
Specificity vs. Flexibility:

On the Embedding Cost of a Virtual Network

Arne Ludwig, Stefan Schmid, Anja Feldmann
Telekom Innovation Laboratories & TU Berlin, Germany

{aludwig,stefan,anja}@net.t-labs.tu-berlin.de

Abstract—The virtualization trend in today’s Internet decou-
ples services from the constraints of the underlying physical
infrastructure. This decoupling facilitates more flexible and
efficient resource allocations: the service can be realized at
any place in the substrate network which fulfills the service
specification requirements.

This paper studies such flexibilities in the context of virtual
network (VNet) embeddings. The network virtualization paradigm
envisions an Internet where users can request arbitrary VNets
from a substrate provider (e.g., an ISP). A VNet describes a set of
virtual nodes which are connected by virtual links; both nodes
and links provide certain QoS or resource guarantees. While
some parts of the VNet may be fully specified (e.g., the node and
link locations or technologies), other parts may be flexible or left
open entirely.

We analyze how flexible specifications can be exploited to
improve the embedding of virtual networks. We define a measure
for specificity and introduce the notion of the Price of Specificity
(PoS) which captures the resource cost of the embedding under
a given specification. We identify parameters on which the Price
of Specificity depends, and evaluate its magnitude in different
scenarios.

For example, we find that the PoS can be large even in small
settings, and depends both on the substrate size as well as—to a
larger extent—the load of the substrate. Moreover, while skewed
distributions of resources can yield better allocations, they entail
the risks of a high PoS if the demand does not perfectly match.
We also provide a formal analysis of the impact of migration, and
show that the option to migrate can sometimes increase resource
costs.

I. INTRODUCTION

Virtualization is a central design principle in the Internet

today. While end-system virtualization has already been very

successful in the context of datacenters and cloud computing,

the virtualization trend now spills over to the network. A recent

example is Google’s G-Scale network [1], a Software Defined

Networking (SDN) implementation which allows to flexibly

and securely manage wide-area network traffic.

Even the typically more conservative Internet Service

Providers (ISPs) have become interested in the opportunities

of virtualization. Especially network virtualization [9] can be a

way for ISPs to innovate their network as well as to offer novel

services: many ISPs do not only have a large and fast network,

but also many geographically distributed resources such as

storage and computation (e.g., in their “micro-datacenters”, the

Points-of-Presence and the street cabinets). If these resources

can be used (and/or leased) for new services, the infrastructure

can be monetarized better and its efficiency is improved.

Note that in contrast to other players in the Internet, e.g.,

Content Distribution Network (CDN) providers, ISPs have the

advantage of having a detailed view of their infrastructure and

the customers demand; this knowledge can be exploited to use

the resources where and when they are most useful.

In this sense, we envision that in the future, ISPs will offer

on-demand virtual networks (VNets): networks which can be

flexibly specified not only in terms of latency and bandwidth

requirements along the virtual links, but also in terms of

storage and computational requirements at the virtual nodes

(e.g., at the Points-of-Presence where they are mapped to).

The virtual network provides isolation from other VNets and

appears as a “dedicated network”. The resulting Quality-of-

Service (QoS) guarantees can be interesting for a business

customer who likes to set-up a high-quality multimedia con-

ference call, or a startup company which cannot afford its own

infrastructure yet.

In a fully virtualized resource infrastructure, the location

where a VNet is realized (or embedded) is only restricted

by the VNet request specification. For example, if a customer

insists that his VNet nodes run on a 64-bit architecture, the

choice of resources is restricted and the VNet may be more

expensive to realize compared to a situation where also 32-

bit architectures are allowed. Similarly, if a customer requires

the VNet to be realized over storage resources in Switzerland

only, the VNet embedding can be more expensive than if

the requirements are less restrictive and allow, e.g., to exploit

Europe-wide storage sites.

Our Contribution. This paper studies the impact of speci-

ficity in the context of network virtualization. We assume

a two-player setting consisting of a customer (who requests

specific VNets) and a provider. The customer could for exam-

ple be a startup company or even a Virtual Network Provider

(VNP). The provider can be a Physical Infrastructure Provider

(PIP), e.g., an ISP, or again a VNP.

We assume that the customer specifies certain requirements

of the VNet, and the provider will try to realize the VNet in a

most resource-efficient manner subject to the customer’s speci-

fications. We investigate the tradeoff between VNet specificity

and embedding costs. In order to avoid artifacts from heuristic

or approximate VNet solutions, our methodology is based on

optimal embeddings. Accordingly, we present a simple optimal

algorithm to compute VNet embeddings, which also supports

migration.

We present a formal model to measure the specificity σ of a

given VNet request, and then introduce the notion of the Price

2

of Specificity (PoS). PoS(σ) captures the increased embedding

cost of a given VNet request of specificity σ. We then identify

different types of specifications (such as requirements on re-

source types and vendor, geographical embedding constraints,

or whether migration is allowed after an initial placement),

and analyze their influence on the VNet allocation cost. It

turns out that the PoS depends both on the substrate size as

well as the load of the substrate, while the load has a larger

impact than a proportionally similar change of the VNet size;

sometimes, the embedding cost can be larger than two (i.e.,

PoS(σ)>2), even in small settings. Our results also confirm the

intuition that the relationship between the distribution of the

requested and the supplied resource types is important: While

skewed distributions of resources can yield better allocations,

they entail the risks of a high PoS if the demand does not

perfectly match the supply. Although migration is regarded

as one of the advantages of network virtualization and we

generally observe positive results in our experiments, we will

also present a scenario where migration can also increase the

resource costs (and hence the Price of Specificity). This is

shown in a first formal analysis of the PoS.

We believe that our evaluation not only sheds light onto

the resource costs of a VNet in different scenarios (and hence

in some sense, the real “value” of a resource) but can also

provide insights on how to structure a substrate network in

order to increase the number of embeddable networks (and

reduce the Price of Specificity) at minimal cost.

In this sense, we regard our work as a first step towards a

better understanding of the economical dimension of the VNet

embedding problem, and we provide a short discussion of its

limitations and further directions.

