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ABSTRACT

This paper attends to a generalized version of the classic page
migration problem where migration costs are not necessarily
given by the migration distance only, but may depend on prior
migrations, or on the available bandwidth along the migration
path. Interestingly, this problem cannot be viewed from a
Metrical Task System (MTS) perspective, despite the generality
of MTS: The corresponding MTS has an unbounded state space
and, thus, an unbounded competitive ratio. Nevertheless, we are
able to present an optimal online algorithm for a wide range
of problem variants, improving the best upper bounds known
so far for more specific problems. For example, we present a
tight bound of Θ(log n/ log log n) for the competitive ratio of
the virtual server migration problem introduced recently.

I. INTRODUCTION

The classic Page Migration problem asks for a strategy to
dynamically position a page (or a server) in the network such
that the access costs to this page (measured in the distance
between host issuing the request and the host storing the page)
as well as the migration costs of the page are minimized.
Concretely, in the realm of online algorithms and competitive
analysis, it is assumed that the sequence of requests accessing
the page from different locations in the network is arbitrary
and cannot be foreseen. In the traditional problem version
introduced in the 80ies, the migration costs are proportional
to the distance the server is migrated, as well as to the page
size. Subsequently, the problem has been generalized to the
well-known Metrical Task System (MTS) problem, which is
also a generalization of many other online problems on graphs
(e.g., the k-Server Problem). In a metrical task system, costs
for satisfying a request (or more precisely: performing a task)
in a certain state (e.g., for a server being at a certain node) are
given as well as a metric space for distances between states.

Traditionally, these problems are motivated by shared
memory management in networks. A page can be moved (or
migrated1) to different computers in the network, sharing the
same address space. The problem is also encountered as the file
migration problem in a distributed network. Instead of pages,
files are migrated. With the rise of the world wide web, where
requests are supposed to be fulfilled in real time, the problem
has received additional attention. Another (recent) application
is the virtual server migration (in [1]) in the context of cloud
computing [15] and the novel network virtualization paradigms.

1We will treat the verbs move and migrate as synonyms.

Opposed to simple pages, entire services, i.e. programs with
data, are moved across the network. Moreover, these migration
services may be offered to service providers (or directly
to users) by infrastructure owners (or resource brokers and
resellers).

These recent networking trends introduce more general
migration costs that cannot be modeled with the existing
problem formulations. For instance, consider a service provider
offering a low-latency SAP application which is flexibly moved
closer to the (potentially mobile) users. Without support of live
migration technology, each migration may come at a service
interruption cost which depends on the migration time. This
cost is unlikely to depend on the distance the server is moved
but rather on the available bandwidth along the migration path.

Interestingly, it turns out that obtainable competitive ratios
critically depend on the migration cost model. We, in this
paper, present a novel online algorithm for migration cost
functions and we show its (asymptotic) optimality for the
classic problem variants, i.e., for a scenario where migration
costs depend on distances and also for the scenario where
costs are determined by the number of migrations. In the latter
case, we improve on the asymptotic competitive ratio of prior
work. We also conjecture that our algorithm is (asymptotically)
optimal for any other reasonable cost function (see Section III).
In particular, our generalized migration model allows the costs
of a migration to be dependent on an aggregate measure of
prior migrations, i.e., the number of all migrations or the total
distance the server has been migrated. For instance, a cloud
or virtual network provider may provide discounts to good
customers using much resources and migrating frequently. Thus,
the state of an algorithm is characterized not only by its current
server location but also by its prior movements, resulting in
a state space that increases exponentially with the number of
requests (this holds despite the fact that some convergence
criteria apply due to the definition of the cost function; see
Section III). Note that metrical task systems cannot deal with
such a scenario due to an unbounded state space. Therefore,
our problem is not merely an instance of a MTS but rather
pushes for an extension of MTS.

Our analysis differs from prior work in that it does not rely
on potential functions. Thus, we believe that the techniques
employed in our analysis are of independent interest.

