Virtual Network Embedding with Collocation:
Benefits and Limitations of Pre-Clustering

Carlo Fuerst, Stefan Schmid, Anja Feldmann
Telekom Innovation Laboratories (T-Labs) & TU Berlin, Germany
{carlo, stefan,anja}@net.t-labs.tu-berlin.de

Abstract—Given that mechanisms for resource isolation are
in place, the collocation of virtual network (VNet) nodes is
attractive as it reduces the inter-machine communication and
hence improves the VNet embedding. However, existing VNet
embedding algorithms either do not support the collocation of
virtual nodes of the same VNet, or only support it implicitly
by referring to the possibility to pre-cluster the VNet topology:
this pre-clustered network forms the new VNet request and is
embedded accordingly.

This paper presents a pre-clustering algorithm OPTCUT that
is optimal in the sense that it minimizes the amount of link
resources needed for the embedding. It is based on a smart linear
program formulation that ensures fast solutions. OPTCUT can
be used together with any existing VNet embedding algorithms,
and we show that it can greatly improve the state-of-the-art
embedding algorithm SecondNet [16]. The paper also describes
a simple algorithm LOCO that directly supports collocation.
This algorithm is part of a novel and generic VNet embedding
framework METATREE which may be of independent interest.

We compare the performance of the pre-clustering approaches
with the direct VNet embeddings by LoCo, and find that pre-
clustering also has its limitations. In particular, the information
gap between the pre-clustering and the actual algorithm, as well
as an inaccurate estimation of the distribution of remaining
substrate resources, may lead to a low network utilization.

I. INTRODUCTION

Network virtualization [8] is a new networking paradigm
which combines node virtualization (e.g., Xen) with link
virtualization (e.g., OpenFlow or, in the wide-area, MPLS), to
provide the abstraction of a virtual network (VNet). A VNet
comes with explicit resource and performance guarantees, also
on the networking part, and is logically isolated from other
VNets sharing the physical resources of the so-called substrate
network.

Making networking a first-class citizen has the advantage
that the access to cloud resources becomes more deterministic,
and hence may reduce the variance and duration (price) of an
execution. [[10]], [22]] Accordingly, in a virtualized environment
with resource guarantees [2]], bandwidth reservations can be
reduced by collocating virtual nodes: if the nodes of a VNet
are mapped to the same physical machines, communication
can stay local (e.g., goes via the ring buffer). [21]]

Interestingly, however, most of the state-of-the-art VNet em-
bedding algorithms described in the literature do not explicitly
support the collocation of virtual nodes of the same VNet,
but only collocate nodes of different VNets. Moreover, while
several papers acknowledge the benefits of collocation, they
refer to the possibility to pre-cluster VNets in advance, i.e.,

to transform the original VNet request to a VNet where a
single virtual node describes multiple virtual nodes; however,
no explicit algorithm is given on how to compute such a pre-
clustering (PC).

We, in this paper, argue that the collocation of nodes of
the same VNet has many advantages over the collocation of
nodes of different VNets. First, while collocating nodes of
different VNets indeed allows to share the physical resources
of a single machine better, there are no gains in terms of
bandwidth reservations. Moreover, collocation of different
VNets (and hence maybe tenants) may introduce security
threats, e.g., regarding the shared hardware registers [24]], or
render performance less predictable [26], [27].

This paper also argues that pre-clustering itself may not be
sufficient to reap the full benefits of collocation. In fact, we
show that pre-clustering comes at an inherent resource price.

Our Contributions. This paper makes the following con-
tributions. We first address the obvious open question of
how existing VNet embedding algorithms can be extended
to support collocation. Concretely, we describe an algorithm
OPTCUT which computes an optimal VNet pre-clustering in
the sense that, given an estimation of the available resources
in the physical network, the amount of network resources
required for the VNet embedding is minimized. While this
problem is computationally hard in general, our OPTCUT is
based on a smart linear program formulation which facilitates
efficient solutions, even for large VNets.

In order to compare the performance of existing VNet em-
bedding algorithms (enhanced with PC) to a direct embedding
approach, we present a simple collocation algorithm LoCo
(“location correlation). LOCO seeks to exploit collocation op-
portunities by embedding multiple nodes on the same physical
node, by also taking into account potential network capacity
constraints. LOCO is based on a graph-growing scheme, which
quickly results in compact VNet embeddings.

To further improve the execution time in large substrate
networks, LOCO uses a hierarchically clustered representa-
tion of the substrate network, which allows to guide the
embedding process. We believe that this hierarchical clustering
approach may be of independent interest, as it can serve as
an algorithmic framework (called METATREE) for various
VNet embeddings tasks. For example, if resources cannot be
perfectly isolated, METATREE can be used to only collocate
VNets with low interference.

We report on our extensive simulation study where we

compare the benefits and limitations of pre-clustering, and
investigate the performance of LOCO in various settings. We
show that pre-clustering can be very beneficial to increase
the VNet acceptance ratios of existing embedding algorithms
without collocation support (such as SecondNet [[16]]). Pre-
clustering turns out to be particularly useful in scenarios
where VNets are large and highly connected. However, we
also show that relatively to direct embeddings (e.g., using
LoCo), pre-clustering suffers relatively more in scenarios with
almost oversubscribed substrate networks where the remaining
resources are fragmented.

