decompose
Input : Network G = (VG, EG, cE , uE), Request RG = (r, S, T, ur, cS , uS),

Solution (x̂, f̂) ∈ FIP to IP-CVSAP
Output: Feasible Virtual Arborescence T̂G for CVSAP

1 set Ŝ , {s ∈ S|xs ≥ 1} and T̂ , T

2 set T̂G , (V̂T , ÊT , r, π̂) where V̂T , {r} ∪ Ŝ ∪ T̂ , ÊT , ∅ and π̂ : ÊT → PG

3 while T̂ 6= ∅ do
4 let t ∈ T̂ and T̂ ← T̂ − t
5 choose P , 〈o+, t, . . . , o−r 〉 ∈ Gf̂

ext

6 for j = 1 to |P | − 1 do
7 set f̂(Pj , Pj+1)← f̂(Pj , Pj+1)− 1

8 if Constraint IP-2 is violated with respect to f̂ and Ŝ then
9 choose W ⊆ VG such that W ∩ Ŝ 6= ∅ and f̂(δ+

ER
ext
(W)) = 0

10 choose P ′ , 〈Pj , . . . , o−S 〉 ∈ G
f̂
ext such that Pi ∈W for 1 ≤ i < m

11 set f̂(Pj , Pj+1)← f̂(Pj , Pj+1) + 1 and f̂(P ′1, P ′2)← f̂(P ′1, P
′
2)− 1

12 set P ← 〈P1, . . . , Pj−1, Pj = P ′1, P
′
2, . . . , P

′
m〉

13 end
14 end
15 if P|P | = o−S and f̂(P|P |−1, P|P |) = 0 then
16 set Ŝ ← Ŝ − P|P |−1 and x̂(P|P |−1)← 0 and T̂ ← T̂ + P|P |−1

17 end
18 set ÊT ← ÊT + (t, P|P |−1) and π̂(t, P|P |−1) , simplify(〈P2, . . . , P|P |−1〉)
19 end

is added to ÊT and π̂(t, P|P |−1) is set accordingly to the truncated path P , where any
cycles are removed (function simplify).

Proof of Correctness. We will now prove the correctness of Algorithm Decompose,
thereby showing that IP-CVSAP can be used to compute (optimal) solutions to CVSAP.
Our proof relies on an inductive argument similar to the one used for proving the ex-
istence of flow decompositions (see [2]): we assume that all constraints of IP-CVSAP
hold and show that for any terminal t ∈ T a path towards the root or to an active Steiner
node can be constructed, such that decrementing the flow along the path by one unit
does again yield a feasible solution to IP-CVSAP, in which t has been removed from
the set of terminals (see Theorem 2 below). During the course of this induction, the
well-definedness of the choose operations is shown. As the complete proof is included
in [26], we allow us to mainly sketch the proofs.

Theorem 2. Assuming that the constraints of Decompose hold with respect to Ŝ, T̂ , f̂ , x̂
before executing Line 4, then the constraints of Decompose will also hold in Line 18
with respect to the then reduced problem Ŝ, T̂ , f̂ , x̂.

To prove the above theorem, we use the following Lemmas 1 through 3 of which
we only prove the essential third one; the proofs for Lemmas 1 and 2 are included

9

in [26]. Lemma 1 shows the well-definedness of choosing the path in Line 5 and is easy
to check. Lemma 2 states that flow conservation (IP-1) holds during the execution of
Decompose except at node Pj+1 at which the outgoing flow exceeds the incoming flow
by exactly one unit.

Lemma 1. Assuming that IP-1 and IP-2 hold, there exists a pathP = 〈o+, t, . . . , o−r 〉 ∈
Gf̂

ext in Line 5.

Lemma 2. Assuming that IP-1 has held in Line 5, f(δ+Eext
(v))− f(δ−Eext

(v)) = δv,Pj+1

holds for all v ∈ VG during construction of P (Lines 8-13), where δx,y ∈ {0, 1} and
δx,y = 1 iff. x = y.

Lemma 3. Assuming that connectivity inequalities IP-2 have held before executing
Line 7, these inequalities will hold again at Line 13.

Proof Sketch. We only need to consider the case in which the Constraint IP-2 was vi-
olated after executing Line 7. Assume therefore that IP-2 is violated in Line 8. The
choose operation in Line 9 is well-defined, as IP-2 is violated. Let W ⊆ VG be any
violated set with Ŝ ∩W 6= ∅. Our proof relies on the following four statements:

(a) Pj is contained in W while Pj+1 is not contained in W .
(b) f̂(Pj , Pj+1) = 0 holds in Lines 9-10.
(c) Before flow reduction in Line 7, there existed a path
P ′′ = 〈s, . . . , Pj , Pj+1, . . . , o−r 〉 ∈ G

f̂
ext for s ∈ Ŝ ∩W .

