
Locally Self-Adjusting Tree Networks
Chen Avin1, Bernhard Haeupler2, Zvi Lotker1, Christian Scheideler3, Stefan Schmid4

1 Ben Gurion University, Israel; {avin,zvilo}@cse.bgu.ac.il
2 Massachusetts Institute of Technology (MIT), USA; hauepler@mit.edu

3 University of Paderborn, Germany; scheideler@upd.de
4 TU Berlin & Telekom Innovation Laboratories, Germany; stefan@net.t-labs.tu-berlin.de

Abstract—This paper initiates the study of self-adjusting
networks (or distributed data structures) whose topologies
dynamically adapt to a communication pattern σ. We
present a fully decentralized self-adjusting solution called
SplayNet. A SplayNet is a distributed generalization of the
classic splay tree concept. It ensures short paths (which can
be found using local-greedy routing) between communica-
tion partners while minimizing topological rearrangements.
We derive an upper bound for the amortized communi-
cation cost of a SplayNet based on empirical entropies
of σ, and show that SplayNets have several interesting
convergence properties. For instance, SplayNets features a
provable online optimality under special requests scenarios.
We also investigate the optimal static network and prove
different lower bounds for the average communication cost
based on graph cuts and on the empirical entropy of the
communication pattern σ. From these lower bounds it
follows, e.g., that SplayNets are optimal in scenarios where
the requests follow a product distribution as well. Finally,
this paper shows that in contrast to the Minimum Linear
Arrangement problem which is generally NP-hard, the
optimal static tree network can be computed in polynomial
time for any guest graph, despite the exponentially large
graph family. We complement our formal analysis with a
small simulation study on a Facebook graph.

I. INTRODUCTION

In the 80s, Sleator and Tarjan [25] introduced an ap-
pealing new paradigm to design efficient data structures:
Rather than optimizing traditional metrics such as the
search tree depth in the worst-case, the authors proposed
to make data structures self-adjusting and considered
the amortized cost as the performance metric—the “av-
erage cost” per operation for a given sequence s of
lookups. The authors described splay trees, self-adjusting
binary search trees where frequently accessed elements
are moved closer to the root, improving the average
access times weighted by the elements’ popularity. The
popularity distribution need not be known in advance
and may even change over time.

Inspired by these ideas, this paper initiates the study
of a distributed generalization of splay trees towards
networks. We consider a distributed data structure, e.g., a
structured peer-to-peer (p2p) system or Distributed Hash
Table (DHT), where nodes (the “peers”) communicating

more frequently should become topologically closer to
each other (i.e., the routing distance is reduced). This
contrasts with most of today’s structured peer-to-peer
overlays whose topology is often optimized in terms of
static global properties only, such as the node degree or
the longest shortest routing path.

This paper focuses on a most fundamental network,
a distributed binary search tree (BST) network. Such
networks are a natural first extension of classic data
structures. Moreover, they facilitate simple and local
routing. Generally, tree structures constitute a fundamen-
tal building block of more complex networks such as
skip graphs [3], and many network protocols also rely on
spanning trees or cycle-free backbones. Saying this, we
are not offering binary search trees as a “new” network
topology, but see our work as a first step towards a
better understanding of the design and limitations of self-
adjusting networks whose structure needs to be adapted
dynamically over time, and must be maintained in a
distributed manner.

Contribution and Organization. We describe a fully
distributed self-adjusting tree network called SplayNet
(Section IV-B). Unlike in classical splay tree where
requests (i.e., lookups) always originate from the same
root, in SplayNets communication happens between ar-
bitrary node pairs in the network. Our goal is to min-
imize the average routing distance between nodes in
the network, and hence frequent communication partners
are moved closer together. This may not only reduce
communication delays, but also the amount of bandwidth
or energy used in the system. In addition to the self-
adjusting features, we still want to ensure desirable static
properties (e.g., degree or routability).

We derive an upper bound for the amortized perfor-
mance of SplayNets (Section IV-C) in scenarios where
the communication patterns can change arbitrarily over
time, and we show different locality and convergence
properties of SplayNets (Section IV-D). Concretely, we
prove that the average communication cost is bounded
by the sum of the empirical entropies of sources and
destinations in the request sequence. Moreover, we prove

that if the communication pattern σ describes a multicast
tree or a special matching, then SplayNets are online
optimal.

We also shed light on the static (offline) version of our
problem, which can be regarded as a variant of the classic
Minimum Linear Arrangement (MLA) problem [8]. In the
static case the sequence of requests is known beforehand,
but a single, immutable best tree to serve the requests has
to be chosen for the entire sequence. We derive several
lower bounds for the static problem which are based
on the empirical entropies of the communication pattern
σ (Sections IV-C and V). In particular, we can show
that if the request pattern follows a product distribution,
SplayNets have the static optimality property (i.e., the
amortized cost of the SplayNet is of the same order as
of the optimal static tree). We will also see that unlike the
MLA problem which is generally NP-hard, the optimal
static tree network can be computed in polynomial time
for any guest graph (Section IV-A). We are not aware of
any other arrangement problem for an exponential family
of graphs for which a polynomial-time solution exists.

Our theoretical study is complemented with a brief
discussion of simulation results on the Facebook online
social network (Section VI).

II. RELATED WORK

Self-adjusting networks have many applications, rang-
ing from self-optimizing peer-to-peer topologies over
green computing (e.g., due to reduced energy consump-
tion) [9] to adaptive virtual machine migrations [2], [23],
microprocessor memory architectures [16], and grids [4].
Other self-adjusting routing scheme were considered,
e.g., in scale-free networks to overcome congestion [26].

Peer-to-peer networks are particularly interesting dy-
namic systems as they are very transient and members
continuously join and leave. In this sense, a peer-to-peer
system can never be fully “repaired” but must always
be fully functional. Today, peer-to-peer networking is a
relatively mature field of research, and there are many
solutions to maintain desirable network properties under
both randomized [22] as well as worst case [14] mem-
bership changes, and some peer-to-peer networks are
even self-stabilizing [12] in the sense that they quickly
converge to a desirable topology (e.g., a hypercube) from
an arbitrary connected structure. However, none of these
systems are self-adjusting to the demand.

Our work builds upon classic literature on self-
adapting data structures, in particular upon the seminal
work of Sleator and Tarjan on splay trees [25]: Splay
trees are optimized binary search trees which move more
popular items closer to the root in order to reduce the
average access time. Splay trees and its variants (e.g.,

Tango trees [5] or multi-splay trees [28]) have been
studied intensively for many years (e.g. [1], [25]), and
the famous dynamic optimality conjecture continues to
puzzle researchers: The conjecture claims that splay
trees perform as well as any other binary search tree
algorithm. [5], [28]

In contrast to the classical splay tree data structures,
our paper studies a distributed variant where “lookups”
or requests cannot only originate from a single root,
but where communication happens between all pairs of
nodes in the network. Hence, we are in the realm of
distributed data structures or networking.