Background on VNet Embedding. We study a setting
where the VNet request comes in the form of an (undirected)
graph G = (Vg,Eg) (the “guest graph”), where virtual
nodes Vi and virtual links E are annotated with resource
requirements (e.g., memory or bandwidth). [8] The embedding
problem asks for a mapping of the VNet nodes and VNet
edges onto an (undirected) physical network H = (Vi, Ey)
(also called the “host graph” or substrate network) with certain
capacity constraints on nodes and links. Concretely, each
virtual node © € Vi needs to be mapped to any (and exactly
one) physical node node v € Vg with sufficient capacity,
henceforth referred to by v = u(u) € Vg; but a physical
node may host multiple virtual nodes (subject to capacity
constraints).

Accordingly, each virtual link ¢ = (u,v) € Eg is mapped to
a (possibly empty) path between p(u) and pu(v). We will focus
on unsplittable paths, i.e., a virtual edge e is mapped onto a
single path. However, many of our results are also applicable
in settings where graphs are directed or flows splittable.

II. OPTIMAL PRE-CLUSTERING

Many existing algorithms refer to the possibility to pre-
cluster VNets in order to support collocation. How to pre-
cluster a graph however is often not described. We present
an optimal pre-clustering algorithm, with respect to a given
(potentially exact) estimation of the resource availability in the
substrate network and with respect to the specified objective
function (in our case: overall link resources between clusters).
This algorithm (short: OPTCUT) is based on a Mixed Integer
Program (MIP) formulation. A MIP consists of a linear
objective function and a set of linear constraints. Once a
problem can be cast in this form, standard software solvers
such as CPLEX or Gurobi can be applied to it. While the MIP
is computationally hard to solve in general (and in particular,
the pre-clustering problem can be shown to be NP-hard [6]),
it turns out that for reasonably sized VNets (up to 30 nodes),
optimal solutions can be computed within seconds. However,
note that the performance of a MIP critically depends on how
the MIP is formulated (see, e.g., [S] for an introduction, or
Figure [T] described later in more detail). In the following,
we will present a smart MIP formulation which avoids many
symmetries and yields good solution times. Moreover, the
fact that OPTCUT computes optimal solutions also gives us
the required baseline for studying the limitations of any pre-
clustering algorithm.

OpTCUT works as follows. It has some knowledge or
estimation of the available node (MAXy) and link (MAXE)
resources in the substrate. As an input, the algorithm takes a
VNet topology G = (V, E, W) where W represents weights,
i.e., resource requirements (the constants of the MIP). The
output is a partitioning P = {C,Ca,...,C,,} of the virtual
nodes V' (the variables), such that all nodes in V' are mapped to
exactly one cluster C;, and capacity constraints on the physical
network are respected. Obviously, the cluster will represent the
set of collocated nodes. Our objective is to reduce the amount
of link resources needed, and hence we seek to minimize the
number of inter-cluster links. The links between clusters form
the cut K. Note that the number of clusters m in the partition
is subject to optimization as well: the best number of clusters
is chosen such that the cut is minimized.

Constants:
Set of nodes: \% (1)
Set of edges: ECVXxV ?2)
Weights: W :V UE — R20 @A)
Maximal node resources: MAXy, “4)
Maximal link resources: MAX g (@)
Larger nodes: p:V = 2V (6)

Variables:
Node mapping: allocy : V x V — {0,1} 7
Auxiliary variable: z:ExV — R0 (8)

Constraints:

YveV: Z allocy (v,v') =1 9)

v’ eV
YoeV: > allocy(v,0') <0 10)
v €p(v)
YoeV:
Z allocy (v/,v) - W(v') < allocy (v, v) - MAXy
v'ev
Y(vi,v2) € E,v eV
allocy (v1,v) + allocy (v2,v) < ¢((vi,v2),v)
Y(vi,v2) € E,v € V : allocy (v1,v) > ¢((v1,v2),v)
Y(vi,v2) € E,v € V : allocy (v2,v) > ¢((v1,v2),v)
Yv e Vy:
|:(U1/‘§EEV
-W((vi,v2)) < MAXE

an

12)
13)
(14)

allocy (v1,v) + allocy (v2,v) — 2¢((v1, v2), v):|

15)

Minimize:

s |-

(v1,v2)€E

Z c((vl,vg),”u):| - W(v1,v2) (16)

veVy

Constants (1), (2) and (3) represent the weighted VNet G =
(V, E,W). The maximal link and node resources are given by
Constants (3) and @).

To describe the cluster to which a virtual node belongs, we
use the allocation variable (Variable) that maps a node
to a cluster; that is, the variable will take the value 1 iff. the
node is mapped to the cluster, and 0 otherwise. These sets and
variables are enough to describe the node mapping constraints.

Basic formulation
—— Formulation with order

1 10 100
+

Solving time (s)
1

0.1

-l '

g 15N lg 1f9 21 53 25 27 29
umber of VNet nodes

Fig. 1. Execution times to compute optimal pre-clustering solution, as

function of VNet size and depending on the MIP formulation. For this

experiment, we generated 100 random topologies for each VNet size. (Setup:

Gurobi 5.5 MIP solver on Intel Xeon 15420, 8 x 2.50GHz, 16 GB RAM.)

Constraint (9) ensures that each node is mapped to exactly one
cluster while Constraint guarantees that no cluster exceeds
the maximally available resources.

In order to compute the cut, an auxiliary variable (Vari-
able (8)) can be used which indicates whether both end-
points of a link are mapped to the same cluster. Note that
that the variable does not need to be binary, which is useful
for the execution time. For a proper realization, we use
Constraints (12)), (I3)) and (I4). The variable also allows us to
describe the communication capacity constraint of the clusters
in Constraint (I5).The objective function (Objective (I6))
minimizes resources used for links between clusters.