II. RELATED WORK

The problem of page migration has been investigated already
in the 70ies in the context of placing a database in a computer



network, e.g. [12]. Whereas initial research focused more
on a mathematical formulation and solution of the problem,
e.g. through integer linear programs, the first algorithmic
treatment for larger instances was undertaken in the 80ies
by [13]. Typically, some kind of usage pattern was assumed
and treatment was mainly based on heuristics. The algorithmic
study abandoning any assumption on usage patterns employing
competitive analysis was established in [8]. More precisely, the
page migration problem together with the page replication
problem has been introduced by [8]. For the replication
problem pages are not migrated but copied; a copied page
cannot be deleted. Efficient algorithms were derived for trees
and complete graphs. After a sequence of improvements,
constant-competitive solutions have emerged, i.e. [2] gives
a 7-competitive deterministic solution. This was later improved
by [5] which attains a competitive ratio of 4.086. On the
other hand, [11] shows a lower bound of roughly 3.148. The
concept of copying the behavior of an optimal algorithm is
common for many online algorithms. The seemingly natural
choice of moving to a center of gravity, which minimizes the
access costs for a set of requests, has already been introduced
in [2] with the so called Move-To-Min algorithm and has
been used also in other work [6]. However, the decision
when to move the server is different for most algorithms,
in particular for ours. The analysis in [2] and [5] heavily rely
on the linearity of the migration cost function g in the distance
migrated, i.e. g(d) = D · d for some fixed D ≥ 1. Both papers
rely on a commonly encountered technique for analysis of
online algorithms, namely potential functions. Our analysis is
different. It refrains from using a potential function argument
and rather minimizes sums of interdependent variables, e.g.,
see Lemma V.9.

However, if costs are dependent on the number of migrations
only, i.e. in the so-called virtual server migration [6] problem
then the same paper [6] shows a non-constant lower bound
of Ω(log n/ log log n) where n is the number of nodes in the
network, which follows from the related problem of online
function tracking [7], [16]. We achieve asymptotic optimality
for both cost models. In particular, we improve upon [6],
which gives a randomized O(log n)-competitive algorithm, and
[1] which also describes a deterministic algorithm yielding a
competitive ratio of O(log n). In [1] each node v maintains a
counter c(v) that is incremented with every request r by the
distance d(v, r) between node v and request location r. A node
is called active as long as c(u) < β/40 for some threshold β
describing the migration cost (and being at least the diameter of
the graph). Once the counter c(u) of u reaches the threshold β
the server is migrated to an active node u, such that node u is
a center of gravity for all active nodes {w ∈ V |c(w) < β/40}.
Once there are no active nodes left, all counters are reset to 0.
The analysis shows that with every movement of the server a
constant fraction of nodes become inactive, i.e. after O(log n)
movements each costing β all nodes must have become inactive.
It is also shown that the optimal offline algorithm must move
its server at least once or incurs access costs at least Ω(β),
yielding a competitive ratio of O(log n). The virtual server

migration problem differs from the page migration problem in
the sense that the cost of migration depends on the available
bandwidth along the migration path, rather than on the path
length.

The page migration problem is related to many other
problems. The facility location problem [14] asks for optimal
facility locations such that facility building costs and access
costs are minimized; the facilities cannot be migrated. In the
k-server problems (see, e.g., [9] and in particular [3] for a
construction achieving a polylogarithmic competitive ratio),
an online algorithm must control the migration of a set of k
servers, represented as points in a metric space, and handle
requests that come also in the form of points in the space. As
each request arrives, the algorithm must determine which server
to move to the requested point. The goal of the algorithm is
to reduce the total distance that all servers traverse.

The virtual server migration problem, the facility location
problem, the k-server problem and the page migration problem
are all instances of metrical task systems (MTS) (e.g., [4],
[10]). For metrical task systems, there exist (relatively com-
plex) asymptotically optimal deterministic Θ(n)-competitive
algorithms, where n is the state (or “configuration”) space, and
randomized O(log2 n log log n)-competitive algorithms given
that the state space fulfills the triangle inequality. Assuming
that n is given by the number of nodes, i.e. independent of
prior migrations, then a general deterministic solution is at least
exponentially worse than our competitive algorithm ranging
from being Θ(1) to being Θ(log n/ log log n) competitive.
However, if the algorithm’s state is determined not only by its
current server location but also by decisions made in the past,
i.e. prior migrations, the state space grows with every possibility
of a migration, i.e. with every request. Thus, in this case the
competitive ratio becomes unbounded for state-of-the-art MTS
algorithms.