(d) There exists a path P ′ = 〈Pj , . . . , o−S 〉 with P ′i ∈ W for 1 ≤ i < |P ′| in Gf̂
ext

after reduction of flow.

To see that statement (a) holds, consider the following. Before the reduction of flow
on (Pj , Pj+1) all inequalities IP-2 held. For the expression f̂(δ+Eext

(W)) = 0 to hold
after reduction of flow, the edge (Pj , Pj+1) must be contained in δ+Eext

(W).
The correctness of (b) directly follows from (a), as (Pj , Pj+1) ∈ δ+Eext

(W) holds.
We now prove statement (c). As connectivity inequalities IP-2 have held before the

flow reduction in Line 7, for each activated Steiner node s ∈ Ŝ∩W there existed a path
from s to o−r in Gf̂

ext. By (b), (Pj , Pj+1) was the only edge in Gf̂
ext leaving W before

reduction of flow. Therefore a path as claimed in (c) must have existed before reduction
of flow.

By statement (c), the prefix 〈s, . . . , Pj〉 of path P ′′ still exists inGf̂
ext after reduction

of flow. This implies that Pj is reached by a positive amount of flow. By Lemma 2 flow
conservation holds for all nodes w ∈W , since by (a) Pj+1 is not included in W . As o−r
is not included in W , there must exist a path P ′ = 〈Pj , . . . , o−S 〉 ∈ G

f̂
ext after reduction

of flow with P ′i ∈ W for 1 ≤ i < |P ′|. This proves the fourth statement (d) and shows
that the choose operation in Line 10 is well-defined.

To see that the main statement of this lemma holds, consider the case that after
Line 11 any connectivity inequality of IP-2 is violated. Let W ′ ⊆ VG with W ′ ∩ Ŝ 6= ∅
be a violated node set such that f̂(δ+Eext

(W ′)) = 0 holds. By the same argument as used

10

for proving statement (a), it is easy to see that P ′1 ∈W ′ and P ′2 /∈W ′ must hold. How-
ever, by statement three, after having reverted the flow reduction along (Pj , Pj+1), the

path 〈Pj , Pj+1, . . . , o−r 〉was re-established inGf̂
ext. As flow along any of the edges con-

tained in this path is greater or equal to one, W ′ cannot possibly violate IP-2. Therefore
all Connectivity Inequalities IP-2 hold.

Using the above lemmas, we now outline the proof of Theorem 2. By Lemmas 1 and
3 the algorithm is well-defined. Lemma 2 implies that flow preservation holds at Line 18
as node Pj+1 is one of the super sinks. Lemma 3 directly ensures that connectivity
constraints IP-2 hold. As capacity related constraints trivially hold as flow was only
decreased, it only remains to check that placing a former active Steiner node into the
set of terminals in Line 16 does not violate the terminal related constraint IP-8. This
however is easy to check as constraint IP-9 ensured that this node received one unit of
flow from the super source.

Using Theorem 2 it is easy to check that Algorithm Decompose terminates: Since
no constraint is violated during the execution of the path generation and as flow is only
reduced, the inner loop must eventually terminate

Theorem 3. Algorithm Decompose terminates.

We can now turn to proving that Algorithm Decompose indeed constructs a feasible
solution for CVSAP. As the proof is of a rather technical nature, we again only sketch
the proof and refer the interested reader to [26] for the complete argument.

Theorem 4. Algorithm Decompose constructs a feasible solution T̂G ∈ FCVSAP for
CVSAP given a solution (x̂, f̂) ∈ FIP. Additionally, CCVSAP(T̂G) ≤ CIP(x̂, f̂) holds.

By Theorem 3 the algorithm terminates such that we only need to check feasibil-
ity of the solution. First note that, as the VA T̂G is constructed using only resources
accounted for in IP-CVSAP, CCVSAP(T̂G) ≤ CIP(x̂, f̂) must hold. Clearly, as capacity
constraints of CVSAP are modeled explicitly in IP-CVSAP, it must only be checked
whether indeed T̂G is a Virtual Arborescence. For proving that, first note that at the end
of executing Decompose both sets Ŝ and T̂ are empty and therefore all terminals and
active Steiner nodes have been connected. While this holds by definition of the outer
loop for T̂ , proving Ŝ = ∅ requires the following argument. Assume that Ŝ 6= ∅ while
T̂ = ∅. By constraint IP-9 each active Steiner node s ∈ Ŝ receives one unit of flow
from the super source. On the other hand constraint IP-4? safeguards that each active
Steiner node absorbs at least a single unit of flow. This implies that no flow reaches o−r ,
violateing Constraint IP-2. Lastly, to check that T̂G defines an arborescence note that
the order in which terminals (or former active Steiner sites) are removed from T̂ defines
a topological order on (V̂T , ÊT , r).