While the variables and constraints described so far are
sufficient to solve the pre-clustering problem and find an
optimal solution, we can improve the program formulation to
speed-up the computations. To this end, we introduce a total
order p on the nodes V: p is a mapping of a virtual node
v, to the set of virtual nodes which are larger than v. This is
useful to reduce the symmetry—often the main reason for long
execution times. Concretely, we can leverage the total order
p in combination with Constraint (I0). The constraint states
that each node may only be mapped to a partition which is
represented by a node of order smaller or equal than itself.
For example, Nodes 1 and 2 may be mapped to the partition
represented by Node 1, and Nodes 3 and 4 are mapped to the
partition represented by Node 3.

Figure (1] illustrates the impact of the MIP formulation:
without the order p technique, the solving times are almost
two orders of magnitude larger. For VNet sizes smaller than
7 nodes, the execution time is below 0.1 seconds.

III. DIRECT COLLOCATION

Before presenting our direct collocation algorithm LoCo,
we propose a more general virtual network embedding
framework, henceforth simply referred to by METATREE.
METATREE can be used together with many different em-
bedding algorithms. For example, in a wide-area setting, our
framework could be used together with VINE [7] to incorporate
geographic constraints; for fast embeddings in data centers,
it could be used together with SecondNet [16]]; finally, for
collocation-aware embeddings, it could be used together with

1
|

' = 74\ g/ | AN
\

\

Q Has
Meta Info
- Avail res.

Represents
AN
<

Contains Interference
Policy

Fig. 2. METATREE partitions a given substrate hierarchically.

LoCo (described in more detail later).

A. Algorithmic Framework METATREE

METATREE is based on hierarchical partitions of the sub-
strate network. The partition hierarchy can be seen as a
(logical) tree T the root of T is a single-cluster partition
that represents the entire physical network, and its descendant
clusters partition the network into smaller contiguous (i.e.,
connected) component. Generally, the lower in the tree, the
smaller the corresponding clusters (see Figure [2).

At each node v € T of the tree, meta-data is stored that can
guide the embedding process. For example, the meta-data may
include information on the total amount of available resources
in the corresponding subtree or cluster; alternatively, it may
provide additional information, such as topological informa-
tion (e.g., mincut) or the type of workloads running in the
corresponding cluster. The latter information may be useful,
e.g., to learn about potentially interfering workloads [28] (e.g.,
a disk-intensive VNet may not be embedded together with
another disk-intensive VNet, or two services which should
not be executed on the same machine); however, we will
consider scenarios where resources can be isolated well from
each other, and will concentrate on the available resources.

The embedding algorithm starts at the root of 7', and
iteratively proceeds down the tree layers towards the leaves. At
each internal node, the algorithm decides on which cluster of
the corresponding partition to embed the VNet. For example,
if the meta-data stored at the node v € T indicates that there
are still sufficient resources in the sub-cluster represented by
a single descendant of v, the algorithm recursively checks the
corresponding sub-trees; on the other hand, if the VNet is
so large that it cannot be embedded in a sub-cluster, it is
embedded (using any of the algorithms described below) in
the cluster represented by v.

While the choice of cluster is flexible within the METATREE
framework, we in this paper will focus on the acceptance ratio
objective (measured in terms of physical node utilization):
we want to accept and embed as many VNets as possible.
Accordingly, we want to map virtual nodes close together and
maximize the residual capacities. Thus, for the embedding,
the cluster with minimal available resources should be chosen
such that the VNet still fits. Of course, for different objectives,
e.g., minimizing the max load, the opposite strategy is better.

We do not provide any explicit algorithm to compute
the hierarchical partition, but refer the reader to the various
existing algorithms, see e.g., the surveys [6]], [[L3] or the recent
result by Krauthgamer et al. [18]]. Of course, for specific
substrate topologies, tailored and optimized algorithms should
be used. We will later present the algorithm used in our
simulation to cluster the considered data center topologies
(e.g., the FatTree). In general, we will focus on hierarchical
partitions where on the next higher layer, a given cluster is
partitioned into two clusters; clusters of the same layer are
roughly equally sized.

B. Collocation with LOCO

Our collocation algorithm LOCO jointly places virtual nodes
and links. We will keep the description of LOCO simple and
general, and avoid discussions of several (obvious) optimiza-
tions. In particular, note that LOCO can essentially be applied
to any substrate topology. We believe that in this form, LoCo
is best suited to manifest our claims.

In order to embed a virtual network G (the “guest graph”),
first a peripheral start node s € V(G) (a node which maxi-
mizes the distance to all other VNet nodes) is mapped to an
arbitrary substrate node with sufficient capacity. Subsequently,
LoCo maintains the following data structures: a set M of
already mapped virtual nodes (initially, M = {s}), and an
array P of pending virtual nodes which still need to be mapped
(initially, P = (T'(s)) where I'(s) denotes the neighbors of s).
After mapping a new virtual node v € P, LOCO moves u
to M and maps all virtual links {u,v} which connect this
node u to all already mapped virtual nodes v € M. Nodes
neighboring to v which are not part of M or P yet are put
into the pending node array P. This is repeated until all nodes
are mapped.