An intensively studied field related to the static variant
of our problem is the Minimum Linear Arrangement
(MLA) problem [6], originally introduced by Harper [8]
to design error-correcting codes with minimal average
absolute errors on certain classes of graphs and later used
in many other domains such as for modeling of some
nervous activity in the cortex [18] or job scheduling [19].
From our perspective, MLA can be seen as an early
form of a “demand-optimized” embedding on the line
(rather than the tree as in our case): Given a set of
communication pairs, the goal is to flexibly arrange
the nodes on the line network such that the average
communication distance is minimized. While there exist
many interesting algorithms for this problem already,
e.g., with sublogarithmic approximation ratios [7] or
polynomial-time executions for special guest graphs [6],
no non-trivial results are known about distributed and
local solutions.

More generally, we currently witness a renaissance
of embedding problems in the context of network virtu-
alization [21]. Also, many variants of tree embeddings
arise in the context of phylogenetic trees (“trees of
life”) [20].

We are only aware of one paper on self-optimizing
overlay networks: Leitao et al. [15] study an overlay
supporting gossip or epidemics on a dynamic topology.
In contrast to our work, their focus is on unstructured
networks (e.g., lookup or routing is not supported), and
there is no formal performance guarantee.

III. MODEL AND PRELIMINARIES

Given an arbitrary and unknown pattern of communi-
cation (or routing) requests σ between a set of nodes
V = {1, . . . , n}, this paper attends to the general
problem of finding good communication networks G
out of a family of allowed networks G. Each topology
G ∈ G is a graph G = (V,E), and we define a set of
local transformations on graphs in G to transform one
member G′ ∈ G to another member G′′ ∈ G. We seek to
adapt our topologies smoothly over time, i.e., a changing

2

communication pattern leads to “local” changes of the
communication graph over time.

This paper focuses on the special case where G is
the set of binary search trees, henceforth simply called
tree networks. Besides their simplicity, such networks are
attractive for their low node degree and the possibility to
route locally: given a destination identifier (or address),
each node can decide locally whether to forward the
packet to its left child, its right child, or its parent
(see Appendix A). The local transformations of tree
networks are called rotations. Rotations are the minimal
and local transformations that preserve the binary search
property: informally, a rotation in a sorted binary search
tree changes the local order of three connected nodes,
while keeping subtrees intact. Note that it is possible to
transform any binary search tree into any other binary
search tree by a sequence of local transformations (e.g.,
by induction over the subtree roots).

We consider a simplified synchronous model where
first a communication request arrives, then local network
transformations can be performed, the request is satisfied
(i.e., the traffic routed), and finally further network trans-
formations are performed. Let σ = (σ0, σ1 . . . σm−1)
be a sequence of m communication requests where
σt = (u, v) ∈ V × V denotes that a packet needs to be
sent from a source u to a destination v. The source and
destination at time t are denoted by src(σt) and dst(σt),
respectively.

Sometimes, for ease of presentation, we will regard the
communication requests σ as inducing a request graph
(or equivalently: a request matrix) R(σ) = (V (σ), E(σ))
over the vertices V ; the edges E(σ) of R(σ) are anno-
tated with frequency information. (When clear from the
context, we will often omit σ in R(σ), V (σ), E(σ), and
simply write R, V , E.)

Concretely, the node set V of R is given by the set
of nodes participating in σ, i.e., V = {v : ∃t, v ∈ σt},
and the set of directed edges E is given by E = {σt :
t ∈ 0, . . .m − 1}. The weight w(e) of each directed
edge e = (u, v) ∈ E is the frequency f(u, v) of the
request from u to v in σ. In the following, we will
sometimes simply write w(u, v) to denote the weight
w(e) of edge e. For example, in some scenarios the
communication pattern between the nodes V may also
form a tree (e.g., a multicast tree), or a complete graph,
or a set of disconnected components (e.g., describing a
clustered communication pattern).

Let A be an algorithm that given the request σt and
the graph Gt ∈ G at time t, transforms the current graph
(via local transformations) to Gt+1 ∈ G at time t + 1.
We will use the notation A = ⊥ to refer to a static (i.e.,

non-adjusting) “algorithm” which does not change the
communication network over time.

The cost of the network transformations at time t
are denoted by ρ(A, Gt, σt) and capture the number
of rotations performed to change Gt to Gt+1; when
A is clear from the context, we will simply write ρt.
We denote with dG(·) the distance function between
nodes in G, i.e., for two nodes v, u ∈ V we define
dG(u, v) to be the number of edges of a shortest path
between u and v in G, and we assume messages are
routed along the shortest paths. For a given sequence
of communication requests, the cost for an algorithm is
given by the number of transformations and the distance
of the communication requests plus one (i.e., also a
request (u, u) comes at a minimal cost of one unit).

More formally, we will make use of the following
definitions.

Definition 1 (Average and Amortized Cost). For an
algorithm A and given an initial network G0 with
node distance function d(·) and a sequence σ =
(σ0, σ1 . . . σm−1) of communication requests over time,
we define the (average) cost of A as:

Cost(A, G0, σ) =
1

m

m−1∑
t=0

(dGt
(σt) + 1 + ρt) (1)

The amortized cost of A is defined as the worst possible
cost of A, i.e., maxG0,σ Cost(A, G0, σ).

Like for classic splay trees [25], our yardstick to
evaluate the obtained costs of a self-adjusting algorithm
is the cost to serve the same requests σ on an optimal
static tree network.

Definition 2 (Optimal Static Cost). The optimal static
cost for a given communication sequence σ is defined as
the cost Cost(⊥, G∗, σ) = 1

m

∑m−1
t=0 (dG∗(σt)+1) where

⊥ denotes a static algorithm that does not change the
topology, and G∗ ∈ G is the graph in the allowed graph
family G that minimizes the cost with respect to σ.

The entropy of the communication pattern σ turns out
to be a useful parameter to evaluate the performance of
self-adjusting SplayNets.

A. Entropy and Empirical Entropy

For a discrete random variable X with possible values
{x1, . . . , xn}, the entropy H(X) of X is defined as∑n
i=1 p(xi) log2

1
p(xi)

where p(xi) is the probability that
X takes the value xi. Note that, 0·log2

1
0 is considered as

0. For a joint distribution over X,Y , the joint entropy is
defined as H(X,Y) =

∑
i,j p(xi, yj) log2

1
p(xi,yj) . Also

3

recall the definition of the conditional entropy H(X|Y):
H(X|Y) =

∑n
j=1 p(yj)H(X|Y = yj).