Paper Organization. The upcoming section (Section II)

provides some relevant background information on the envi-

sioned network virtualization architecture. Section III presents

our optimal embedding algorithm FlexMIP. The Price of

Specificity is introduced formally in Section IV. Section V

evaluates the Price of Specificity in different scenarios. We

extend our discussion and analytically study the use of mi-

gration VI. After reviewing related work in Section VII, we

conclude our paper in Section VIII.

II. THE AGE OF FLEXIBLE EMBEDDINGS

Network virtualization has the potential to change Internet

networking by allowing multiple, potentially heterogeneous

and service-specific virtual networks (VNets) to cohabit a

shared substrate network. This section first discusses some

economical implications of the paradigm and the roles en-

visioned in our own network virtualization prototype archi-

tecture [25], and subsequently formally introduces the VNet

embedding problem. Finally, we quickly discuss how VNet

specifications can be described in a standardized manner.

Economic Roles. We envision a network virtualization en-

vironment where services are offered and realized by different

economic roles, see [25] for a detailed discussion. In a nutshell,

we assume that the physical network, or more generally: the

substrate network, is owned and managed by one or several

Physical Infrastructure Providers (PIP) while virtual network

abstractions are offered by so-called Virtual Network Providers

(VNP). VNPs can be regarded as resource brokers, buying

and combining resources from different PIPs. The virtual

network is operated by a so-called Virtual Network Operator

(VNO). Finally, there is a Service Provider (SP) specifying

and offering a flexible service.

In such an environment, a service is realized in multiple

steps, and the application or service specifications are com-

municated from the SP down the hierarchy to the PIP. While

the SP may specify the service on a high level (e.g., regarding

maximally tolerable latencies experienced by users accessing

the service), the specification is transformed by the VNP to a

VNet topology describing which virtual node resources should

be realized by which PIP and how to connect; in other words,

the VNet is embedded by the VNP on a graph consisting of

PIPs. The PIP then transforms the specification into a concrete

VNet allocation / embedding on its substrate network.

Depending on the specificity of the request obtained from

the preceding role in the hierarchy, a VNP or PIP provider

can optimize the allocation for its needs. In this paper, we are

mainly interested in the question of how and to what extent

a PIP can exploit the specification flexibilities of a VNet to

save on embedding resources.

VNet Embeddings. We represent the substrate network as a

graph GS = (VS , ES) where VS represents the substrate nodes

and ES represents the substrate links. Also a VNet request

comes in the form of a graph, represented as GV = (VV , EV)
(VV are the virtual nodes, EV are the virtual links). This VNet

needs to be embedded on GS : each virtual node of GV is

mapped to a substrate node, and each virtual link is mapped

to a path (or a set of paths). Figure 1 illustrates an example.

For simplicity and to focus on the specificity, throughout this

paper, we will study undirected and unweighted VNets only,

i.e., we assume that each node v ∈ VV and each link e ∈ EV

has a unit capacity. Our approach can easily be extended to

weighted VNets.

VNet Substrate

vn1

vn2 sn3 sn4

sn2

sn1

sn5

embedding

VNet Substrate

vn1

vn2 sn3 sn4

sn2

sn1

sn5

Fig. 1. Visualization of a VNet embedding: the 2-node VNet on the left is
mapped to the 5-node substrate network. Each virtual node of the VNet maps
to a substrate node, and for the realization of the virtual link resources are
allocated along a path.

We will consider the following embedding cost model.

Definition II.1 (Embedding Costs). Let Π(e) = {π1, π2, . . .}
for some e ∈ EV denote the set of substrate paths over which

3

e is realized (i.e., embedded). Let ω(π) for some π ∈ Π(e)
denote the fraction of flow over path π, and let λ(e) denote the

length of e in terms of number of hops. The cost of embedding

a VNet GV = (VV , EV) on a substrate GS is defined as

Cost =
∑

e∈EV

∑

π∈Π(e)

ω(π) · λ(e)

In other words, the allocation cost is simply the weighted

distance of the different paths used by the virtual edges.

Specifying VNets. VNets can be specified in several ways,

and the results in this paper do not depend on any specific

language. However, for a concrete example, we refer the reader

to the detailed description of the resource description language

used in our prototype [24].

III. OPTIMAL VNET ALLOCATION

In order to compute optimal VNet embeddings and to ex-

ploit the specification flexibilities, we developed the FlexMIP

algorithm. FlexMIP is a Mixed Integer Program (MIP), and is

described in Figure 3. It is a compact variation of the algorithm

used in our network virtualization prototype architecture [25].

One difficulty of the FlexMIP is that, unlike in the for-

mulation of classic multi-commodity flow problems, the end-

points of virtual links are variables as well and subject to

optimization. Interestingly, the problem can still be formulated

with linear constraints only, and even without using big-M

constraints which can be harmful for the performance of a

branch-and-bound algorithm (due to the inefficient relaxation).

(See [14] for more technical background on these aspects.)

Concretely, the structure of FlexMIP is as follows. The

constants describe the substrate and the VNets topologies

including their capacities and requirements respectively. Only

one full-duplex link can exist between two nodes. There is only

one set of substrate vertices/edges (Vs, Es) and exactly one set

of virtual vertices/edges per VNet request (Vv(r), Ev(r)). The

migration cost for virtual nodes is given by Migration Cost.

To distinguish between VNnet node specifications, we use the

constants Possible Placements. If a substrate node fulfills all

VNet node specifications, it is a possible placement; otherwise

the VNet node cannot be embedded there. Node Mapping and

Flow Allocation are embedding variables. A VNet link can

be split in flows and mapped on several links while a VNet

node can only be mapped to exactly one substrate node. Each

Node Mapped ensures that all VNets are embedded completely

on a suitable substrate node and the Feasible constraint is

guarantees the resources on these nodes. Communication in

both directions is provided and the capacity boundary on

each link is formulated by Realize Flows. Guarantee Link

Realization guarantees that for each VNet link the needed

resources are allocated on all substrate links. Outgoing traffic

is positive and incoming traffic negative. For the substrate

node where a VNet link starts, the outgoing traffic has to

match exactly the VEdge Demand; at the substrate node where

the link terminates, the incoming traffic has to match the

negative VEdge Demand. The links in-between are forced to

preserve the traffic and therefore must have the same amount

of incoming and outgoing traffic concerning one VNet link.