Concretely, LOCO sorts the pending nodes in decreasing
order of maximal capacity of an incident virtual link connect-
ing the pending node so any mapped node. Ties are broken
by preferring nodes with minimal virtual node capacities. The
intuition behind this approach is that if links with capacities
are mapped first, the cost benefits are potentially higher and
dead ends can be detected faster. Similarly, mapping nodes
with lower demand first has the advantage of being able to
collocate more virtual nodes.

In case of embedding failure, LOCO backtracks over the
alternative substrate nodes on which s could be embedded.
Although it may yield earlier and/or better solutions, we do not
backtrack over other nodes. (In addition, in our simulations,
we set a hard limit of 1s per VNet embedding.)

Let us now elaborate more on the node and link mapping
functions. Both mappings are essentially breadth-first-search
based. When mapping a pending virtual node u with the
corresponding virtual link {u,v} connecting it to a mapped
virtual node v, we first check whether the substrate node on
which v is hosted still has sufficient capacity to host also
u. If this is fulfilled, we additionally perform the following
forward checking: We verify whether there are substrate links
left on that substrate node which have sufficient resources to

Algorithm 1 The LoCo Algorithm
Require: VNet G = (V, E), M = {s} for some s € V(G),

P =([(s))

while |P| > 0 do
sort P (* decreasing link capacities *)
choose u = PJ0] (* next node to map *)
map u (* forward checking *)

map {u,v} V ve M, where {u,v} € E(G)
M=MU{u} and P =P\ {u}

end while

if (embedding failed), backtrack on s

embed the links incident to v (or, if there is capacity to even
host neighbors of v, the corresponding links). Thus, forward
checking avoids unnecessary backtracking by verifying that all
adjacent virtual links can be embedded, before a virtual node
is mapped to a substrate node.

While LoCo performs well as a stand-alone algorithm
already, in the remainder of this paper, we will use it within
the METATREE framework: LOCO will start at the root of the
partition hierarchy and going down the levels, greedily deter-
mines the smallest cluster which contains sufficient capacity
to embed the entire VNet.

IV. EXPERIMENTS

Given our pre-clustering and direct collocation algorithms
OPTCUT and LoCo, we can study the number of embeddable
VNets in a given substrate network in different scenarios. We
have developed a simulation framework which includes several
additional algorithms besides OPTCUT and LoCo. Figure [3]
gives an overview: in a nutshell, we distinguish between VNet
requests which first go through a pre-clustering step and only
then are embedded by some existing embedding algorithm,
and VNets which are embedded directly. The input to our
algorithms is a sequence of VNets arriving over time.

For direct embeddings, besides LOCO, we also consider
the SecondNet (SNet) algorithm from [[16]. As pre-clustering
algorithms, besides OPTCUT, we use the Farhat clustering
heuristic, as well as LOCoO itself, but now only to collocate
nodes. These pre-clustered VNets (the “modified requests”)
are then embedded using the SecondNet algorithm. To avoid
ambiguous terminology we will use LoCo*, OpTCUT* and
Farhat* to denote the combination of SecondNet and the pre-
clustering algorithms.

In general, as a main performance criterion, we will focus
on the number of simultaneously embeddable VNets. More
specifically, since different VNets have different sizes, we
propose to study the utilization of the physical substrate
network as a yardstick for our evaluation: the utilization is
defined as the ratio of the node resources actually used by the
VNets in the physical network, divided by the overall amount
of physical node resources (the overall “capacity”).

Pre-Clustering Heuristics. In addition to (and for compari-
son with) our pre-clustering algorithm OPTCUT, we also stud-
ied the performance of pre-clustering heuristics (without qual-

ADD REQ1|ADD REQ2 |ADD REQ3|w |[REM REQ1|ADD REQ4
Request »<—(
sequence c&o—o cmv ogcﬁo o C&—O o0
Substrate
Topologies
Pre-
FatTree clustering
BCube
Modified Requests Unmodified Requests
Embed.
DCell Algorithm| | SNet || SNet || SNet SNet
Fig. 3. Overview of experiment pipeline.

ity guarantees). In particular, we use Farhat’s algorithm [13]]
which is based on graph growing. Like most graph growing
algorithms, Farhat’s algorithm is very fast. To make the initial
algorithm suitable for our problem, we modified the version
for graphs presented by Elsner [13]]. Instead of aiming for a
specific number of clusters like the original algorithm does,
we group nodes together until either: (1) the next node which
should be added to the current cluster is too big to fit into the
cluster; in this case we generate a new cluster according to
the definition of the algorithm. Or: (2) all nodes are mapped
to a cluster. In this case the execution finished.

Alternatively, we can also use LOCO itself to compute a
heuristic pre-clustering: we try to embed the VNet request on
a substrate with the estimated capacity using LOCO. Since the
resulting placement will be collocation-aware, we interpret the
sets of virtual nodes mapped to the same substrate node as a
cluster. To pre-cluster the virtual network with LOCO we have
to generate a simulated substrate. This substrate consists of
nodes with MAX;, resources, which are connected to a central
node with no resources. All links have capacity MAXE.

Request Model. In general, we model VNet topologies
as random graphs of size between 2 to 10 nodes (chosen
uniformly at random). Two types of random graphs are con-
sidered: (1) General random graphs where any two nodes are
connected with probability p = 0.15; in case a VNet is not
connected, another random topology is generated. (2) Random
binary trees.

A VNet request must either be immediately accepted and the
VNet embedded, or the request is rejected. We do not consider
access control aspects, and all algorithms in our simulation
will accept a VNet request whenever it can be embedded. In
order to be able to compare different executions, the same
generated VNet arrival sequence is fed to all algorithms.