Since the sequence of communications σ is re-
vealed over time and may not be chosen from a
fixed probability distribution, we are often interested
in the empirical entropy of σ, i.e., the entropy im-
plied by the communication frequencies. Let X̂(σ) =
{f(x1), . . . , f(xn)} be the empirical entropy measure
of the frequency distribution of the communication
sources (origins) occurring in the communication se-
quence σ, i.e., f(xi) is the frequency with which a
node xi appears as a source in the sequence, i.e.,
f(xi) = (#xi is a source in σ)/m. The empirical
entropy H(X̂) is then defined as

∑n
i=1 f(xi) log2

1
f(xi)

.
Similarly, we define the empirical entropy of the com-
munication destinations H(Ŷ) and analogously, the em-
pirical conditional entropies H(X̂|Ŷ) and H(Ŷ |X̂).

B. Splay Trees

Our work can be regarded as a distributed generaliza-
tion of splay trees, binary search trees whose topology
adapts to the lookup sequence. Indeed, assuming that
all requests originate from the same node, the SplayNet
problem becomes equivalent to the classic splay tree
problem. In the following, we hence briefly review the
concept of splay trees.

For a node set V with unique identifiers (IDs) or
values, we consider the family B of the set of all
binary search trees over the IDs of V . Let s =
(v0, v1, . . . , vm−1), vi ∈ V , be a sequence of lookup
requests. In the classic offline problem (i.e., for algorithm
A = ⊥), the goal is to find the best search tree T ∗ ∈ B
that minimizes the cost Cost(⊥, T ∗, s).

We will make use of the following two well-known
properties of optimal binary search trees.

Theorem 1 ([13]). An optimal binary search tree T ∗ that
serves s with minimum cost can be found via dynamic
programming.

Note however that the computation of T ∗ is more
complicated than simply using greedy Huffman cod-
ing [11] on the frequency distribution of the items in
s.

Theorem 2 ([17]). Given s, for any (optimal) binary
search tree T :

Cost(⊥, T, s) ≥ 1

log 3
H(Ŷ) (2)

where Ŷ (s) is the empirical measure of the frequency
distribution of s and H(Ŷ) is its empirical entropy.

T1 T2

T3

u

v

T2 T3

T1

v

u
Zig

T2 T3

T4
u

v

T1

w

ZigZag

T2T1

v

T3

w

u

T4

SplayOps

T2T1

u

v

w

T3

ZigZig

T4

T4T3

w

u

v

T2

T1

Fig. 1: Basic rotations of splay trees. The dashed bold
lines indicate adjacency relationships which are not
maintained during the operation.

We can use some tools developed for dynamic binary
search trees also in our generalized setting. In particular,
as we will see, our SplayNet algorithm applies splay
tree operations in the smallest subtrees connecting two
communication partners. The basic operation to adjust a
splay tree is called splaying (see Algorithm 1) which
consists of the classic Zig, ZigZig, and ZigZag
rotations. In a nutshell, the main idea of the online splay
tree algorithm introduced by Sleator and Tarjan [25]
is to rotate (using the uniquely defined sequence of
Zig, ZigZig, and ZigZag operations) the currently
accessed element directly to the root of the tree. In-
terestingly, this rather aggressive scheme to promote
elements already after a single access, results in a good
performance.

For our analysis of the distributed setting, we can also
adapt the Access Lemma [25] by Sleator and Tarjan. It is
reviewed in the following. In [25], in order to compute
the amortized time to splay a tree, each node v in the
tree is assigned an arbitrary weight w(v). Then the size
of a node v, s(v) is defined as the sum of the individual
weights of all the nodes in the subtree rooted at v. The
so-called rank r(v) of a node v is the logarithm of its
size, i.e., r(v) = log(s(v)). Sleator and Tarjan showed
the following:

Lemma 1 (Access Lemma [25]). The amortized time
to splay a tree with root r at a node u is at most
3 · (r(r)− r(u)) + 1 = O(log (s(r)/s(u))).

Following this lemma, Sleator and Tarjan were able to
show that splay trees are optimal with respect to static
binary search trees:

4

Algorithm 1 Splay Tree Algorithm ST

1: (* upon lookup (u) *)
2: splay u to root of T

Theorem 3 (Static Optimality Theorem [25] -
rephrased). Let ST denote the ST algorithm. Let s be a
sequence of lookup requests where each item is requested
at least once, then for any initial tree T Cost(ST, T, s) =
O(H(Ŷ)) where H(Ŷ) is the empirical entropy of s.

IV. SPLAY NETWORKS

This section presents and analyzes our distributed
algorithm Double Splay that adapts SplayNets according
to the demand. Moreover, we will briefly sketch an
algorithm to compute optimal static tree networks.

A. Optimal Static Tree Network

Before we introduce our online algorithm, it is inter-
esting to discuss the design of optimal static networks,
i.e., networks which do not adapt to the demand dy-
namically but are optimized for a given static request
sequence. The static problem can be seen as a variant
of the Minimum Linear Arrangement (MLA) problem.
MLA asks for an arrangement of nodes on the line such
that the expected path length (i.e., the weighted average
of the hop lengths of the communication paths between
nodes) is minimized. Note that from this perspective, we
can see the task of designing an optimal static network
as a “Minimum Search Tree Arrangement” (MSTA)
problem. It turns out that unlike the MLA which is NP-
hard, the optimal static tree network can be computed in
polynomial time. We are not aware of any other graph
family of exponential size for which a polynomial time
minimal arrangement exists for arbitrary guest graphs.

The main insight needed to solve the MSTA problem
is that the problem for the entire tree can be decomposed
into optimal subproblems for smaller trees, and that the
demand to a given node in a subtree can be decou-
pled from nodes outside a given subtree: the precise
topological structure of the nodes outside a subtree
does not matter. A detailed description of our dynamic
programming algorithm and the optimality proof can be
found in the appendix (Appendix B).

Theorem 4. The optimal static tree network for a
sequence σ can be computed in time O(n3), where n
is the number of nodes.

B. The Double Splay Algorithm DS

Let us now turn to the more interesting self-adjusting
networks. The main idea of our double splay algorithm

DS is to perform splay tree operations in subtrees cov-
ering the different communication partners. Concretely,
consider a communication request (u, v) from node u
to node v, and let αT (u, v) denote the lowest common
ancestor of u and v in the current network T . For an
arbitrary node x, let T (x) be the subtree rooted at x.

The formal algorithm listing of DS is shown in Algo-
rithm 2: When a request (u, v) occurs, DS first simply
splays u to the lowest common ancestor αT (u, v) of u
and v, using the classic splay operations Zig, ZigZig,
ZigZag from [25] (see Figure 1). We assume that the
splay function returns the tree resulting from these oper-
ations. Subsequently, the idea is to splay the destination
node v to the child of the lowest common ancestor
αT ′(u, v) of u and v in the resulting tree T ′. Observe
that this common ancestor is u itself (u = αT ′(u, v)),
i.e., we define the double splay algorithm DS to splay v
such that it becomes a child of u. (Note that the child is
uniquely defined: if u > v, v will be the left, if u < v,
the right child of u.)