The objective function is to minimize the embedding cost

which in our case is the Flow allocation.

IV. THE PRICE OF SPECIFICITY

To study the Price of Specificity, we consider the following

model. We assume that each substrate node vS ∈ VS of

GS = (VS , ES) can be described by a set of k properties

P = {p1, . . . , pk}, e.g., the geographical location (e.g., data

center in Berlin, Germany), the hardware architec-

ture (e.g., 64-bit SPARC), the operating system (e.g., Mac

OS X), the virtualization technology (e.g., Xen), and so on.

The specific property p ∈ P of vS can be realized as

a specific base type tvS
(p). For example, the set T (p) of

base types for an operating system property p ∈ P may be

T (p) = {Mac OS X,RedHat 7.3,Windows XP}. (Note

that if not every substrate node features each property, a

dummy type not available can be used.)

nodetype

t0,0

t1,0 t1,1

t2,0 t2,1 t2,2 t2,3

Fig. 2. Example of a binary hierarchical specification: the VNet node type
of a property can be chosen from different specificities. A type of a certain
layer allows an embedding on a substrate node with a type of a descendant
node. The types for each property of the substrate nodes are always chosen
from the leaves.

Similarly, the VNet GV = (VV , EV) comes with a certain

specification of allowed types. While the substrate nodes VS

naturally are of specific base types, VNet specifications can

be more vague. For example, the types T (p) can often be

described hierarchically as seen in Figure 2: the location

Berlin can more generally be described by Germany,

Europe, or ? (don’t care); or instead of specifying the

operating system Mac OS X, a VNet may simply require a

Mac.

Concretely, we assume that each virtual node vV comes with

a specification spec(vV) ⊆ T (p1) × . . . × T (pk) of allowed

type combinations for the different properties. The substrate

node vS to which vV is embedded must fulfill at least one

such type combination.

Definition IV.1 (Valid Embedding). Let t(vS) = ×p∈P tvS
(p)

denote the vector of types of substrate node vS . A VNet

G = (VV , EV) embedding is valid if for each virtual node

vV ∈ VV , it holds that vV is mapped to a node vS with

t(vS) ∈ spec(vV). In addition, node and link capacity con-

straints are respected.

Of course, a user must not specify t(vS) explicitly by

enumerating all allowed combinations: this set only serves for

4

Constants:

Requests : R
Substrate Vertices : Vs Virtual Vertices : Vv(r), r ∈ R
Substrate Edges : Es : Vs × Vs Virtual Edges : Ev(r) :→ Vv(r)× Vv(r), r ∈ R
Unique : uni checks : ∀(s1, s2) ∈ Es : (s2, s1) 6∈ Es Unique : uni checkv : ∀r ∈ R, (v1, v2) ∈ Ev(r) : (v2, v1) 6∈ Ev(r)
SNode Capacity : snc(s) → R

+, s ∈ Vs VNode Demand : vnd(r, v) → R
+, r ∈ R, v ∈ Vv(r)

SLink Capacity : slc(es) → R
+, es ∈ ES VEdge Demand : vld(r, ev) → R

+, r ∈ R, ev ∈ Ev(r)

Edges-Reverse : ERs : ∀(s1, s2) ∈ Es∃(s2, s1) ∈ ERs ∧ |Es| = |ERs| Edges-Bidirectional : EBs : Es ∪ ERs

Migration Cost : mig cost(r, v, s) → R
+ |Vv(r)|×|Vs|, r ∈ R, v ∈ Vv(r), s ∈ Vs

Possible Placements : place(r, v, s) → {0, 1}|Vv(r)|×|Vs|, r ∈ R, v ∈ Vv(r), s ∈ Vs

Variables:

Node Mapping : n map(r, v, s) ∈ {0, 1}, r ∈ R, v ∈ Vv(r), s ∈ Vs

Flow Allocation : f alloc(r, e, eb) ≥ 0, r ∈ R, e ∈ Ev(r), eb ∈ EBs

Constraints:

Each Node Mapped : ∀r ∈ R, v ∈ Vv(r) :
∑

s∈Vs
n map(r, v, s) · place(r, v, s) = 1

Feasible : ∀s ∈ Vs :
∑

r∈R,v∈Vv(r)
n map(r, v, s) · vnd(r, v) ≤ snc(s)

Guarantee Link Realization : ∀r ∈ R, (v1, v2) ∈ Ev(r), s ∈ Vs

∑
(s,s2)∈Vs×Vs∩EBs

f alloc(r, v1, v2, s, s2)−∑
(s1,s)∈Vs×Vs∩EBs

f alloc(r, v1, v2, s1, s) = vld(r, v1, v2) · (n map(r, v1, s)− n map(r, v2, s))

Realize Flows : ∀(s1, s2) ∈ Es

∑
r∈R,(v1,v2)

f alloc(r, v1, v2, s1, s2) + f alloc(r, v1, v2, s2, s1) ≤ slc(s1, s2)

Objective function:

Minimize Embedding Cost : min :
∑

r∈R,(v1,v2)∈Ev(r),(s1,s2)∈Es
f alloc(r, v1, v2, s1, s2) + f alloc(r, v1, v2, s2, s1)

Fig. 3. Embedding constants, variables, constraints and the objective function of the FlexMIP. Explanations are given in Section III.

formal presentation. Rather, a user can specify the types of

VNet nodes with an arbitrary resource description language,

and use white lists (e.g., only Mac) or black lists (not on

Sparc), or more complex logical formulas.

The question studied in this paper revolves around the

tradeoff of the VNet specificity and the embedding cost.

Definition IV.2 (Price of Specificity (PoS) ρ). Given a VNet

GV , let Cost0 denote the embedding cost (cf Definition II.1)

of GV in the absence of any specification constraints, and

let Costσ denote the embedding cost under a given specificity

σ(GV). Then, the Price of Specificity ρ(GV) (or just ρ) is

defined as ρ = Costσ/Cost0.