The duration of a VNet follows an exponentially distributed
random variable with mean A = 10. If not stated differ-
ently, we consider a high-load scenario where initially and
before starting the simulation, a maximal number of VNets
is embedded. Subsequently, whenever the duration of a VNet
expires, we immediately schedule a new random VNet request.

Depending on this VNet requests size, it may or may not be
embeddable; if the former is the case, we repeat generating
VNet requests until a request cannot be embedded anymore.
At this point we measure the utilization. Independent of the
elapsed time between two measurment points, we treat all
measurement points as equal.

If not stated otherwise, each experiment is repeated until
the experiment time exceeds 500\ . The substrate topology is
a FatTree [1] with 432 hosts, connected by a set of 12-port
switches. Each physical resource (node and link) has a capacity
of 4 units, while VNet elements (nodes and links) have a de-
mand of one unit. As shown in [14], this combination of node
and link resources yields the most interesting tradeoff, where
collocation can impact the performance; of course relatively
lower link resources only improve collocation benefits further.
VNets are general graphs and the substrate is a FatTree with
432 nodes. However, for comparison, we also implemented
the data center topologies BCube [15] and DCell [17].

METATREE Framework. In order to tailor our embedding
framework (Section [[II) to the specific substrate topology,
we use the following approach. For all topologies considered
in our simulations, the FatTree, the BCube, and the DCell
topology, to compute the next partition with larger clusters,
we exploit their recursive definition to repeatedly and greedily
merge the two smallest clusters from the previous partition. As
the approach is reminiscent of Huffman coding procedure, we
will henceforth refer to the algorithm by HUF.

We leverage the symmetries in the FatTree topology by
using the hop-count as a metric for the partition, which
theoretically generates a perfect hierarchical decomposition.
However, in order to be able to tune the cluster size at a
finer granularity in larger FatTree topologies, HUF generates
additional clusters and adds them to the hierarchical decompo-
sition. These clusterings are generated in a greedy manner: For
each partition on layer > 1, we consider the cluster sizes at the
next lower layer. We then repeatedly merge the two smallest
clusters in the list (in a “Huffman-tree manner”), until only one
cluster is left. Note, that for large instances, where maintaining
the state of all this partitions might hit resource limitations, we
can simply adjust the number of partitions which are merged
together, in order to reduce the total number of partitions.

On BCubes, a similar HUF procedure can be used. A BCube
is defined recursively: an (n, k)-BCube (where n is the number
of ports per switch and k is the maximum level of hierarchy)
consists of multiple (n, k — 1)-BCubes. Repeatedly using all
smaller BCubes as clusters will result in an perfect hierarchical
decomposition. Using this as a basis we can again generate
clusters in the greedy manner as described above. Also DCell
topologies can be clustered analogously.

A. The Benefit of Collocation

We first investigate how the utilization achieved by the
different embedding algorithms depends on the possibility
to collocate virtual nodes from the same VNet. Figure [
compares the performance of SecondNet with our different
pre-clustering algorithms LoCo, OPTCUT and Farhat; we

o
-
©
o
c
©
88
©
N
= ol
o
> --- LoCo
~ — OptCut*
=] ---- LoCo*
Farhat*
=] - SecondNet
o
0 200 600 800

. 400
Time step
Fig. 4. Effective resource utilization of LOCO and SecondNet under different

pre-clustering algorithms and without collocation. (Order of algorithms in
legend corresponds to order of curves.)

also plot the performance of SecondNet and LoCo without
pre-clustering. (The order of the algorithms in the legend
corresponds to the order of the curves.)

We can see that any pre-clustering algorithm yields sig-
nificantly higher utilizations compared to scenarios where
SecondNet does not modify the input. However, a direct
collocation algorithm such as LOCO outperforms any other
algorithm: compared to SecondNet without PC, the resource
utilization is improved by almost 100% (LOCO achieves an
absolute utilization of 100% while the utilization of SecondNet
is around 50%); however, LOCO also outperforms any PC
algorithm by between 10%-20%.

Among the pre-clustering algorithms, OPTCUT performs
the best, but the utilization of LOCO is almost as high. In
fact, the figure shows that sometimes LOCO pre-clustering is
even slightly better. This can be explained by the fact that:
(1) OPTCUT is only optimal w.r.t. the amount of resources on
the edge cut; if bandwidth is not the bottleneck, this does not
affect the embedding quality. And (2) OPTCUT is optimized
for a single VNet embedding, but not for multiple requests
arriving over time. Thus, there exists a price of being online
and near-sighted in time.

The quality of the pre-clustering does depend on the specific
algorithm. Since the experiments in Figure ff] were performed
on VNet requests which are easy to pre-cluster (random VNet
size with average 6), we also conducted a series of experiments
to investigate the performance of the proposed algorithms
in larger networks. (Note that by keeping the connection
probability p, this also increases the expected number of links
per node.) Figure 5| shows the results for Figure @] but now for
VNets of a given (fixed) size.