III. MODEL AND DEFINITIONS

Consider an undirected graph G = (V,E) with a distance
function d : V ×V → <, e.g. a physical network or a substrate
network on which virtual services are offered. For two nodes
u, v ∈ V d(u, v) gives the length of the shortest path on G.
We assume that d is a metric, in particular that the triangle
inequality holds, i.e. d(u, v) ≤ d(u,w)+d(w, v) for any nodes
u, v, w ∈ V . There is a single server positioned at some node
u ∈ V . The server must serve a sequence of (potentially
infinitely many) requests by nodes σ := (r0, r1, ..., ) with
ri ∈ V . For convenience, we use request ri to denote node
ri ∈ V issuing the (i + 1)st request. A subsequence σ(l)
consists of the first l requests of σ. The cost of a request
r ∈ σ is given by the distance d(u, r). Let the access costs C
for a sequence R of requests for a server positioned at node
u be C(u,R) :=

∑
r∈R d(u, r). The server can be migrated

from any node u to any other node v 6= u before a request
is issued. The objective is to strike a balance between access
costs and migration costs. The function g(x|y) defines the cost
of moving the server, where x and y can have two different
meanings. Costs can be based on the distance x the server is



moved given that it has already been moved for distance y.
Costs can also be determined by the number of movements.
In this case g(1|y) denotes the costs to move the server (to an
arbitrary node) given y movements have been performed so far.
We assume that the function g(x|y) behaves like real world
costs in a typical consumer-producer relationship, and may
e.g., describe discounts for frequent customers. This means
that migrating more does never increase marginal costs, but
it might decrease it. More precisely, g(x|y) is monotonically
decreasing with x and y, i.e.,

∀z + w ≤ x+ y : g(x|y)/x ≤ g(z|w)/z (1)

We assume equality in (1) for z + w = x + y. This means
that given a fixed number of migrations have been performed,
the costs per distance of a migration (or per migration) are
the same as long as the overall distance migrated (or overall
number of migrations) is the same. We also require that it
is always at least as expensive to migrate the server for
distance x as it is to answer a request being at distance
x from a server, i.e. ∀y : g(x|y) ≥ x. In particular, for
migration costs based on the number of movements this implies
that the most expensive migration between two nodes of
maximal distance, i.e. maxa,b∈V d(a, b) (= diameter of the
graph), is a lower bound on the cost of a migration, i.e.
g(1|y) ≥ maxa,b∈V d(a, b). If only g(x) is stated without
conditioning on another variable y then the costs depend only
on x.

We assume a conservative perspective, i.e. nothing is known
about requests in σ occurring in the future. An online algorithm
ON has to decide whether or not to migrate the server only
based on already served requests. We are in the realm on online
algorithms and competitive analysis. Our goal is to minimize
the (strict) competitive ratio ρ, i.e., the overall cost of the
online algorithm ON divided by the overall cost of an optimal
offline algorithm OFF (knowing σ in advance).

The total costs of our algorithm ON are the sum of its total
access costs CON

A (σ) and its total server migration cost CON
M (σ),

i.e. CON
A (σ) + CON

M (σ). Analogously for OFF the total costs
are COFF

A (σ) + COFF
M (σ).

ρ := maxσ
C(ON)

C(OFF)
= maxσ

CON
A (σ) + CON

M (σ)

COFF
A (σ) + COFF

M (σ)

Initially, ON’s server and OFF’s server are located at the
same node, i.e. f0. Let (f0, f1, ..., fsON

) be the initial server
position f0 concatenated with the sequence of sON nodes (in
chronological order) where an online algorithm ON places the
server during the execution such that it replies to at least one
request for each node fi with i ∈ [0, fsON

− 1] . Let fsON
be

its last position after the last migration once all requests σ
have been handled. Define davg(v,R) :=

∑
r∈R d(v, r)/|R|

for a subsequence of requests R ⊆ σ. The center(s) of gravity
CG(R) ⊆ V are defined as the closest nodes U ⊆ V for which
C(u,R) :=

∑
r∈R d(u, r) = |R|·davg(u,R) is minimal among

all nodes V . Frequently, there is just a single minimum, i.e.
u := CG(R) for a node u ∈ V .