Note that the Price of Specificity ρ depends on the specific

embedding algorithm. In the following, we do not assume

any specific embedding algorithm, but just use the placeholder

ALG to denote an arbitrary state-of-the-art VNet embedding

algorithm. (In the related work section, Section VII, we will

review some candidates from the literature.) However, in the

simulations, we will use an optimal algorithm FlexMIP that

minimizes resources.

Although our definition of the Price of Specificity is generic

and does not depend on a particular definition of specificity,

for our evaluation, we will use the following metric.

Definition IV.3 (Specificity σ). The specificity σ(vV) of a

virtual node vV captures how many alternative type con-

figurations are still allowed by a specification compared to

a scenario where all configurations are allowed. Formally,

we define σ(vV) as the percentage of lost alternatives:

σ(vV) = 1 − (|t(vS)| − 1)/(|T (p1) × . . . × T (pk)| − 1).
The specificity σ(GV) of a VNet GV = (VV , EV) is defined

as the average specificity of its nodes vV ∈ VV : σ(GV) =∑
vV ∈VV

σ(vV)/|VV |.

Note that σ(GV) ∈ [0, 1], where σ(GV) = 0 and σ(GV) = 1
denote the minimal and the maximal specificity, respectively.

We will focus on scenarios where |T (p1)× . . .× T (pk)| > 1.

V. EVALUATION

This section studies the Price of Specificity (PoS) in dif-

ferent scenarios. In order to avoid artifacts resulting from

approximate or heuristic embeddings, we consider optimal

embedding solutions only.

A. Setup

In our evaluation, if not stated otherwise, we will focus

on the following default scenario. We consider two different

properties P = {p1, p2} with four different types each

(T (p1) = {t11, t
1
2, t

1
3, t

1
4}, T (p2) = {t21, t

2
2, t

2
3, t

2
4}). By default

we do not allow to migrate already embedded VNets. The

substrate node types are chosen independently at random from

the base types such that each type occurs equally often (up to

rounding), and the virtual node types are chosen independently

uniformly at random according to the specificity level.

Concretely, we study five different degrees of specificity

(in increasing order of specificity): (1) all types are allowed

(no restrictions, i.e., specificity σ = 0); (2) only two types

(either {t11, t
1
2} or {t13, t

1
4}) are allowed for T (p1), but all

types of T (p2) (specificity σ ≈ 0.533); (3) only two types

(either {t11, t
1
2} or {t13, t

1
4}) are allowed for T (p1) and only

5

either {t21, t
2
2} or {t23, t

2
4} for T (p2) (specificity σ = 0.8); (4)

only one type is allowed for T (p1) and only two types (either

{t21, t
2
2} or {t23, t

2
4}) for T (p2) (specificity σ ≈ 0.933); (5) only

one type is allowed for each property T (p1) and T (p2) (i.e.,

σ(vV) = {t11, t
2
1} for all nodes vV ∈ VV , specificity σ = 1).

Furthermore, we assume that the nodes in the substrate

all have a capacity of one unit, and that the links have an

infinite capacity. The virtual nodes and links of the VNet have

a demand of one unit (no colocation). Finally, we allow the

embedding algorithm to split a virtual link into multiple paths.

Our substrate network is generated using the Igen topology

generator [21]. Our default model uses one hundred nodes.

Nodes are generated randomly and we use the clustering

method k-medoids:5 with five clusters (PoPs) based on

distance. The nodes in these PoPs are access nodes which

are all connected to the PoPs two backbone nodes. These

backbone nodes are picked geographically as the most central

ones among the access nodes within a cluster. The backbone

topology is built by using a Delaunay triangulation connecting

a backbone node with other backbone nodes next to it. Thereby

the connectivity is preserved since the triangulation includes

the minimal spanning tree and alternative paths are created to

guarantee redundancy [15].

As for the VNets we will focus on master-slave (i.e., star)

topologies. In the following, we will refer to a star with one

center node and x − 1 leaves as an x-star. In most cases we

study 4- or 5-stars.

B. Impact of Substrate Size and Load

We first study the impact of the substrate size and load

and consider two different scenarios: (1) an empty substrate

network, and (2) a scenario where the substrate nodes already

host some virtual nodes. In both scenarios the arriving VNet

is a 5-star.

0.0 0.2 0.4 0.6 0.8 1.0

1
.0

1
.2

1
.4

1
.6

1
.8

2
.0

σ

P
o

S

20−nodes

40−nodes

60−nodes

80−nodes

100−nodes

0.0 0.2 0.4 0.6 0.8 1.0

1
.0

1
.4

1
.8

2
.2

σ

P
o

S

80−nodes

60−nodes

40−nodes

20−nodes

0−nodes

Fig. 4. Left: Impact of substrate size on the PoS. Each substrate was created
with the Igen topology generator having five PoPs and two backbone nodes
per PoP. Right: Impact of load on the PoS. Each scenario is based on the
100 nodes Igen substrate with different numbers of fully utilized nodes. The
nodes are chosen uniformly at random.

Figure 4 (left) plots the PoS as a function of substrate sizes

for the empty substrate scenario. As expected, since a larger

network offers more embedding options, it is more likely that

a low-cost embedding can be found, and the PoS is lower on

larger substrates. At around one hundred nodes, the embedding

is almost perfect for a VNet with specificity σ = 0.8 resulting

in a PoS of nearly one whereas the PoS for the 20-nodes

substrate is almost 1.2. At a specificity σ = 1 the PoS is

nearly two in the 20 nodes substrate scenario implying that

we need roughly twice as much link resources than actually

stated in the VNet requirements. As to be expected, the larger

substrates have a smaller PoS and the absolute difference is

increasing with the specificity.

Let us now consider a scenario where there is already some

load on the substrate network. We study a simplified model

where x substrate nodes chosen uniformly at random are set to

full load, i.e., no virtual nodes can be embedded. We compare

the scenario where x out of 100 nodes are already in use

to a scenario where the substrate consists of 100 − x nodes.

The results shown in Figure 4 (right) look similar to those

of the substrate size scenario. For the σ = 1 case the more

loaded substrates (40-80 nodes in use) have a higher PoS than

their representatives in the substrate size scenario. Given the

larger substrate with many nodes in use simultaneously, the

distances between the free nodes increase. This yields longer

paths allocated for embeddings, and therefore a higher PoS.