As expected, the larger the VNet in terms of nodes and
links, the lower the utilization in general. However, the loss
differs from algorithm to algorithm. While the utilization of
LoCo decreases from 0.86 to 0.37, SecondNet with OPTCUT
drops from 0.77 to 0.63. (These number represent median
and average values at the same time: they all differ by less
then 0.005.) For VNets with eleven or more nodes, a good
pre-clustering (at least with OPTCUT) becomes relatively
more useful, as good edge cuts are still found in the VNet;
the bad performance of Farhat is due to its link-bandwidth
agnostic collocation which leads to clusters with too high in-

Size 10 ° Size 11 ° Size 12
= i —
—_
3T — A= 3 =
5 = = = —
=3 _ 3 = =
Ng = < —_ <
£5 3 = 3
2 —_ — — =
N N v N —]
S S S =
= =] =
Q N % x @ ° Q kS N @ © Q N ks ko o
o = 5 o o
2 ¢ ¢ £ 3 2 ¢ 8 £ 3 e ¢ 8 £ 3
o - o j=3 - o j=% - @
o _. L o . w o . w
o Size 13 o Size 14 o Size 15
3 3 3
@ «© @
S. = o8 = o
© - © © =
= = — 5 —
§° = = ° °
S, = = -
EX S ol = .
= == |« |« —_—
° = ° °
o o — o =
g L T8 - § £ &% § - § & % % §
L % L T) L T
g2 3 ¢ £ 3 g 8 ¢ £ 7 2 38 9 £ 3
§ - €& § - & § - &
Fig. 5. Utilization under LoCo , different pre-clustering algorithms

(OPTCUT*, LOCO™* and Farhat*), as well as a “stand-alone” non-collocating
SecondNet (SNet).

SecondNet LoCo
o
— %%??
=
© @ B
g ° =
- =
E =
5 e =
L1 =SS0 £2
Stze=TT 7 3=
04 06 08 1 12 04 06 08 1 1.2
OptCut* LoCo* Farhat*
o
===T= L
- =+ I 7" o
ég %—I- 3 v%** 2 éf%A;
So o = o ="
= 2 S = S =N
5 = = =
e <] o+ < T
o | = o | - &
=
04 06 08 1 1.2 04 06 08 1 1.2 04 06 0.8 1 1.2
Load
Fig. 6. Utilization of embedding algorithms under different loads. (Al-

gorithms may perform slightly better than the diagonal due to minor load
variations.)

coming/out-going bandwidth.

In conclusion, we find that if done properly (i.e., if good
clusters are computed, e.g., with OPTCUT), pre-clustering can
be a very attractive solution, especially under highly connected
and large VNets. This is particularly interesting as OPTCUT
can be used in combination with any other embedding algo-
rithm.

Figure [6] shows the embedding performance of all suggested
algorithms as a function of network load. In order to generate
a load of 2%, we embed as many VNets as needed. Ideally, the
utilization under load % is =%, see the diagonal. However,
The vertical line at x = 1 represents the point at which all
other experiments in this paper are executed. We see that
between a load of 40% and 80%, SecondNet with OPTCUT
outperforms all other algorithms, confirming the benefit of
pre-clustering. For higher loads, LOCO performs best. This
is a hint that LOCO is able to better exploit the residual node
resources than SecondNet with OPTCUT, as the pre-clustering
algorithm is agnostic to the topological fragmentation of the
remaining available resources.

B. Limitations of Pre-Clustering

Our experiments so far confirm that pre-clustering can be
very attractive for improving the performance of existing
embedding algorithms. In particular, Figure [5] suggests that
our pre-clustering algorithm performs very well for complex
and large VNet with many virtual links. However, as we will
discuss in this section, pre-clustering also has its limitations.
In particular, while pre-clustering handles complex VNets
well, it suffers from inaccurate information on the (possibly
fragmented) available resources in the substrate network.

Recall that compared to an algorithm like LoCoO which
can collocate virtual nodes directly, pre-clustering divides
the embedding process into two stages: the pre-clustering
algorithm (henceforth called ALGI1, e.g., OPTCUT) and the
subsequent embedding algorithm (ALG2, e.g., SECONDNET).
This may lead to a situation where ALG1 had a specific and
compact embedding in mind (i.e., in some part of the substrate
network), but a rather different embedding is eventually chosen
by ALG2. Moreover, in case ALG2 was programmed by
someone else, or comes as a blackbox (e.g., is binary), ALG1
may not have an accurate and up-to-date view of the current
network state. Rather, there exists an information gap.

From a different perspective, the pre-clustering discussion
may also play a role in a scenario where ALG1 and ALG2 are
executed by different economic entities. For example, when
specifying the request, a customer may pro-actively pre-cluster
its VNet request or determine the size of each virtual node, in
order to increase the likelihood of collocation; the customer
however faces the problem that while VNets with too large
virtual nodes may not be embeddable by the cloud provider
(running ALG2), too small virtual nodes may lead to a non-
local VNet which may increase the execution times.

In order to investigate the impact of the two-stage em-
bedding where ALGl may have an inexact view of the
physical network, we run different pre-clustering algorithms
with different estimations of the available resources in the
physical network.

In the following, we will focus on VNets describing random
binary trees of size two to twenty nodes (uniformly at random).
Due to the low degree of the virtual nodes, it is ensured that
theoretically, these VNets can be embedded in the substrate.
Figure (left) shows the embedding performance of the
different proposed algorithms.

Naturally, in this scenario where there is much collocation
potential, all collocation-aware algorithms perform well. The
reason why SecondNet performs better with LOCO than with
OPTCUT is the distribution of cluster sizes (Figure [/| right):
LoCo greedily groups as many virtual nodes as possible,
generating one large cluster and many small ones. In contrast,
the cluster of OPTCUT differ in size as the algorithm only
focuses on the edge cut size.