Algorithm 2 Double Splay Algorithm DS

1: (* upon request (u, v) in T *)
2: w := αT (u, v)
3: T ′ := splay u to root of T (w)
4: splay v to the child of T ′(u)

C. Basic Upper and Lower Bounds

The amortized communication cost of DS can be upper
bounded by the entropy of the sources and destinations
of the requests.

Theorem 5. Let σ be an arbitrary sequence of commu-
nication requests, then for any initial tree T0,

Cost(DS, T0, σ) = O(H(X̂) +H(Ŷ))

where H(X̂) and H(Ŷ) are the empirical entropies of
the sources and the destinations in σ, respectively.

Proof: The claim is a consequence of Lemma 1. For
any node v let s(v) denote the total number of times v
appears as a source in σ, and let d(v) denote the total
number of times v appears as a destination. We assign
each node v ∈ V two weights s(v)/m and d(v)/m and
analyze the two basic operations of DS separately: first
splaying the source to the common ancestor and second
splaying the destination to the new common ancestor.
The cost Cost(DS, T, σ) can be computed as

1

m

m∑
i=1

(
splay src(σt) to wt + splay dst(σt) to w′t

)
5

where wt is the lowest common ancestor of src(σt) and
dst(σt) at time t and w′t is the child of wt after the
first splay operation. Similarly to the proof of Lemma 1,
we define the size of a subtree T as the sum of the
weights of all nodes in T . Since the size of a source
v ∈ V is at least s(u)/m and the size of any node is
at most 1 (analogously for the case of destinations: just
replace s(u) by d(v)), by Lemma 1 we can compute
Cost(DS, T, σ) as:

Cost(DS, T, σ) ≤ 1

m

m∑
i=1

(
3 · (r(src(σt))− r(wt))

+ 3 · (r(dst(σt))− r(w′t)) + 2
)

∈ O(
1

m
(2m+

n∑
i=1

s(i) log(
m

s(i)
)

+

n∑
j=1

d(j) log(
m

d(j)
)

∈ O(H(X̂) +H(Ŷ))

Next we derive a simple lower bound for the expected
path length in a distributed tree network. It is related
to the conditional empirical entropy of the request se-
quence.

Theorem 6. Given a request sequence σ, for any optimal
(binary search) tree network T :

Cost(⊥, T, σ) ∈ Ω(H(Ŷ |X̂) +H(X̂|Ŷ)) (3)

Proof: For any node x ∈ V , let Ŷx denote the
frequency distribution of the destinations given that the
source is x. Consider an optimal tree T with root x.
Following Property 2, the average path length of requests
is Ω(H(Ŷx)). Considering the optimal tree for each
source, we have a cost of at least

n∑
i=1

f(xi)H(Ŷxi
) ∈ Ω(H(Ŷ |X̂))

A similar argument holds for the destinations: since for
each destination y the cost for its requests in an optimal
tree where y is the root is at least H(X̂y), where X̂y

denotes the frequency distribution of the sources given
that the destination is y.

Theorems 5 and 6 are relatively general and there
remains a gap between upper and lower bound. It is
hence interesting to study some concrete examples in
more detail.

First, we observe that DS achieves an optimal amor-
tized cost for all request patterns following a product

distribution: the probability p(u, v) of a communication
request (u, v) can be described by the product of the
activity levels p(u) and p(v) of the nodes, i.e., p(u, v) =
p(u) · p(v). Hence, from the independence it follows
that the entropy of the communication sources given the
destinations equals the entropy of the communication
sources only (i.e., H(X̂|Ŷ) = H(X̂)), and vice versa
for the destinations (H(Ŷ |X̂) = H(Ŷ)).

Corollary 1. DS is asymptotically optimal if σ follows
a product distribution.

However, there are also simple examples where the
gaps remain open. Figure 2 gives three exemplary re-
quest patterns R(σ) which help us to better understand
the gap between our upper and lower bound. All three
request graphs in Figure 2 are bounded degree graphs,
i.e., H(Ŷ |X̂ and H(X̂|Ŷ) are upper bounded by a
constant while H(Ŷ) and H(X̂) can be as high as log n.
In Scenarios (a) and (b) the lower bound is actually zero
since given the source there is no ambiguity about the
destination and vice versa. In Section V we will derive
an improved lower bound on the cost of an optimal static
network. On that occasion, we will revisit our examples
here and show that some gaps can be closed.

D. Convergence for Special Request Patterns

In this section we consider special request patterns
that highlight some of DS’s locality and convergence
properties. In particular, we will discuss scenarios where
DS achieves an optimal performance. For this section we
consider communication requests of infinite length where
every request in σ is repeated infinitely many times.

Locality. We first study a scenario which shows the
locality properties of DS. In this scenario, requests are
clustered, and so is the resulting tree of DS.

Definition 3 (Cluster Scenario). In a cluster scenario
the communication pattern σ partitions the nodes in
k contiguous and disjoint intervals I1∪̇I2∪̇I3∪̇ . . . ∪̇Ik
where nodes within an interval Ij have consecutive
numbers and where communication only happens be-
tween node pairs in the interval. In particular, a request
(u, v) implies that u and v belong to the same interval:
(u, v) ∈ σ → ∃j : u, v ∈ Ij .

Theorem 7. In a cluster scenario σ, DS features the
following two properties:

1) DS will eventually construct a SplayNet in which
for any communication pair (u, v) ∈ Ij , for any
j ∈ {1, . . . , k}, u and v are connected by a local
path which only includes nodes from Ij .

2) Once this local routing property is established, it
will never be violated again.

6

1 2 3 n/2 n/2+1 n-1 n........ n-2

1 2 3 n/2 n/2+1 n-1 n........ n-2 1 2 3 √n-1 √n

n-1 n

....

....

....

n-2

√n+1 2√n

3√n2√n+1(a)

(b) (c)

Fig. 2: Three exemplary requests graphs: (a) a laminated set, (b) a random matching, and (c) a 2-dimensional grid

Ij

T2T1

T3

x y

rj

Fig. 3: Illustration for proof of Claim 1 and Theorem 7.

Proof: For any BST T and an interval Ij let T (Ij)
denote the smallest size sub-tree of T such that all the
nodes of Ij are in T (Ij) and rj be the root of T (Ij).
Let out(T(Ij)) denote the number of requests (u, v) ∈ σ
s.t. either u or v are in T (Ij), but not both.

For a cluster scenario σ and a BST T consider a
potential function φ =

∑k
j=1 out(T(Ij)). We will prove

the theorem by showing first that when φ = 0 for any
(u, v) ∈ Ij , j ∈ {1, . . . , k}, u and v are connected by
a local path which only includes nodes from Ij and φ
remain zero after any request. Next will show that when
φ > 0, DS cannot increase φ, and there is a request in
σ that will reduce it.

We start with the following claim.

Claim 1. Any two nodes x < y in Ij , j ∈ {1, . . . , k} in
a tree T (Ij) with out(T(Ij)) = 0 are connected via a
path that contains only nodes from Ij . This property is
invariant for all future requests in σ.