We abbreviate the cost based on the number of migrations as
co.nb.m. and the costs based on the distance as co.di..

Let Fi be all requests handled while the server was at
position fi. Let oi0 be OFF’s server position for handling
the request immediately preceding the first request in Fi

(for i > 0) and OFF’s initial server position for i = 0.
Assume OFF migrated from oi0 to oi1 and so on until oim,
where it handled the last request in Fi. Let Oi

j ⊆ Fi

be the sequence of requests that OFF handled at node oij .
By definition ∪i∈[1,m]O

i
j = Fi. Let oic be a closest server

position of OFF to fi+1 and let oif be a furthest server
position of OFF to fi+1, i.e. oic := arg mink∈[0,m] d(oik, fi+1)
and oif := arg maxk∈[0,m] d(oik, fi+1). Define dio :=∑

k∈[1,m] d(oik−1, o
i
k).

IV. ALGORITHM

In our online algorithm Follower each request r is added to
set Fi for a server being at fi. To compute the next server
location fi+1 the algorithm only takes into account requests Fi

served from its (server’s) current position fi. The node fi+1 is
a closest node which lies at a center of gravity CG of Fi. The
server is migrated to fi+1 as soon as access costs C(fi, Fi)
match at least the costs for migration to fi+1. If the current
server position fi is a center of gravity fi ∈ CG(Fi) then all
requests Fi are “forgotten” by incrementing i′ := i + 1 and
adding upcoming requests to the next (empty) Fi′ . In this case
fi′ = fi.

In fact, to ensure a balance between access and movement
costs the server might perform an intermediate migration to a
node where no requests are handled. More precisely, instead
of moving the server directly to fi+1 it may be moved from fi
to wi 6= fi+1 and then only from there to fi+1. The node
wi is chosen such that the movement costs including the
migration to node wi and then to fi+1 match at least the access
costs and exceed them as little as possible.2 In the distance-
based cost model, let xON

i be the distance the server was
moved by ON in the migration from fi to fi+1 not including
a potential detour to wi, i.e., we have xON

i := d(fi, fi+1)
with i ∈ [0, sON − 1] (for convenience, xON

sON
:= 0). For

co.nb.m. let xON
i = 1 ∀i. For ON denote kON

i as the
aggregate distance of prior migrations and the number of prior
migrations, respectively, before replying to any of the requests
Fi. For co. di. we have kON

i+1 :=
∑i

j=0(d(fj , wj)+d(wj , fj+1))
and k0 := 0. If Follower performs a movement from node
fi to wi and then a second movement onto fi+1 then the
migration costs for co.di. (and analogously for co.nb.m)
are given by g(d(fi, wi)|kON

i ) for the first movement and by
g(d(wi, fi+1)|kON

i + d(fi, wi)) for the second movement.

V. ANALYSIS

The analysis is split into three parts: A general part that
is valid for co.nb.m. and co.di., followed by a separate
part for each type of cost function g.

2The motivation for this behavior is that otherwise OFF might move
frequently avoiding high access costs and reap the benefits of discounts by
moving a lot. Follower on the contrary would move very little but incurs still
very high access costs. For simplicity of the algorithm, we assume that such
a node wi always exists, otherwise we might just move several times.