Pre-clustering algorithms are limited by inaccurate resource
estimations in the substrate network (MAXy and MAXEg).
Figure [§] shows the embedding performance for SecondNet
combined with the three pre-clustering algorithms, as a func-
tion of the estimated resources.

o Embedding performance x Distribution of node size
o N
0 [%2]
S §§
[
88 3
T 8| m LoCoPC
N << | @ MPPC
=< o
5o 5
--- LoCo 583
~ - LoCo* 5%
°© — OptCut* P4
Farhat*
= SecondNet
o
0 200 400 600 800 e 3 5 6 7 8 9 10

Time step Slze of virtual node

Fig. 7. The left figure shows the embedding performance for random graph
VNets with 2 to 10 nodes and on a 432 host FatTree substrate. The right
figure shows the distribution of the cluster sizes generated by OPTCUT and
LoCo*.

OptCut* LoCo* Farhat*

1
1.0
1

+h

= = =
= 1+ T T
= ==

= =

0.8
I
0.8
b
0.8

Utilization
i

0.6
0.6
0.6

04
4

= == |z

- - = =
2

10 87654321010 .87654321010
Estimated Resources

Fig. 8. Pre-clustering performance under different resource estimations. The
x-axis shows how much of the actual node size (10) is used as the estimated
node size.

Interestingly at first sight, the results suggest a particularly
bad behavior of LOCO for an estimated resources capacity
of 6. The reason for this is that every substrate node can
only host one cluster containing 6 nodes, and LoCo will
generate as many 6-node clusters as possible. However for
MAXy, = MAXE =5 all algorithms generate good solutions.
Since all discussed algorithms tend to generate clusters with
the maximum possible size, we will end up with many
5 node clusters, which can be combined pairwise to fully
utilize a node, which results in a high overall utilization. The
good performance of LOCO could not be achieved with little
information exchange between ALG1 and ALG2.

C. Other Substrate Topologies

Note that both our embedding framework in general as well
as the collocation algorithm LOCO in particular do not rely on
any specific substrate topology. All we need for the framework
is a valid hierarchical partition of the substrate network. To
complement the FatTree results, we have experimented with
alternative substrate networks, namely with BCube and DCell
topologies (using the partitions described before).

In general, we find that most of our insights so far are also
valid for BCube and DCell topologies. To give one specific
example, we compare, in Figure 0] a 12-port FatTree with
a 8-port 2-layer BCube. To keep the resources at each node
comparable, we initialized the FatTree with a resource capacity
of 6 on each node and link, and the BCube with a capacity of
6 on each node and a capacity of 2 on each link, since hosts
have three attached links for the given parameters. Clearly, the
results indicate a very similar performance.

BCube FatTree
=} p— <
- == a4 T ==
—_—
- — © !
P — =
o == I o = _i_
59 g
=0 i
g
E 3 —
35©° . =
= T
— o~
S IS
<
g S
) P! + P =
) ¥ P P = S B Q = L7}
3 o = Q z
e 3 &8 &2 =z S 2 2 £ &
a = o = 7] Q i} (]
=3 3 S o [
o i

Fig. 9. Comparison of substrate topologies.

V. RELATED WORK

The survey by Chowdhury et al. [9] gives a good intro-
duction to network virtualization. In [4], Belbekkouche et
al. recently collected and compared the state-of-the-art VNet
embedding algorithms. We refer the reader to these papers
for a more complete review of the literature in the field.
Technologically, today, the question of how to realize VNets is
fairly well-understood (see, e.g., [12] for a Software-Defined
Networking perspective).

The VNet embedding problem has been studied from many
different angles: there exist offline [20] and online [3]] algo-
rithms; while some algorithms rigorously compute optimal
solutions, sometimes even supporting VNet migration and
reconfiguration [25], due to the computational hardness of the
problem, much literature focuses on heuristics [23].

We compare our work to the SecondNet algorithm presented
in [[16]. Our algorithm LOCO can be seen as an instance
of a graph growing algorithm, and in this respect has sim-
ilarities with the subgraph isomorphism detection algorithm
by Lischka and Karl [19]. However, in contrast to [19]], our
algorithm short cuts unnecessary backtracking steps through
its forward checking technique. Accordingly, the algorithm
is faster, already without the METATREE framework. While
there already exist algorithms that directly support collocation,
e.g., [25] or [L1]], we are not aware of any literature comparing
the collocation benefits, also from the perspective of pre-
clustering. Moreover, our algorithm LOCO is attractive for its
low runtime, especially in combination with METATREE. To
the best of our knowledge, any existing embedding algorithm
can be used in combination with our PC algorithm OPTCUT.
We are not aware of any optimal pre-clustering algorithm
yielding low runtimes (e.g., by symmetry breaking).

VI. CONCLUSION

The main lessons from this paper are that (1) using our
symmetry breaking MIP formulation optimal pre-clusterings
can be computed within a second even for large VNets with
up to 30 nodes, (2) pre-clustering increases the number of
VNets that can be hosted simultaneously on a given substrate
network; however (3) unknown fragmentation of the residual
resources constitutes a problem and already a simple algorithm
such as LoCo can outperform a rigorous pre-clustering in
combination with, e.g., SecondNet. Moreover, (4) the gains
depend on the size and connectivity of the VNet. Finally,

we have introduced (5) a VNet embedding framework which
cannot only speed up the embedding runtimes by reducing
the size of the to be considered substrate, but also improve
the embedding itself by providing additional metadata about
the network state.