Proof: Consider the generic situation in Figure 3.
For all nodes not in Ij there are 3 possible locations:
in (possible empty) sub-trees T1, T2, or T3. Clearly, T1

contains only IDs smaller than Ij and must be attached
to the smallest ID in Ij , T2 contains only IDs larger

than Ij and must be attached to the largest ID in Ij .
T3 can contain either smaller or larger IDs depending
on whether rj is a left or a right son of its parent. If
out(T(Ij)) = 0 there are no requests between T1 or T2

to T3. Therefore requests within T1, T2 and T3 remain
within the corresponding subtrees, and so out(T(Ij))
remains 0 after each request. Moreover for any x, y ∈ Ij ,
the path contains only nodes from Ij and any request
within Ij splays only IDs within Ij , hence the claim
holds.

Now observe that if φ = 0, every out(T(Ij)) = 0,
and so φ will remain zero also in the future; for any
(u, v) ∈ Ij , their path only includes nodes from Ij .

Next we claim that no request can increase φ, and
that if φ > 0, there is a request in σ that will decrease
the potential function. Consider T (Ij) and any request
(u, v). If (u, v) ∈ Ij then out(T(Ij)) does not change. If
u, v ∈ Ti for i = 1, 2 or 3, then again out(T(Ij)) does
not change. If u ∈ T1 or u ∈ T2 and v ∈ T3, then the
lowest common ancestor of u, v is in T3 and after DS
of u and v, out(T(Ij)) will decrease by one. Therefore
φ can only decrease. Now if φ > 0, there is some j for
which out(T(Ij)) > 0. Take the request (u, v) that is a
witness; after this request out(T(Ij)) will decrease by
one, so φ will decrease. So overall given a cluster σ, φ
will decrease to zero which proves the theorem.

Optimal Scenarios. DS sometimes achieves an op-
timal performance by converging to the optimal static
network implied by R(σ). We have already encoun-
tered an example where SplayNets are asymptotically
optimal, namely if σ describes a product distribution
(cf Corollary 1). In the following, we will examine
optimal scenarios in more detail.

A first class of optimal scenarios are laminated com-
munication requests, cf Figure 2 a).

Definition 4 (Laminated Scenario). In a laminated sce-
nario it holds for the communication pattern σ that for
any two pairs (u1, v1) and (u2, v2) in σ, min{u1, v1} <

7

min{u2, v2} < max{u2, v2} < max{u1, v1}.

We have the following result.

Theorem 8. In communication scenarios with laminated
communication patterns σ, DS will eventually converge
to (and stay at) a tree where any communication pair
{u, v} is adjacent.

Proof: We can assign a level to any laminated
pair p1 = (u1, v1) depending on the number of pairs
p2 = (u2, v2) nested in p1, i.e., for which min{u1, v1} <
min{u2, v2} < max{u2, v2} < max{u1, v1}. Let us
refer to the level of the outermost pair as level 0. Our
proof works by induction over these nestings, from lower
to higher levels. Concretely, we first show that after a
pair p1 = (u1, v1) of level 0 communicated, it will
stay adjacent forever. To see this, consider any other
pair p2 = (u2, v2) inside the interval of p1. By the
definition of DS, after a request (u1, v1), v1 is the right
(resp. left) child of u1 if u1 < v1 (resp. u1 > v1).
We will show that this implies that the nodes u2, v2

must be both in the same subtree, and can hence not
change the adjacency relationship of u1 and v1 anymore.
The claim follows by case distinction: (1) If u1 < v1,
the left subtree of v1 is the only subtree which can
contain nodes w with u1 < w < v1; however, these
are exactly the nodes fulfilling the lamination property
min{u1, v1} < w < max{u1, v1}. If u1 > v1, the right
subtree of v1 is the only subtree which can contain nodes
w with u1 < w < v1 and hence min{u1, v1} < w <
max{u1, v1}. With the link of level i being stable, we
can recursively prove the stability of a link of level i+1,
as again, the influence of any corresponding laminated
pair is restricted to the corresponding subtree.

Combining the last two theorems of clustered and
laminated patterns it is possible to prove optimality in a
non-crossing matching scenario. For a request (u, v) in
σ, let I(u,v) denote the interval [min(u, v),max(u, v)].

Definition 5 (Non-Crossing Matching Scenario). In a
non-crossing matching scenario, it holds for the commu-
nication pattern σ that for any two pairs (u1, v1) and
(u2, v2) in σ, either:

1) I(u1,v1) (I(u2,v2) or I(u2,v2) (I(u1,v1), or
2) I(u1,v1) ∩ I(u2,v2) = ∅.

It follows from the definition that the request graph
R(σ) must describe a matching, and for each request
(u, v) there are no other requests that enter or leave (i.e.,
cross) the interval I(u,v).

If R(σ) describes a non-crossing matching scenario,
DS will converge to an optimal solution.

Theorem 9. In a non-crossing matching scenario σ, DS
will eventually converge to (and stay at) a tree where
any communication pair {u, v} ∈ σ is adjacent.

The proof follows from the observation that a non-
crossing matching scenario is a cluster scenario (which
will converge by Theorem 7) and within each cluster it is
a laminated scenario (which will converge by Theorem
8).

To give one more example where DS is optimal, we
consider the multicast tree scenario.

Definition 6 (Multicast Tree Scenario). In a multicast
tree scenario, it holds for the communication pattern σ
that the request graph R(σ) forms a rooted and sorted
binary tree.

Theorem 10. If the communication pairs in σ form a
multicast tree, DS will eventually converge to the optimal
static solution, i.e., to R(σ).

Proof: Let us label the links of H = R(σ) by the
node they are pointing to. Thus, the node identifiers
in H imply an order on the links. The proof is by
induction over the order of these links. Concretely, we
will consider the following kind of maximal link sets
S = {(u1, v1), (u2, v2), . . . , (uk, vk)}. A link set S is
called a maximal link set iff the following holds: if
us is the smallest source node in {u1, . . . , uk} (i.e.,
us = arg min{u1, . . . , uk}), then S includes all links
(ui, vi) of order vi ≥ us. We will partition the nodes into
such link sets and prove inductively over link sets with
decreasing order, that once such a maximal link set S
is stable, future communication requests cannot change
S anymore. Moreover, we will prove termination, i.e.,
there are always requests that lead to an increase of the
maximal link set.

T
4

x

T
2

T
1

T
3

v

u

w

T
5

Fig. 4: Illustration for proof of Theorem 10.