Algorithm Follower
1: i := 0; k0 := 0 ∀j: Fj = {} {The server starts at an

arbitrary node f0}
Upon a new request r do:
2: Serve request r with server at fi
3: Fi := Fi ∪ r
4: f ′ := arbitrary u ∈ CG(Fi)
5: x′ := d(fi, f

′) {for co.di., and x′ := 1 for
co.nb.m.}

6: if C(fi, Fi) ≥ g(x′|ki) then
7: fi+1 := f ′; xi := x′

8: y(w) := d(fi, w) + d(w, fi+1) {for co.di., and for
co.nb.m. y(w) := 2 for w 6= fi+1 and y(w) := 1
otherwise }

9: slack(w ∈ V ) := g(y(w)|ki)− C(fi, Fi)
10: wi:= Node w with minimum slack(w) such that

slack(w) ≥ 0
11: Move server to wi and if wi 6= fi+1 onto fi+1

12: ki+1 := ki + y(wi)
13: i := i+ 1
14: end if

A. General

We prove that OFF does not gain from moving more than
Follower for any cost function g. This is due to the fact that
access and movement costs of Follower are tightly coupled.

We call movement costs CON
M (Fi) for Follower the costs

due to server migration(s) from fi (to wi) onto fi+1,
i.e. g(y(wi)|ki) in Algorithm Follower with y(wi) =
d(fi, wi) + d(wi, fi+1) for co.di. and for co.nb.m.
y(wi) = 1 for wi = fi+1 and y(wi) = 2 otherwise. The
total movement costs are CON

M (σ) :=
∑

i∈[0,sON]
CON

M (Fi).
First, we prove an upper bound on the movement costs

CON
M (Fi) based on the access costs C(fi, Fi). As a byproduct

we get a bound on the total costs CON
M (σ).

Lemma V.1. We have CON
M (Fi) ≤ 3C(fi, Fi), and after the

last movement of Follower CON
A (σ) ≤ CON

M (σ) ≤ 3CON
A (σ).

Proof: Consider the migration(s) from fi (to wi) to
fi+1. When Follower moves we have that C(fi, Fi) ≥
g(xON

i |kON
i ) by definition of the algorithm. After the move-

ment from fi to wi onto fi+1 we have (also by definition)
that the access costs are less than the movement costs, i.e.
C(fi, Fi) ≤ g(y(wi)|kON

i ) = CON
M (Fi). Follower chooses wi

s.t. slack(w) := CON
M (Fi) − C(fi, Fi) ≥ 0 is minimized for

w = wi (but still non-negative). The slack can be chosen
such that slack(wi) ≤ g(2|kON

i ), since moving from fi to
wi onto fi+1 incurs a granularity of at most 2 by altering
the distance of wi by 1 for co.di. By performing two
movements of distance d(fi, wi)+d(wi, fi+1) this yields a total
granularity of at most 2 for co.di. The granularity is two
for co.nb.m. since we perform one additional movement by
migrating to wi. In other words, the movement costs CON

M (Fi)
are at most CON

M (Fi) ≤ C(fi, Fi) + g(2|kON
i ) ≤ C(fi, Fi) +

g(1|kON
i )+g(1|kON

i +1) ≤ C(fi, Fi)+g(1|kON
i )+g(1|kON

i )
due to Eq. 1. The access costs C(fi, Fi) must be at least the
cost for moving for distance one for co.di. and for one
movement for co.nb.m., i.e. C(fi, Fi) ≥ g(1|kON

i ). This
yields the upper bound of CON

M (Fi) ≤ 3C(fi, Fi). For the total
movement costs we have CON

M (σ) =
∑

i∈[0,sON]
CON

M (Fi) ≤∑
i∈[0,sON]

3C(fi, Fi) = 3CON
A (σ). In the same way the lower

bound follows using C(fi, Fi) ≤ CON
M (Fi).

Lemma V.2. To maximize the competitive ratio any sequence
of requests is chosen such that after the last request Follower
moves its server to OFF’s server location.

Proof: Assume OFF’s server is at f ′ and Follower’s at f ′′

after the last request with f ′ 6= f ′′. Then, we could add requests
R from the server position f ′ of OFF. These requests r = f ′ ∈
R incur no costs for OFF since d(r, f ′) = 0 but increase
access costs for Follower, thus yielding a larger competitive
ratio. Once both servers coincide, any requests issued yield the
same (access) costs for both, i.e. drive the competitive ratio
towards one. Therefore the competitive ratio is maximized if
the last request r of a sequence of requests results in Follower
to migrate its server to OFF’s server location.