For lower specificities, this is negligible due to the smaller

node type variance.

2 4 6 8 10 12 14

3
4

5
6

7

req. nr.

re
s
o

u
rc

e
 c

o
s
ts

σ=1

σ ≈ 0.93

σ=0.8

0.0 0.2 0.4 0.6 0.8 1.0
1

.0
1

.2
1

.4
1

.6

σ

P
o

S

NoMig

Mig

Fig. 5. Left: Amount of link resources needed per embedding as a function of
request order. There are 15 incoming 4-star VNets with different σ on a 100-
nodes Igen substrate with a substrate link capacity that allows the embedding
of two VNet links. For this experiment, we disabled migration. Right: Impact
of migration on the PoS. There are five 4-star VNets arriving over time on a
40-nodes Igen substrate with eight different substrate node types.

In order to get a better understanding of the impact of load

on the PoS we studied a scenario where there are 15 VNets

arriving over time. Each of them is embedded by FlexMIP

without using migration, leading to more load over time.

Figure 5 (left) shows the amount of link resources needed per

embedding depending upon VNet arrival, and the substrate

load respectively. While the first incoming VNet can always

be embedded perfectly in the σ = 0.8 scenario, a higher

specificity leads to 3.5 and 4.7 links on average. The link

resource costs are increasing with the load and we notice

the tendency of lower specificity impacts for the σ = 0.8
and σ ≈ 0.93 scenarios: the curves of the resource costs

are converging. Fully specified VNets are still causing more

resource costs for each VNet. The impact of the load is

shown in the resource costs for the 13th VNet or higher

6

which nearly takes twice as much resources as the first VNet.

This especially occurs when the substrate is used close to

its capacity. Since a substrate provider will typically try to

fully utilize its infrastructure as well as trying to avoid costly

embeddings, the PoS has to be understood in relation to the

substrate load.

C. Impact of Migration

The load scenario from Section V-B was static in the

sense that load was modeled on fixed nodes only. However,

the possibility to migrate already embedded VNets to more

suitable locations is one of the key advantages of the network

virtualization paradigm, and hence we now attend to the use

of such migrations. Migration can have very positive effects

on the PoS: For instance, when a scarce type may have

been blocked earlier in time by a VNet of low specificity, a

migration may reduce the resource costs significantly. A better

location to migrate to may also become available due to the

expiration of a VNet.

We study a scenario where five 4-star VNets arrive over

time on a 40 node Igen substrate with eight different substrate

types. We only study runs where all five VNets have been

embedded, resulting in a load of 50% on the substrate. This

avoids heavily loaded substrate scenarios as well as scenarios

of abundant capacity. Both scenarios naturally lead to no

or only small effects of migration due to nearly optimal

embeddings. Figure 5 (right) shows the aggregated PoS over

all five VNets. We show averaged values as the embedding

costs for an already embedded VNet can change over time

in the migration scenario. Interestingly, migration is already

effective even without specificity on the VNets (compare PoS

Mig:1 - NoMig:1.2). This is due to embeddings which are

initially optimal regarding resource costs but use resources

that might be more effective in later embeddings, i.e., nodes

with a higher degree. While the impact of migration is rather

low for the following specificities, it is again recognizable for

fully specified VNets.

Generally migration lowers the resource costs and hence the

PoS in all our scenarios.

D. Impact of Type Distribution

The diversity of resources and especially the distribution

of requested and supplied types is crucial for the PoS. We

expect that in a scenario where the requested types follow

the same distribution as the available substrate types, the

embedding cost and hence the PoS is lower. In the following,

we therefore study different probability distributions for the

node types in the substrate as well as the VNets. In addition

to the uniform distribution studied so far, we consider a heavy-

tailed distribution: a Zipf distribution with exponent 1.2.1

Figure 6 (left) studies five different scenarios: the standard

scenario where both (substrate and VNet) types are uniformly

distributed, a scenario where both are heavy-tailed distributed

and the mixed cases. Additionally we study a scenario where

1E.g., the type distribution in a 100-node substrate with 16 node types is
[28, 12, 12, 8, 8, 5, 5, 5, 3, 3, 2, 2, 2, 2, 2, 1].

0.0 0.2 0.4 0.6 0.8 1.0

1
.0

1
.2

1
.4

1
.6

1
.8

2
.0

2
.2

σ

P
o

S

Z−Z

Z−U

U−Z

U−U

Z=Z

0.6 0.7 0.8 0.9 1.01
.0

1
.1

1
.2

1
.3

1
.4

1
.5

σ

P
o

S

6−star

5−star

4−star

Fig. 6. Left: Impact of different type distributions on the PoS. We compare all
combinations between uniformly and heavy-tailed distributed types as well as
a scenario where two heavy-tailed distributions have inverse type frequencies
(i.e., the most frequent type becomes the least frequent type). As a heavy-tailed
distribution Zipf was chosen with exponent 1.2. (legend: Z=Zipf, U=uniform,
Substrate-VNet)Right: Impact of different VNet sizes on the PoS via 4-, 5-
and 6-star VNets embedded on the 100-node Igen substrate.

the substrate types are Zipf distributed and the VNet types are

inversely Zipf distributed in the sense that the least frequent

type is the most frequent one in the other distribution. As

to be expected, we see that the highest PoS is obtained

in the scenario with contrary Zipf distributions. While this

scenario is very different from the one with next highest PoS

(S-zipf V-uni), the case where both types follow the same

Zipf distribution only marginally differs from the scenario

where both types are uniformly distributed. Another interesting

observation is that the PoS which is obtained in the scenario

where the substrate node types are Zipf distributed and the

VNet types are uniformly distributed is higher than the PoS

of the opposite combination. This is due to the fact that in

a Zipf distributed substrate, there are many node types from

which only three or less nodes exist whereas the types are

requested at equal proportions. Therefore, the possibility that

a scarce and hence relatively far away type is requested is high.

The opposite distribution has a lower PoS because even the

possibility to have at least two nodes from the most common

node type in the request is below 50% and around 20%
for three or more nodes. Since there are approximately six

nodes per node type in the uniformly distributed substrate,

the distances are not that large, resulting in a lower PoS for

this scenario. The same argument holds for the only marginal

difference between the scenarios where both distributions are

Zipf and where both distributions are uniform.