Induction hypothesis: Let us consider the highest
order link e = (u, v) first, i.e., v is the overall max-
imal node in H . We claim that a maximal link set

8

S = {(u, v), (u1, v1), . . . , (uk, vk)} will emerge which
includes all links (ui, vi) with nodes ui ≥ u. To see this,
we first note that once the link (u, v) is requested, it will
never change again in the future. We have the following
general situation in the current graph (Figure 4): v has
a right subtree T1 and a left subtree T2, the parent u on
the left having itself a left subtree T3; u has a left parent
w with a left subtree T4 and a right parent x with right
subtree T5. Clearly, all nodes ui > u must be located in
the subtree T2, as subtrees T1 and T5 must be empty as
v is the overall largest node in the network, and subtrees
T3 and T4 can only contain smaller nodes than u. The
link (u, v) will remain stable after it has been used for
the first time, as (u, v) is both a link in H as well as in
the current graph, and as two edges in a binary search
tree cannot intersect in the identifier space (cf Figure 1).
In order to show that also all other links in S stabilize,
we can focus on subtree T2 and observe that the first time
v calls the root node r2 of subtree T2, the link (u, r2)
cannot change anymore either, as naturally, all requests
inside T2 fall either in the left or the right subtree of r2.
By a second, simple induction, it follows that the entire
subtree T2 will converge from the roots of the subtrees,
which proves the induction hypothesis that such a stable
set S will emerge.

Induction step: By the induction hypothesis, we
can assume that there exists a stable set S =
{(u1, v1), . . . , (uk, vk)} consisting of all links with in-
cident nodes larger than the minimal source node us in
the set S. For the induction step, we need to show that a
larger maximal link set S′ will emerge from S. Consider
a maximal link set S′ = {(u′1, v′1), . . . , (u′k, v

′
k)} ∪ S (a

laminated partition), assume that v is the largest node
in S′ \ S, consider the link (u, v), and let S′ such that
u is the smallest source in S′. The situation for link
(u, v) can again be described by Figure 4. Compared to
the induction hypothesis, the situation is slightly more
complex now. We again consider the different subtrees
in turn. Clearly, all nodes in T1 and T5 are larger than v
and hence the corresponding links inside T1 and T5 as
well as the links with endpoints there must be stable by
the induction hypothesis. The subtrees T2 and T3 cannot
communicate due to the link (u, v) which is part of the
communication tree by definition. Thus, we can again
prove by induction that the subtree T2 will converge from
the root, and the claim follows.

V. LOWER BOUNDS

This section studies lower bounds for serving requests
on an optimal static tree in more detail. We first present
a lower bound based on interval cuts, and then derive a
lower bound based on edge expansion.

A. Interval Cuts Bound

A good lower bound can be obtained by using an
intriguing connection to request graph cuts. It is in-
tuitively clear that if the request graph R(σ) exhibits
large cuts, it can be more difficult to find a tree network
that accommodates the requests well. But one has to
be careful when defining the problematic cuts, as even
graphs with many large cuts can sometimes be embedded
optimally.

We start with a definition of an interval cut.

Definition 7 (Interval Cut). Arrange the nodes V on a
one dimensional line in an ascending, sorted order, and
let I`j ⊆ V denote the set of nodes corresponding to
the subinterval of length ` covering the nodes of order
j, j+1, ..., j+ `−1. Let Ī`j denote the remaining nodes,
i.e., Ī`j = V \I`j . For a weighted directed graph G(V,E),
the interval cut, Cutin(I`j , G) is the set of edges in G
pointing to nodes in I`j , and the interval cut Cutout(I

`
j , G)

is the set of edges in G originating at nodes in I`j and
pointing outwards. Formally

Cutin(I
`
j , G) =

{
(u, v) : v ∈ I`j , u ∈ Ī`j , (u, v) ∈ G

}
Cutout(I

`
j , G) =

{
(u, v) : u ∈ I`j , v ∈ Ī`j , (u, v) ∈ G

}
The weight of a cut c̃ is defined as the sum of the

weights of its edges, w(c̃) =
∑

(u,v)∈c̃ w(u, v).
We consider the request graph R(σ) where a directed

edge represent a source-destination pair in σ and edge
weights represent the frequency of the communication
requests. An interval cut c̃ in R(σ) is a set of source-
destination pairs, so for an interval cut c̃ the conditional
frequency distribution of the sources is X̂c̃ and the one
of the destinations is Ŷc̃.

Given an interval cut c̃, we will denote the weighted
empirical entropy of c̃ as:

H̃(c̃) = w(c̃)
(
H(X̂c̃) +H(Ŷc̃)

)
We can lower bound the average communication cost

of an (optimal) binary search tree T as follows.

Theorem 11. Given a request sequence σ, for any
(optimal) binary search tree T :

Cost(⊥, T, σ) ∈ Ω

(
max

i
min
j,`

H̃(Cutin(I
`
j , R(σ)))

)
(4)

Cost(⊥, T, σ) ∈ Ω

(
max

i
min
j,`

H̃(Cutout(I
`
j , R(σ)))

)
(5)

where i ∈ [0, log n−1], j ∈ [1, n] and ` ∈ [n
2i+1 ,

n
2i] and

[a, b] is the set of integers between a and b (including
the boundary nodes).

9

Proof: We will only prove Eq. (5), as Eq. (4) can
be proved in an analogous way. Let c̃∗, be a cut that
maximizes Eq. (5) and let i∗ be the corresponding i. Now
consider T . Let v be a node s.t. n

2i∗ > |T (v)| ≥ n
2i∗+1

(such a subtree must exist in any T due to Claim 3).
Let u be the parent of v. Let `∗ = |T (v)| and let us
choose j∗ such that the set of nodes of T (v) is I`

∗

j∗ .
Such a j must exist due to Claim 2. The result now
follows from Property 2, since all the requests from I`

∗

j∗

to I`
∗

j∗ must cross edge (u, v) and entail a cost of at
least Ω(H̃(c̃∗)). To make the last statement more clear,
consider an optimal binary tree (with root v) that needs
to serve lookups from a frequency distribution X̂c̃∗ . The
cost of the lookups will be at least Ω(H(X̂c̃∗)). The
same holds for the destinations Ŷc̃∗ .

B. Edge Expansion Bound

Another lower bound can also be obtained by using
concepts related to graph expansion, and in particular the
conductance [24] and the edge expansion [10] of graphs.
We need the following definitions: Let G(V,E) be a
directed weighted graph. We assume the edge weights
are normalized, i.e., the sum of all edge weights is one:∑

(u,v)∈E w(u, v) = 1.

Definition 8 (Conductance Entropy). The cut E(S, S̄)
is the set of outgoing edges from S: E(S, S̄) = {(u, v) :
u ∈ S, v ∈ S̄, (u, v) ∈ E}. The weight of a cut E(S, S̄),
W (S) is the sum of the weights of the edges in the cut.

W (S) =
∑

(u,v)∈E(S,S̄)

w(u, v)

A distribution of the sources src(S) of a cut E(S, S̄) is
defined for the set of nodes in S that are also in E(S, S̄)
as follows: the probability (weight) of each u ∈ S and
E(S, S̄) is defined as

wS(u) =
∑

(u,v)∈E(S,S̄)
u∈S

w(u, v)
/
W (S).