Since OFF knows requests ahead of time it might, for
example, always move to the location of the next request,
and reap the benefit of discounts for migrations. We prove that
overall OFF does not benefit (up to a constant factor) from
discounts, since essentially Follower always spends roughly
the same costs that it incurs for access also on movements. In
other words, OFF might as well not migrate its server at all to
maximize the competitive ratio asymptotically. First, we bound
the competitive ratio for the case that OFF moved its server
more than Follower.

Lemma V.3. Assume Follower moved its server to fi+1 after
l requests σ(l). If OFF has moved its server more than
Follower (in terms of distance or number of migrations),
i.e. COFF

M (σ(l)) ≥ CON
M (σ(l)), then for the competitive ratio

holds ρ ≤ 4.

Proof: Follower moved to position fi+1 due to requests
Fi ⊆ σ(l). Assume the distance moved (or the number
of migrations, respectively) by OFF is larger than that of
Follower for σ(l), i.e. COFF

M (σ(l)) ≥ CON
M (σ(l)). By Lemma V.1

we have CON
A (σ(l)) ≤ CON

M (σ(l)) ≤ 3CON
A (σ(l)). Thus

CON
A (σ(l)) + CON

M (σ(l)) ≤ 4CON
A (σ(l)) ≤ 4CON

M (σ(l)), im-
plying COFF

M (σ(l)) > 1/4 · 4CON
M (σ(l)) ≥ 1/4(CON

A (σ(l)) +
CON

M (σ(l))). Therefore, four times the movement costs of OFF
is larger than the total costs of Follower for the sequence σ(l).

B. Costs Based on Number of Migrations

For co.nb.m. we prove that it suffices to analyze the
situation where OFF does not move its server to bound the
asymptotic competitive ratio. In particular, we can consider
the scenario that Follower moves away from OFF and then
moves back until OFF’s and Follower’s server coincide. These



statements together help us to establish a bound on the
competitive ratio.

Let ρS be the competitive ratio assuming that OFF’s server
stays at the initial node, i.e. OFF never moves its server. We
show how to construct a set of requests such that the competitive
ratio only changes asymptotically and OFF does not move.

Lemma V.4. co.nb.m. achieves a competitive ratio ρ ≤
max(4, ρS).

Proof: Assume that the costs for OFF’s movements are
smaller than Follower’s, i.e. COFF

M (σ(l)) < CON
M (σ(l)). If OFF

performs a single movement, i.e. sOFF > 0, OFF already
incurs at least the same migration costs as Follower occurs for
migrating once since it does not benefit from higher discounts
because OFF migrated less overall. Mathematically speaking,
COFF

M (σ(l)) < CON
M (σ(l)) implies kON

i ≥ kOFF
i and thus by

assumption (1) about g: g(1|kON
i ) ≤ g(1|kOFF

i ). Follower
performs at most two movements (from fi to wi to fi+1):
The last request r′ ∈ σ(l) results in at most the migration
costs to any other node since g(1|y) ≥ maxa,b∈V d(a, b), i.e.
d(fi, r

′) ≤ g(1|y). Before the last request r′ the access costs
must be less than the migration costs (otherwise Follower had
already migrated), i.e. C(fi, Fi \ r′) ≤ g(1|kON

i ). After the
last request: C(fi, Fi) ≤ g(1|kON

i ) + d(fi, r
′) ≤ 2g(1|kON

i ).
Therefore Follower’s migration costs are at most double the
one’s of OFF for sOFF > 0. Furthermore, its access costs
C(fi, Fi) are by definition less than the migration costs (from
fi to wi to fi+1). Putting the pieces together we have that
Follower’s total costs are at most 4g(1|kON

i ) and OFF’s costs
are at least g(1|kOFF

i ) ≥ g(1|kON
i ). Thus, the competitive

ratio in case COFF
M (σ(l)) < CON

M (σ(l)) and OFF moves at least
once, i.e. sOFF > 0, is at most 4. For COFF

M (σ(l)) ≥ CON
M (σ(l))

using Lemma V.3 yields an overall ratio of 4.
To maximize the competitive ratio given fixed access costs

C(fi, Fi) for Follower the requests Fi should be chosen such
that the costs are minimum for OFF. The next lemma restates
this criterion based on the average distance of a request Fi to
OFF’s and Follower’s server location.