Acknowledgements. The authors would like to thank
Matthias Rost. Research is supported by the EU projects
BigFoot and OFELIA, and a German Software Campus grant.

REFERENCES

[1] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data
center network architecture. In Proc. ACM SIGCOMM, 2008.

[2] B. Hindman et al. Mesos: a platform for fine-grained resource sharing
in the data center. In Proc. USENIX NSDI, 2011.

[3] Nikhil Bansal, Kang-Won Lee, Viswanath Nagarajan, and Murtaza Zafer.
Minimum congestion mapping in a cloud. In Proc. ACM PODC, 2011.

[4] A. Belbekkouche, M. Hasan, and A. Karmouch. Resource discovery
and allocation in network virtualization. IEEE Communications Surveys
Tutorials, (99):1-15, 2012.

[5] Dimitris Bertsimas and Robert Weismantel. Optimization over integers.
Dynamic Ideas, 2005.

[6] Bradford L. Chamberlain. Graph partitioning algorithms for distributing
workloads of parallel computations. Technical report, 1998.

[71 K. Chowdhury, Muntasir Raihan Rahman, and Raouf Boutaba. Virtual
network embedding with coordinated node and link mapping. In Proc.
INFOCOM 2009 and IEEE/ACM Trans. Netw. (ToN) 2012, 2012.

[8] Mosharaf Kabir Chowdhury and Raouf Boutaba. A survey of network
virtualization. Elsevier Computer Networks, 54(5), 2010.

[9] NM Chowdhury and R. Boutaba. A survey of network virtualization.

Computer Networks, 2009.

P. Costa, M. Migliavacca, P. Pietzuch, and A. L. Wolf. Naas: Network-

as-a-service in the cloud. In Proc. USENIX Hot-ICE Workshop, 2012.

D. Dietrich, A. Rizk, and P. Papadimitriou. Multi-domain virtual network

embedding with limited information disclosure. In IFIP Networking

2013 Conference.

D. Drutskoy, E. Keller, and J. Rexford. Scalable network virtualization

in software-defined networks. Internet Computing, IEEE, (99):1, 2012.

Ulrich Elsner. Graph partitioning - a survey. Survey, 1997.

C. Fuerst, S. Schmid, and A. Feldmann. On the benefit of collocation in

virtual network embeddings (short paper). In Proc. CLOUDNET, 2012.

C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and

S. Lu. BCube: A high performance, server-centric network architecture

for modular data centers. In Proc. ACM SIGCOMM, 2009.

C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu, and

Y. Zhang. SecondNet: A data center network virtualization architecture

with bandwidth guarantees. In Proc. 6th CoNEXT, 2010.

Chuanxiong Guo, Haitao Wu, Kun Tan, Lei Shi, Yongguang Zhang, and

Songwu Lu. DCell: A scalable and fault-tolerant network structure for

data centers. In Proc. ACM SIGCOMM, pages 75-86, 2008.

Robert Krauthgamer, Joseph (Seffi) Naor, and Roy Schwartz. Partition-

ing graphs into balanced components. In Proc. 20th Annual ACM-SIAM

Symposium on Discrete Algorithms (SODA), pages 942-949, 2009.

[19] Jens Lischka and Holger Karl. A virtual network mapping algorithm
based on subgraph isomorphism detection. In Proc. VISA, 2009.

[20] J. Lu and J. Turner. Efficient mapping of virtual networks onto a shared
substrate. In Technical Report, WUCSE-2006-35, Washington University,
2006.

[21] Jeffrey C. Mogul and Lucian Popa. What we talk about when we talk

about cloud network performance. Computer Communication Review,

42(5):44-48, 2012.

Ripal Nathuji, Aman Kansal, and Alireza Ghaffarkhah. Q-clouds:

Managing performance interference effects for qos-aware clouds. In

Proc. EuroSys, 2010.

Robert Ricci, Chris Alfeld, and Jay Lepreau. A solver for the network

testbed mapping problem. SIGCOMM CCR., 33(2), 2003.

Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage.

Hey, you, get off of my cloud: exploring information leakage in third-

party compute clouds. In Proc. 16th ACM CCS, pages 199-212, 2009.

Gregor Schaffrath, Stefan Schmid, and Anja Feldmann. Optimizing

long-lived cloudnets with migrations. In Proc. IEEE/ACM UCC, 2012.

Guohui Wang and Eugene Ng. The impact of virtualization on network

performance of amazon ec2 data center. In Proc. INFOCOM, 2010.

Alan Williamson. Has amazon EC2 become over subscribed? |http://alan.

blog-city.com/has_amazon_ec2_become_over_subscribed.htm| 2013.

Q. Zhu and T. Tung. A performance interference model for managing

consolidated workloads in qos-aware clouds. In CLOUD, 2012.

[10]
(1]
(12]
[13]
[14]
[15]
(16]

(17]

[18]

[22]

(23]
[24]

[25]
[26]
(27]
[28]

http://alan.blog-city.com/has_amazon_ec2_become_over_subscribed.htm
http://alan.blog-city.com/has_amazon_ec2_become_over_subscribed.htm

	Introduction
	Optimal Pre-Clustering
	Direct Collocation
	Algorithmic Framework MetaTree
	Collocation with LoCo

	Experiments
	The Benefit of Collocation
	Limitations of Pre-Clustering
	Other Substrate Topologies

	Related Work
	Conclusion
	References