To prove that formulation IP-CVSAP indeed computes optimal solutions, we need
the following technical lemma showing that each solution to CVSAP can be mapped on
a solution of IP-CVSAP with equal cost. As this mapping is straightforward, we refer
the reader to [26] for the construction and only state the following lemma.

Lemma 4. Given a networkG = (VG, EG, cE , uE), a requestRG = (r, S, T, ur, cS , uS)
and a feasible solution T̂G = (V̂T , ÊT , r, π̂) to the corresponding CVSAP. There exists
a solution (x̂, f̂) ∈ FIP with CCVSAP(T̂G) = CIP(x̂, f̂).

11

The above lemma fills the last gap in our proof to show that algorithm VirtuCast,
which first computes an optimal solution to IP-CVSAP and then constructs a corre-
sponding Virtual Arborescence using Decompose, solves CVSAP to optimality.

Theorem 5. Algorithm VirtuCast solves CVSAP to optimality.

We conclude this section with stating that each choose operation in Algorithm De-
compose and checking whether connectivity inequalities IP-2 hold can be implemented
using depth-first search. Implementing Decompose in this way and assuming that an
optimal solution for IP-CVSAP is given and that G does not contain zero-cost cycles,
we can bound the runtime of Decompose by O

(
|VG|2 · |EG| · (|VG|+ |EG|)

)
[26].

4 Computational Evaluation

We have implemented VirtuCast using SCIP [1] as underlying branch-and-cut frame-
work. As the separation procedures employed to enforce Constraints IP-2 and IP-3? are
well-known [16], we only shortly outline the results of our computational evaluation.
A detailed discussion of all our results can be found in [26]. Furthermore, our solver as
well as the test instances are obtainable from [25]. All our experiments were conducted
on machines equipped with an 8-core Intel Xeon L5420 processor running at 2.5 Ghz
and 16 GB RAM.

In our computational evaluation we consider two complementary graph topologies
with varying sizes: symmetric n × n grid graphs and ISP topologies generated by
IGen [24]. We report only on results obtained for the largest topology sizes, namely on
a 20×20 grid and an IGen topology with 3200 nodes (further refered to by IGen.3200).
The IGen.3200 topology is created by populating a world map with 3200 nodes, apply-
ing a local clustering and then connecting these clusters, yielding 19410 edges.

For each of the both test sets we generated 25 instances according to the following
parameters. The receiver as well as the Steiner sites and the terminals are picked uni-
formly at random. For the grid instances we selected 80 Steiner sites and 100 terminals.
For the IGen.3200 topology we chose 400 Steiner sites and 600 terminals. Common to
both test sets, we set the edge capacities to 3 and the capacity of Steiner sites and the
root to 5. On the grid topology, we set edge costs to 1 and activation costs for Steiner
sites to 20. For IGen.3200 instances, edge costs are defined by the euclidean distance
and activation costs are distributed uniformly according to µ(cE) · U(25, 75), where
µ(cE) denotes the average edge length.

Figure 2 shows the objective gap, i.e. the relative quality guarantee, over time for
both test sets, consisting of 25 instances each. Independent of the test set, the objective
gap stabilizes after one hour of computation. For the highly symmetric grid instances
as well as for the IGen.3200 instances, a median gap of less than 4% is achieved. As
documented in [26], the lower bound improves by less than 2% for IGen.3200 instances
and by less than 12% for grid instances. Hence, the lower bounds obtained initially are
already reasonably accurate and the progress of the objective gap (cf. Figure 2) is driven
by the quality of the solutions found. Based on this observation, we have implemented
a primal heuristic to generate feasible solutions based on the linear relaxations during
the branch-and-bound search (see [26]).

12

●
●
●● ●

●

●
●● ●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●● ●

●

●● ●

●

●● ●

●

●● ●

●

●● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

●

●

●

●

●

20 x 20 Grid

time [s]

ob
je

ct
iv

e
ga

p
[%

]

300 1700 3380 5060 6740

2
8

32

2
8

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

IGen.3200

time [s]

300 1700 3380 5060 6740

0
4

8
12

∞

0
4

Fig. 2: Objective gap over time for the 20 × 20 grid and IGen.3200 test sets. Note the
logarithmic y-axis for the grid instances. A gap of∞ indicates that no primal solution
has been found.