Similarly the distribution dst(S) is defined over the
destinations in E(S, S̄), src(S) such that the probability
of v being a destination in S̄ is:

wS̄(v) =
∑

(u,v)∈E(S,S̄)
v∈S̄

w(u, v)/W (S).

The entropy of a cut (S, S̄) is defined as:

ϕH(S) = W (S) (H(src(S)) +H(dst(S))) (6)

The conductance entropy of a graph is defined as:

φH(G) = min
S⊆V

ϕ(S) (7)

We can now claim the following:

Theorem 12. Given a request sequence σ, for any
(optimal) binary search tree T :

Cost(⊥, T, σ) ∈ Ω(φH(R(σ))) (8)

The proof is similar to the arguments of the proof of
Theorem 11. Note that φH(G) can be at most O(log n)
since W (s) is at most 1 and the entropy is at most log n.

The edge expansion [10] of a graph G is defined as:

h(G) = min
0<|S|≤n

2

E(S, S̄)

|S|
(9)

For the special case where the request graph R(σ) is
a constant degree d-regular graph with uniform weights
and an edge expansion α, we can claim the following.

Theorem 13. Given a request sequence σ s.t. R(σ)
is a d-regular graph with uniform weights and edge
expansion α then Cost(⊥, T, σ) ∈ Ω(log(αn)).

The claim follows since if we take S to be Ω(n) the
entropy of the cut must be Ω(log(αn). We now revisit
the examples of Figure 2 and elaborate on their bounds
using the above theorems.

C. Examples

Consider a request graph that forms a 2-dimensional
grid as in Figure 2 c). For this scenario, Theorem 13
gives a tight lower bound of Ω(log n), since the edge
expansion of the 2-dimensional grid is of order 1/

√
n.

For the random matching case of Figure 2 b), The-
orems 12 and 13 only give a constant lower bound
since the expansion of a matching is zero (the graph
is not even connected). However, with Theorem 11 that
only considers interval cuts (and not all cuts as in edge
expansion), we can get a tight lower bound of Ω(log n)
for these cases.

VI. SIMULATIONS

In order to complement our theoretical insights, we
conducted simulations on a connected subset of the
Facebook online social network (obtained from [27])
with roughly 63K nodes and 800K edges. The user
identifiers (IDs) are chosen according to a breadth-first
search from the largest degree node. We consider two
simplistic communication patterns σ: (1) In the first
scenario (RW), a rumor spreads randomly from one user
to the next along friendship links, i.e., communication
occurs along a random walk of the friendship graph.
We use a parameter p to tune the locality of the random
walk: with probability p, a given communication request
(u, v) is repeated, and with probability (1 − p) a new

10

request (v, w) is generated, where w is a neighbor of v
chosen uniformly at random. (2) In the second scenario
(MATCH), we compute a random maximal matching
on the Facebook graph and cycle through all matched
edges which represent the (sequential) communication
requests. Figure 5 shows the results when applying DS

10000 20000 30000 40000 50000 60000
Network Size

15

20

25

30

Av
er

ag
e

Co
st

 o
f R

eq
ue

st

RW p=0.5
RW p=1
MATCH

Fig. 5: Average cost of SplayNet requests under different
scenarios and as a function of the network size.

to subgraphs of the Facebook graph of increasing sizes.
We ran our experiments sufficiently long to study the
steady state performance (e.g., the random walk is much
longer than the network size). The variance of our results
is hence very low. We observe that in the random walk
scenario, the average request route length is significantly
shorter than in the matching scenario, even for p = 1.
This demonstrates that DS performs better on localized
requests. Naturally, the request locality for lower p
can be exploited to reduce the amortized cost. In the
matching however, the random nature of the matchings
cause a high cost as implied by Theorem 11.

VII. CONCLUSION

We regard our work as a first step towards the de-
sign of novel distributed data structures and networks
which adapt dynamically to the demand. The main
simplification used in this paper regards the restriction
to the tree topology, and the generalization to more
complex and redundant networks is an open question.
Moreover, similarly to [25], we have focused on the
amortized costs of SplayNets, and an interesting direction
for future research regards the study of the competitive
ratio achieved by our algorithm under arbitrary commu-
nication patterns.

REFERENCES

[1] B. Allen and I. Munro. Self-organizing binary search trees. J.
ACM, 25:526–535, 1978.

[2] D. Arora, M. Bienkowski, A. Feldmann, G. Schaffrath, and
S. Schmid. Online strategies for intra and inter provider service
migration in virtual networks. In Proc. IPTComm, 2011.

[3] J. Aspnes and G. Shah. Skip graphs. ACM Transactions on
Algorithms (TALG), 3(4):37–es, 2007.

[4] D. Batista, N. da Fonseca, F. Granelli, and D. Kliazovich. Self-
adjusting grid networks. In Proc. IEEE International Conference
on Communications (ICC), pages 344–349, 2007.

[5] E. D. Demaine, D. Harmon, J. Iacono, and M. Patrascu. Dynamic
optimality - almost. In Proc. 45th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 484–490, 2004.

[6] J. Dı́az, J. Petit, and M. Serna. A survey of graph layout
problems. ACM Comput. Surv., 34(3):313–356, 2002.

[7] U. Feige and J. Lee. An improved approximation ratio for the
minimum linear arrangement problem. Information Processing
Letters, 101(1):26–29, 2007.

[8] L. H. Harper. Optimal assignment of numbers to vertices. J.
SIAM, (12):131–135, 1964.

[9] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis,
P. Sharma, S. Banerjee, and N. McKeown. Elastictree: Saving
energy in data center networks. In Proc. 7th USENIX Conference
on Networked Systems Design and Implementation, 2010.

[10] S. Hoory, N. Linial, and A. Wigderson. Expander graphs and
their applications. Bulletin of the American Mathematical Society,
43(4):439–562, 2006.

[11] D. Huffman. A method for the construction of minimum-
redundancy codes. Proceedings of the IRE, 40(9):1098–1101,
1952.

[12] R. Jacob, A. Richa, C. Scheideler, S. Schmid, and H. Täubig.
A polylogarithmic time algorithm for distributed self-stabilizing
skip graphs. In Proc. 28th ACM Symposium on Principles of
Distributed Computing (PODC), 2009.

[13] D. Knuth. Optimum binary search trees. Acta informatica,
1(1):14–25, 1971.

[14] F. Kuhn, S. Schmid, and R. Wattenhofer. Towards worst-case
churn resistant peer-to-peer systems. Distributed Computing
Journal (DC), 22(4):249–267, 2010.

[15] J. Leitao, J. Marques, J. Pereira, and L. Rodrigues. X-bot: A
protocol for resilient optimization of unstructured overlay net-
works. IEEE Transactions on Parallel and Distributed Systems,
99, 2012.

[16] M. Lis, K. Shim, M. Cho, C. Fletcher, M. Kinsy, I. Lebedev,
O. Khan, and S. Devadas. Brief announcement: distributed shared
memory based on computation migration. In Proc. ACM SPAA,
pages 253–256. ACM, 2011.