One takeaway from these results is that a specialization of

the substrate entails the risk of a high PoS if the demand does

not perfectly fit.

E. Impact of VNet Topology

Section V-B has shown how the size of the substrate impacts

the PoS, and we expect a similar impact of changing the VNet

size. Figure 6 (right) shows the PoS for different sizes of the

VNets regarding the number of nodes. For small specificities

(σ ≤ 0.8) the PoS is almost constant. This is due to the

relatively (regarding the amount of types and the size of the

7

VNets) large substrate which is robust against these small

limitations on the embeddings. The flexibility can still be

maintained and an optimal allocation can be found. For higher

specificities, we see similar PoSs for the different star sizes.

There is a tendency that for increasing specificity the larger

stars have a higher PoS than the smaller ones but those

differences are rather small. Therefore we investigate also the

effect of changing the topology of a 4-star by adding links.

Figure 7 (left) shows a scenario where additional leaves

of the 4-star are connected one by one. The figure reveals

the interesting part of the higher specified VNets only. All

scenarios with additional links have a higher or at least equal

PoS than the standard star scenario, since the complexity

to embed these topologies is increasing. Nevertheless the

difference between the most complex topology (4-star+3) and

the 4-star is relatively low, with an absolute difference always

around 0.2.

We find that the modification of the VNet topologies by

adding nodes or links does not have a big impact on the PoS.

However, note that this conclusion might be different if the

load on the substrate is increased.

0.80 0.85 0.90 0.95 1.00

1
.0

1
.1

1
.2

1
.3

1
.4

1
.5

1
.6

σ

P
o

S

4−star+3

4−star+2

4−star+1

4−star

0.0 0.2 0.4 0.6 0.8 1.0

1
2

3
4

5

σ

P
o

S

cap−4

cap−3

cap−2

cap−1

Fig. 7. Left: Impact of additional links on the PoS: we connect the leaf nodes
with each other, and 4-star+1 stands for the scenario with a 4-star VNet and
two of its leaves connected. Right: Impact of substrate node capacities on
the PoS. The figure shows the result from embedding a 5-star VNet while
changing the node capacity of the underlying substrate from one VNet node
per substrate node up to four nodes per substrate node.

F. Impact of Capacity

Network virtualization allows the substrate provider to

embed VNets according to its needs, e.g., to minimize link

resource costs in the case of our algorithm FlexMIP. The

capacities in the infrastructure will not fit exactly the spec-

ifications of the VNets in general. Therefore the embedding

of several VNet nodes on one substrate node promises lower

link resource costs while the restriction on link capacities may

yield higher costs.

Figure 7 (right) shows a scenario where the node capacities

are increased up to four units. The curves show a similar trend

and there is a higher PoS noticeable with increasing node

capacity. This is a consequence of using the substrate nodes at

full capacity without VNet node specificities whereas a higher

specificity prevents this due to the different VNet node types.

A PoS is also observed on specificities where there was no

additional costs before. At a specificity of σ ≈ 0.533, the PoS

for the scenario with a node capacity of four is already higher

than the PoS of a fully specified VNet in a scenario with node

capacity one.

G. An Out-Sourcing Scenario

While our previous simulations may also describe geograph-

ical types (as a property), in this section we examine a concrete

geographic use-case more closely. Generally we now change

the experiments in a way that some VNet nodes assume a

fixed position in the substrate. This use-case can for example

represent a company which owns certain servers and runs its

own network, but out-sources computation or storage to the

cloud. While the locations of the infrastructure in the corporate

network is given, the out-sourced resources may be specified

at different granularity.

0.0 0.2 0.4 0.6 0.8 1.0

1
.0

1
.4

1
.8

2
.2

σ

P
o

S

4−fixed

3−fixed

2−fixed

1−fixed

0−fixed

ff os−1 os−2 os−3 os−4

4
5

6
7

8
9

1
0

1
1

re
s
o
u
rc

e
 c

o
s
ts

Fig. 8. Left: Impact of different degree of out-sourcing on the PoS.
Embedding of a 5-star VNet while changing the number of fixed corporate
nodes in it, e.g. three fixed nodes lead to only two free nodes affected by the
specificity. Note that the specificity in those scenarios is referred only to the
free nodes while the PoS is calculated regarding the 0-fixed scenario without
specificity (causing higher PoSs than 1 even for σ = 0). Right: Boxplot
showing the variation for the fully flexible scenario (ff - zero nodes fixed)
and four different out-sourcing scenarios (os1 - one fixed node, etc.) for a
specificity of σ ≈ 0.53.

Figure 8 (left) shows the impact of the amount of fixed

corporate nodes on the PoS. The 5-star is the incoming VNet

basis while we vary the amount of fixed nodes from one

to four. In all cases the PoS is calculated regarding the 0-

fixed scenario while σ is only referring to the specificity of

the remaining free nodes. Noticeable on the first sight is that

even for a specificity of σ = 0 for the remaining nodes, the

PoS is in all cases higher than one. Especially with three

or four nodes fixed (meaning only two and one additional

nodes to be embedded) the PoS reaches ∼ 1.7 and ∼ 2.05
respectively. With an increasing specificity the PoSs of the

different scenarios are converging. This is due to the declining

effect of the positioning of the outsourced nodes and the

increasing effect of the specificity. Keep in mind that this effect

might be different in different use cases, e.g., if the fixed nodes

are positioned next to each other and not picked uniformly at

random of the substrate.

The impact of the fixed node locations can also be un-

derstood as a function of the link resource costs of the out-

sourcing scenarios. Figure 8 (right) shows a boxplot compar-

8

ing these costs with each other for a specificity of σ ≈ 0.53. In

the fully flexible scenario the VNet is almost always embedded

with the smallest possible amount of link resources while an

increasing number of fixed nodes also increases the variance

as well as the used link resources. Nonetheless, an optimal

embedding regarding the link resource costs can be achieved

even in the out-sourcing scenarios provided an appropriate

random placement of the fixed nodes, which can be observed

in the scenarios with one to three fixed nodes.