5 Related Work

The CVSAP problem differs from many models studied in the context of IPTV [14],
sensor networks [10,11], fiber-optical transport [14], or Active Networking [3], to just
name a few, in that the number and placement of processing locations is subject to
optimization as well. The problem is complicated further by the fact that the commu-
nication between sender and receiver may be processed repeatedly within the network.
The result from [19] on multi-constrained multicast routing also applies to CVSAP: any
algorithm limited to (directed) acyclic graphs cannot solve the problem in general. Gen-
erally, while there exist many heuristic and approximate algorithms for related problem
variants, we are the first to consider exact solutions.

The two closest models to CVSAP are studied in [21] and [27]. While [27] already
showed the applicability of selecting only a few processing nodes for multicasting, no
concise formalization is given and the described heuristic does not provide performance
guarantees. In a series of publications, Oliviera and Pardalos consider the Flow Stream-
ing Cache Placement Problem (FSCPP) [21]. Unfortunately, their FSCPP definition is
inherently flawed as it does not guarantee connectivity (see [26] for a discussion). In-
terestingly, the authors also provide a correct approximation algorithm, which however
only considers the rather weak model which ignores traffic.

Other related problems and algorithms. The CVSAP is related to several classic
problems. For example, CVSAP generalizes the light-tree concepts [4] in the sense that
“light splitting” locations can be chosen depending on the repeatedly processed traf-
fic; our approach can directly be used to optimally solve the light-tree problem. In the
context of wave-length assignment, Park et al. [22] show that a small number of virtual
splitters can be sufficient for efficient multicasting. Our formalism and the notion of hi-
erarchy is based on the paper by Molnar [19] who studies the structure of the so-called
multi-constrained multicast routing problem. However, unlike in CVSAP, an edge may
be only used once in the solution. If the cost of in-network processing is zero and all

13

nodes are possible Steiner sites, the CVSAP boils down to the classic Steiner Tree Prob-
lem [12] and its degree-bounded variants [17]. A closer look shows that CVSAP can
be easily modified to generalize the standard formulation of prize-collecting Steiner
trees [15] where used edges entail costs, and visited nodes may come with a benefit.
However, CVSAP does not generalize other STP variants where disconnected nodes
yield penalties [15] or which need to support anycasts [8]. Lastly, CVSAP generalizes
the standard facility location problem [13].

6 Conclusion

This paper presented VirtuCast to optimally solve CVSAP. We rigorously proved that
although the optimal IP solution may contain directed cyclic structures and flows may
be merged repeatedly, there exists an algorithm to decompose the solution into indi-
vidual routes. Using VirtuCast, we solved realistically sized instances to within 4%
of optimality. Since CVSAP is related to several classical optimization problems, we
believe that our approach is of interest beyond the specific model studied here.

An interesting direction for future research regards the design of approximation
algorithms as an efficient alternative to the rigorous optimization approach proposed in
this paper. While in its general form CVSAP cannot be approximated, we believe that
there exist good approximate solutions, e.g., for uncapacitated variants or bi-criteria
models where capacities may be violated slightly.

Acknowledgement. We would like to thank Marten Schönherr from Deutsche Telekom.
This research was supported by the EU projects BigFoot and UNIFY.

References

1. T. Achterberg. SCIP: Solving Constraint Integer Programs. Mathematical Programming
Computation, 1(1):1–41, 2009.

2. R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms and
Applications. Prentice Hall, 1993.

3. A. Banchs, W. Effelsberg, C. Tschudin, and V. Turau. Multicasting Multimedia Streams with
Active Networks. In Proc. Local Computer Network Conference (LCN). IEEE, 1998.

4. Z. Cai, G. Lin, and G. Xue. Improved Approximation Algorithms for the Capacitated Mul-
ticast Routing Problem. In Proc. 2nd International Conference on Combinatorial Optimiza-
tion and Applications (COCOA), pages 136–145. Springer, 2005.

5. P. Costa, A. Donnelly, A. Rowstron, and G. O. Shea. Camdoop: Exploiting In-network
Aggregation for Big Data Applications. In Proc. USENIX Symposium on Networked Systems
Design and Implementation (NSDI), 2012.

6. P. Costa, M. Migliavacca, P. Pietzuch, and A. L. Wolf. NaaS: Network-as-a-Service in the
Cloud. In Proc. USENIX Hot-ICE Workshop, 2012.

7. C. Cranor, T. Johnson, O. Spataschek, and V. Shkapenyuk. Gigascope: A Stream Database
for Network Applications. In Proc. ACM SIGMOD International Conference on Manage-
ment of Data, pages 647–651, 2003.