[17] K. Mehlhorn. Nearly optimal binary search trees. Acta Informat-
ica, 5(4):287–295, 1975.

[18] G. Mitchison and R. Durbin. Optimal numberings of an n n
array. SIAM J. Algebraic Discrete Methods, 7(4):571–582, 1986.

[19] R. Ravi, A. Agrawal, and P. N. Klein. Ordering problems
approximated: Single-processor scheduling and interval graph
completion. In Proc. ICALP, 1991.

[20] N. Saitou and M. Nei. The neighbor-joining method: a new
method for reconstructing phylogenetic trees. 4:406–425, 1987.

[21] G. Schaffrath, S. Schmid, and A. Feldmann. Optimizing long-
lived cloudnets with migrations. In Proc. IEEE/ACM Interna-
tional Conference on Utility and Cloud Computing (UCC), 2012.

[22] C. Scheideler and S. Schmid. A distributed and oblivious heap.
In Proc. 36th ICALP, 2009.

[23] Y. Shang, D. Li, and M. Xu. Energy-aware routing in data
center network. In Proc. ACM SIGCOMM Workshop on Green
Networking, pages 1–8, New York, NY, USA, 2010. ACM.

[24] A. Sinclair and M. Jerrum. Approximate counting, uniform
generation and rapidly mixing markov chains. Inf. Comput.,
82(1):93–133, 1989.

[25] D. Sleator and R. Tarjan. Self-adjusting binary search trees.
Journal of the ACM (JACM), 32(3):652–686, 1985.

11

[26] M. Tang, Z. Liu, X. Liang, and P. M. Hui. Self-adjusting routing
schemes for time-varying traffic in scale-free networks. Phys.
Rev. E, 80(2):026114, Aug 2009.

[27] B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi. On the
evolution of user interaction in facebook. In Proc. 2nd ACM
Workshop on Online Social Networks (WOSN), pages 37–42,
2009.

[28] C. C. Wang, J. Derryberry, and D. D. Sleator. O(log log n)-
competitive dynamic binary search trees. In Proc. 17th Annual
ACM-SIAM Symposium on Discrete Algorithm (SODA), pages
374–383, 2006.

APPENDIX

A. Properties of Binary Search Trees

This section presents some basic properties of binary
search trees which are frequently exploited in our proofs.
We consider a binary search tree T of size n and
nodes IDs [1, 2, . . . , n]. The following fact is an obvious
consequence of the binary search structure.

Fact 1. For two nodes x < y in a binary search tree
T , let w be the lowest common ancestor of x and y. It
holds that x ≤ w ≤ y.

The next two claims are needed for our lower bounds.

Claim 2. Let T be any binary search tree. For any node
v ∈ T the sub-tree T (v) contains the IDs of a contiguous
interval, i.e., there exist j and `, s.t. I`j equals the set of
nodes of T (v) .

This can be shown easily by contradiction. Also the
following claim is simple:

Claim 3. Let T be any binary tree of size |T | = n. Then
for every i = 0, 1, . . . , blog nc − 1 there exists a node v
s.t. n

2i > |T (v)| ≥ n
2i+1 .

Proof: Let x0 be the root of T . Define xj+1 as the
root of the largest subtree of T (xj) (break ties arbitrarily)
if there exist any. Clearly for each xj ∈ T, j > 0 we have
|T (xj)| < |T (xj−1)|. Now for each i in the range above
let vi = xj for the minimal j s.t. |T (xj)| < n

2i . Since
|T (xj−1)| is at least n

2i , it holds that |T (xj)| ≥ n
2i+1 .

Sorted binary tree networks are attractive for their low
degree and the support for a simple and local routing.

Claim 4. Sorted binary tree networks facilitate local
routing.

Proof: Basically, a local routing can be achieved by
exploiting Claim 2 as follows. Let us regard each node
u in the tree network T as the root of a (possibly empty)
subtree T (u). Then, a node u simply needs to store
the smallest identifier u′ and the largest identifier u′′

currently present in T (u). This information can easily be
maintained, even under the topological transformations
performed by our algorithms. When u receives a packet

for destination address v, it will forward it as follows:
(1) if u = v, the packet reached its destination; (2) if
u′ ≤ v ≤ u, the packet is forwarded to the left child
and similarly, if u ≤ v ≤ u′′, it is forwarded to the
right child; (3) otherwise, the packet is forwarded to u’s
parent.

B. Optimal Static Network

The optimal static tree T which minimizes the sum of
the weighted node distances: min

∑
(u,v)∈R(σ) dT (u, v).

can be computed by dynamic programming. Let V
denote the set of ordered nodes and let R denote the
request matrix (i.e., the frequency of a given ordered
communication pair). We will index subproblems by
intervals I on V , and will refer to all nodes outside I
by Î = V \ I . For each node v in an interval I , we can
compute the aggregate demand towards v (v’s weight)
from nodes outside I: WI(v) :=

∑
u∈Î w(u, v)+w(v, u)

Let WI denote the corresponding vector consisting of all
nodes in the interval I

The algorithm is based on the observation that the
demand from outside the considered interval can be
“decoupled” with the aggregate weight. The cost of
a given tree TI on I can be computes as follows:
Cost(TI ,WI) = [

∑
u,v∈I(d(u, v)+1)·w(u, v)] +DI ·WI

where DI in the scalar product DI ·WI is the vector
denoting the distance of the nodes in I from the root of
TI , i.e., the vector of the depths of the nodes.

Dynamic programming is then based on merging
optimal sub-intervals. In order to compute the opti-
mal tree T ∗I for an interval I partitioned into subin-
tervals I ′ and I ′′, we exploit the computed optimal
substructures for the sub-intervals and choose the best
overall root x. For the induction hypothesis, a single
node tree has cost zero. The total tree cost can be
expressed as follows (the additive 1 has to be added
in the end): Cost(T ∗I ,WI) = minx∈I Cost(T ∗I′ ,WI′ +
Cost(T ∗I′′ ,WI′′) +

∑
v∈I′WI′(v)+

∑
v∈I′′WI′′(v) Note

that when choosing a new root x, all nodes except x are
pushed one level down in the tree.

Our algorithm terminates with an overall solution
when I represents the entire node set. Since there are
O(n2) intervals I and since merging two trees requires
testing O(n) different root candidates, the runtime is at
most cubic in the number of nodes. (The WI values can
be computed within the same asymptotic order.)

12

	Introduction
	Related Work
	Model and Preliminaries
	Entropy and Empirical Entropy
	Splay Trees

	Splay Networks
	Optimal Static Tree Network
	The Double Splay Algorithm DS
	Basic Upper and Lower Bounds
	Convergence for Special Request Patterns

	Lower Bounds
	Interval Cuts Bound
	Edge Expansion Bound
	Examples

	Simulations
	Conclusion
	References
	Appendix
	Properties of Binary Search Trees
	Optimal Static Network