VI. EXCURSION: USE OF MIGRATION

An intriguing question regards the impact of migration on

the Price of Specificity. At first sight it may seem that migra-

tion can only be beneficial (see also our simulation results in

Section V-C). However, we will show that this is only true for

scenarios where links have unbounded capacities. Otherwise,

there exist situations where migration can be harmful. We will

refer to this phenomenon as the Migration Paradox.

In order to study the impact of migration on the PoS we

extend the Definition IV.2 towards several embedded VNets.

Definition VI.1 (Price of Specificity ρ for multiple VNets).

Given a sequence of VNets Gk = (G1
V , ..., G

k
V), the PoS

ρ(Gk) is defined as the average PoS over all VNets ρ(Gk) =∑k

i=1 ρ(G
i
V)/k.

Given the PoS definition for a sequence of VNets, we will

make the following assumptions: (1) We focus on embedding

algorithms ALG which greedily accept all incoming VNets if

possible, while trying to minimize the corresponding embed-

ding costs. (2) Migration itself is only causing no/negligible

costs regarding the PoS. (3) The substrate links have un-

bounded link capacities.

Certainly, all scenarios satisfying these assumptions can

only benefit from migration.

Theorem VI.2. In scenarios satisfying Assumptions (1)-(3),

migration can only decrease the overall PoS of the embedded

VNets, meaning ρ1(Gk) ≤ ρ0(Gk) for any sequence of VNets

Gk, with ρ1 representing the PoS for the migration scenario

and ρ0 representing the one without.

Proof: Let Gk be a sequence of VNets (with Gk =
(G1

V , ..., G
k
V), k ∈ N) requested at the substrate one after

another. Note that due to Assumption 1 and 3, an identical

order of incoming VNet requests results in exactly the same

VNets that will be accepted in both scenarios, meaning that

there are valid embeddings for the same requests (cf Def-

inition IV.1). Since only unavailable node types can cause

a VNet to be rejected, it is sufficient to show that for an

arbitrary sequence of embedded VNets the link resource usage

is not exceeding those of the scenario without migration. The

notation Gk′ , k′ ≤ k describes such a k′-tuple of embedded

VNets from an incoming sequence Gk.

The proof is by induction over the number of requests. Take

an arbitrary sequence Gk′ = (G1
V , ..., G

k′

V) of embeddable

VNets. We will show that ρ1(Gk′) ≤ ρ0(Gk′) for each k ∈ N.

For k = 1 the claim holds: The only incoming VNet G1
V of G1

will always be embedded equally in both scenarios. There are

no other VNets that can be migrated, hence ALG embeds this

VNet in both scenarios identically. Therefore ρ1(G1) ≤ ρ0(G1)
is satisfied.

For the induction step (k > 1, k ∈ N), assume that

ρ1(Gk) ≤ ρ0(Gk) holds for an arbitrary k ∈ N. We show

that the embedding of an arbitrary additional VNet Gk+1
V

still satisfies the claim ρ1(Gk+1) ≤ ρ0(Gk+1). We know that

ρ1(Gk) ≤ ρ0(Gk), and an additional VNet request cannot yield

higher costs without migration, as the embedding configuration

can always be migrated to any possible cheaper configuration.

The migration will not increase the PoS due to Assumption 2

and therefore a lower PoS may be achieved.

However, note that if link capacities are limited, Theo-

rem VI.2 no longer holds. Figure 9 shows an example where

migration can lead to larger resource costs. It shows a simple

substrate with a line-topology and link capacities of one. There

are only two different types of nodes in the substrate, namely

A and B and a small VNet with two connected nodes of type

B embedded. This VNet has to be migrated in order to embed

a VNet with two connected nodes of type A. Therefore the

new embedding is using all of the remaining link capacity

and prevents the embedding of additional VNets.

B B A B B B B A

(1) Substrate with a “B-B” VNet embedded

B B A B B B B A

(2) Only way to migrate in order to embed the “A-A” VNet

B B A B B B B A

(3) Resulting embeddings after migration

Fig. 9. Blocked resources due to enabled migration. After migrating the
“B-B” VNet and embedding the “A-A” VNet no link capacities are available
for further VNet embeddings.

Thus, we have the following result.

Theorem VI.3. Generally, there are scenarios where migra-

tion can increase the PoS.

Therefore it is necessary to have a proper access control

even though the PIP is able to migrate certain VNets.

VII. RELATED WORK

At the heart of network virtualization lies the idea of making

more efficient use of a given infrastructure and its resources

by sharing it among multiple VNets. The important problem

of finding good VNet embeddings [20] has been studied

intensively, both from offline [17] and online perspectives [4],

[12], by focusing on bandwidth constraints only [13], by

pursuing heuristic approaches without admission control [27],

or by employing simulated annealing techniques [22]. The

9

survey by Belbekkouche [5] provides a nice overview of

allocation and embedding algorithms. Lischka and Karl [16]

present an embedding heuristic that uses backtracking and

aims at embedding nodes and links concurrently for im-

proved resource utilization. A mixed integer program for the

embedding of certain types of VNets is formulated in [7];

the formulation has been extended to support migration and

reconfiguration in [23]. Since the general embedding problem

is computationally hard, most of the literature is on heuristical

or approximative algorithms. An interesting perspective is

taken by Yu et al. [19] who advocate to rethink the design of

the substrate network to simplify the embedding which makes

it computationally tractable; for instance, they allow to split

a virtual link over multiple paths and perform periodic path

migrations. The general embedding problem is also related to

network design [26], virtual circuit planning [3], or minimal

linear arrangement [6].

Our contribution is orthogonal to this line of research.

In fact, the Price of Specificity could be studied for each

embedding algorithm reviewed above. In order to focus on

the main properties of the Price of Specificity, we use a an

optimal embedding approach for our evaluation, and ask the

question how the VNet specification effects the cost. A short

paper of this work appeared at UCC [18].

In the context of the relatively new concept of network vir-

tualization itself, not much work on economical aspects exists

yet. Courcoubetis et al. [10] identify incentive issues arising

in the management of virtual infrastructures and show that

well-designed policies are mandatory to prevent agents from

contributing less resources than is desirable. PolyViNE [8] is a

decentralized, policy-based inter-domain embedding protocol

ensuring competitive prices for service providers. In more

general context, Antoniadis et al. [2] employ coalitional game

theory to study how participants should share the value of

federation in virtualized infrastructures (in the context of

ISP interconnections, peer-to-peer systems, the Grid, or cloud

computing).