8. E. D. Demaine, M. Hajiaghayi, and P. N. Klein. Node-Weighted Steiner Tree and Group
Steiner Tree in Planar Graphs. In Proc. 36th International Colloquium on Automata, Lan-
guages and Programming (ICALP), pages 328–340, 2009.

14

9. European Telecommunications Standards Institute. Network Functions Virtualisation - In-
troductory White Paper. SDN and OpenFlow World Congress, Darmstadt-Germany, 2012.

10. I. Eyal, I. Keidar, S. Patterson, and R. Rom. In-Network Analytics for Ubiquitous Sensing.
In Proc. International Symposium on Distributed Computing (DISC), 2013.

11. E. Fasolo, M. Rossi, J. Widmer, and M. Zorzi. In-Network Aggregation Techniques for
Wireless Sensor Networks: A Survey. IEEE Wireless Communications, 14:70–87, 2007.

12. M. X. Goemans and Y.-S. Myung. A catalog of Steiner tree formulations. Networks,
23(1):19–28, 1993.

13. S. Gollowitzer and I. Ljubić. MIP models for Connected Facility Location: A theoretical and
computational study. Computers & Operations Research, 38(2):435–449, 2011.

14. C. Hermsmeyer, E. Hernandez-Valencia, D. Stoll, and O. Tamm. Ethernet aggregation and
core network models for effcient and reliable IPTV services. Bell Labs Technical Journal,
12(1):57–76, 2007.

15. D. S. Johnson, M. Minkoff, and S. Phillips. The prize collecting Steiner tree problem: theory
and practice. In Proc. 11th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
760–769. Society for Industrial and Applied Mathematics, 2000.

16. T. Koch and A. Martin. Solving Steiner tree problems in graphs to optimality. Networks,
32(3):207–232, 1998.

17. Y. Lee, L. Lu, Y. Qiu, and F. Glover. Strong formulations and cutting planes for designing
digital data service networks. Telecommunication Systems, 2(1):261–274, 1993.

18. A. Lucena and M. G. Resende. Strong lower bounds for the prize collecting Steiner problem
in graphs. Discrete Applied Mathematics, 141(1):277–294, 2004.

19. M. Molnár. Hierarchies to Solve Constrained Connected Spanning Problems. Technical
Report lrimm-00619806, University Montpellier 2, LIRMM, 2011.

20. S. Narayana, W. Jiang, J. Rexford, and M. Chiang. Joint Server Selection and Routing for
Geo-Replicated Services. In Proc. Workshop on Distributed Cloud Computing (DCC), 2013.

21. C. Oliveira and P. Pardalos. Streaming Cache Placement. In Mathematical Aspects of Net-
work Routing Optimization, Springer Optimization and Its Applications, pages 117–133.
Springer New York, 2011.

22. J.-W. Park, H. Lim, and J. Kim. Virtual-node-based multicast routing and wavelength assign-
ment in sparse-splitting optical networks. Photonic Network Communications, 19(2):182–
191, 2010.

23. Z. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu. SIMPLE-fying Middlebox
Policy Enforcement Using SDN. In Proc. ACM SIGCOMM, 2013.

24. B. Quoitin, V. Van den Schrieck, P. Franois, and O. Bonaventure. IGen: Generation of router-
level Internet topologies through network design heuristics. In Proc. 21st International Tele-
traffic Congress (ITC), pages 1–8, 2009.

25. M. Rost and S. Schmid. CVSAP-Project Website. http://www.net.t-labs.
tu-berlin.de/˜stefan/cvsap.html, 2013.

26. M. Rost and S. Schmid. The Constrained Virtual Steiner Arborescence Problem: Formal
Definition, Single-Commodity Integer Programming Formulation and Computational Eval-
uation. Technical report, arXiv, 2013.

27. S. Shi. A Proposal for A Scalable Internet Multicast Architecture. Technical Report WUCS-
01-03, Washington University, 2001.

28. S. Voß. Steiner Tree Problems in Telecommunications. In Handbook of optimization in
telecommunications, chapter 18. Spinger Science + Business Media, New York, 2006.

29. Z. Zhang, M. Zhang, A. Greenberg, Y. C. Hu, R. Mahajan, and B. Christian. Optimizing cost
and performance in online service provider networks. In Proc. 7th USENIX Conference on
Networked Systems Design and Implementation (NSDI), 2010.

15

http://www.net.t-labs.tu-berlin.de/~stefan/cvsap.html
http://www.net.t-labs.tu-berlin.de/~stefan/cvsap.html

	VirtuCast: Multicast and Aggregation with In-Network Processing 4pt An Exact Single-Commodity Algorithm