VIII. CONCLUSION

While today, we have a fairly good understanding of how

to realize the vision of virtual networks (cf, e.g. [11]), sur-

prisingly little is known about economical implications. We

consider our paper as a first step to shed light on the impact

of virtual network specification flexibility on the embedding

cost. We hope that our approach provides a means to reason

about policies for VNet pricing and embedding, especially

in competitive markets where infrastructure providers operate

within small budget margins.

Acknowledgments. This work was supported in part by

the EU FP7 projects BigFoot (FP7-ICT-317858), CHANGE

(FP7-ICT-257422) and OFELIA. We would also like to thank

Gregor Schaffrath and Carlo Fürst for many discussions.

REFERENCES

[1] Going with the flow: Google’s secret switch to the
next wave of networking (wired web site), April 2012.

http://www.wired.com/wiredenterprise/2012/04/going-with-the-flow-
google/all/1.

[2] P. Antoniadis, S. Fdida, T. Friedman, and V. Misra. Federation of
virtualized infrastructures: sharing the value of diversity. In Proc. 6th

CoNEXT, 2010.
[3] B. Awerbuch, Y. Azar, and S. Plotkin. Throughput-competitive on-line

routing. In Proc. IEEE FOCS, 1993.
[4] N. Bansal, K.-W. Lee, V. Nagarajan, and M. Zafer. Minimum congestion

mapping in a cloud. In Proc. ACM PODC, pages 267–276, 2011.
[5] A. Belbekkouche, M. Hasan, and A. Karmouch. Resource discovery

and allocation in network virtualization. IEEE Communications Surveys

Tutorials, (99):1–15, 2012.
[6] M. Charikar, K. Makarychev, and Y. Makarychev. A divide and conquer

algorithm for d-dimensional arrangement. In Proc. 18th Annual ACM-

SIAM Symposium on Discrete Algorithms (SODA), pages 541–546, 2007.
[7] K. Chowdhury, M. R. Rahman, and R. Boutaba. Virtual network em-

bedding with coordinated node and link mapping. In Proc. INFOCOM,
2009.

[8] M. Chowdhury, F. Samuel, and R. Boutaba. PolyViNE: Policy-based
virtual network embedding across multiple domains. In Proc. 2nd

ACM SIGCOMM Workshop on Virtualized Infrastructure Systems and

Architecture (VISA), 2010.
[9] M. K. Chowdhury and R. Boutaba. A survey of network virtualization.

Elsevier Computer Networks, 54(5), 2010.
[10] C. Courcoubetis and R. R. Weber. Economic issues in shared infras-

tructures. In Proc. ACM Workshop on Virtualized Infrastructure Systems

and Architectures (VISA), pages 89–96, 2009.
[11] D. Drutskoy, E. Keller, and J. Rexford. Scalable network virtualization in

software-defined networks. Internet Computing, IEEE, PP(99):1, 2012.
[12] G. Even, M. Medina, G. Schaffrath, and S. Schmid. Competitive and

deterministic embeddings of virtual networks. In Proc. 13th ICDCN,
2012.

[13] J. Fan and M. H. Ammar. Dynamic topology configuration in service
overlay networks: A study of reconfiguration policies. In Proc. INFO-

COM, 2006.
[14] I. Griva, S. G. Nash, and A. Sofer. Linear and Nonlinear Optimization

(2nd ed.). Society for Industrial Mathematics, 2009.
[15] G. Iannaccone, C.-N. Chuah, S. Bhattacharyya, and C. Diot. Feasibility

of ip restoration in a tier 1 backbone, 2004.
[16] J. Lischka and H. Karl. A virtual network mapping algorithm based on

subgraph isomorphism detection. In Proc. VISA, pages 81–88, 2009.
[17] J. Lu and J. Turner. Efficient mapping of virtual networks onto a shared

substrate. In Technical Report, WUCSE-2006-35, Washington University,
2006.

[18] A. Ludwig, S. Schmid, and A. Feldmann. The price of specificity in
the age of network virtualization. In Proc. 5th IEEE/ACM UCC, 2012.

[19] J. R. M. Yu, Y. Yi and M. Chiang. Rethinking virtual network
embedding: Substrate support for path splitting and migration. ACM

SIGCOMM Computer Communication Review, 38(2):17–29, Apr 2008.
[20] B. Monien and H. Sudborough. Embedding one interconnection network

in another. In Computational Graph Theory, 1990.
[21] B. Quoitin, V. V. den Schrieck, P. Franois, and O. Bonaventure. Igen:

Generation of router-level internet topologies through network design
heuristics. In Proc. 21st International Teletraffic Congress (ITC), 2009.

[22] R. Ricci, C. Alfeld, and J. Lepreau. A solver for the network testbed
mapping problem. SIGCOMM CCR, 33(2):65–81, 2003.

[23] G. Schaffrath, S. Schmid, and A. Feldmann. Optimizing long-lived
cloudnets with migrations. In Proc. 5th IEEE/ACM International

Conference on Utility and Cloud Computing (UCC), 2012.
[24] G. Schaffrath, S. Schmid, I. Vaishnavi, A. Khan, and A. Feldmann. A

resource description language with vagueness support for multi-provider
cloud networks. In Proc. ICCCN, 2012.

[25] G. Schaffrath, C. Werle, P. Papadimitriou, A. Feldmann, R. Bless,
A. Greenhalgh, A. Wundsam, M. Kind, O. Maennel, and L. Mathy.
Network virtualization architecture: Proposal and initial prototype. In
Proc. VISA, 2009.

[26] D. P. Williamson, M. X. Goemans, M. Mihail, and V. V. Vazirani. A
primal-dual approximation algorithm for generalized Steiner network
problems. Combinatorica, 15:708–717, 1995.

[27] Y. Zhu and M. H. Ammar. Algorithms for assigning substrate network
resources to virtual network components. In Proc. INFOCOM, 2006.