Lemma V.5. If OFF’s server stays at f0 then to bound ρ the
average distance for a request r ∈ Fi to fi+1 and f0 is the
same, i.e. davg(fi+1, Fi) = davg(f0, Fi) ≥ d(f0, fi+1)/2.

Proof: Say Follower moves from fi to fi+1. Since
fi+1 is a center of gravity having minimal access costs
for requests Fi, it only remains to minimize access costs
for OFF being at f0. Access costs for OFF are minimized,
if OFF’s server is at a center of gravity CG(Fi), i.e.
CG(Fi) ⊇ {fi+1, f0}. Thus we have C(Fi, f0) = C(Fi, fi+1).
Therefore, C(Fi, f0) =

∑
r∈Fi

d(r, f0) = |Fi|davg(f0, Fi).
Analogously, C(Fi, fi+1) = |Fi|davg(fi+1, Fi). Therefore,
davg(f0, Fi) = davg(fi+1, Fi). Furthermore, for any request
r ∈ Fi we have using the triangle inequality d(f0, r) +
d(fi+1, r) ≥ d(f0, fi+1). Therefore, also davg(f0, Fi) +
davg(fi+1, Fi) = 2davg(fi+1, Fi) ≥ d(f0, fi+1) and
davg(f0, Fi) = davg(fi+1, Fi) ≥ d(f0, fi+1)/2.

Lemma V.6. The competitive ratio of co.nb.m. is

ρ ≤ max
σ

128

∑
i∈[0,sON]

g(xON
i |k

ON
i )∑

i∈[0,sON]
g(xON

i |k
ON
i ) · d(f0,fi+1)

d(f0,fi)+d(fi,fi+1)

and d(fi, fi+1) = d(fi, f0) + d(f0, fi+1) as well as
g(xON

i |kON
i ) = C(fi, Fi).

Proof: Using the triangle inequality, i.e. d(fi, r) ≤
d(fi, fi+1) + d(fi+1, r), we have for Follower C(fi, Fi) ≤
|Fi| ·d(fi, fi+1)+C(fi+1, Fi) ≤ |Fi| ·d(fi, fi+1)+C(f0, Fi).
The last inequality follows, since fi+1 is a center of gravity
for Fi and thus any node f ′ (in particular f0) must have
at least the same access costs, i.e. C(f ′, Fi) ≥ C(fi+1, Fi).
For the total costs for handling requests Fi and moving
from fi (to wi) onto fi+1 we have due to Lemma V.1:
C(fi, Fi) + CON

M (Fi) ≤ 4C(fi, Fi). We use these facts to
maximize the competitive ratio ρ. We assume OFF does not
migrate and account for this by incoporating a factor of 4 due
to Lemma V.4 in the first inequality.

ρ = max
σ

CON
A (σ) + CON

M (σ)

COFF
A (σ) + COFF

M (σ)
≤ max

σ
4
CON
A (σ) + CON

M (σ)

COFF
A (σ)

≤ max
σ

16

∑
i∈[0,sON]

C(fi, Fi)∑
i∈[0,sON]

C(f0, Fi)

≤ max
σ

16

∑
i∈[0,sON]

(|Fi| · d(fi, fi+1) + C(f0, Fi))∑
i∈[0,sON]

C(f0, Fi)

To maximize ρ we can minimize C(f0, Fi) =
|Fi|davg(f0, Fi) ≥ |Fi|d(f0, fi+1)/2 due to Lemma V.5. Next
we derive a lower bound on |Fi| using the triangle inequality
d(fi, fi+1) ≤ d(fi, f0) + d(f0, fi+1) and the condition that
Follower moves only if g(xON

i |kON
i ) ≤ C(fi, Fi):

g(xON
i |k

ON
i ) ≤ C(fi, Fi) ≤ |Fi| · d(fi, fi+1) + C(f0, Fi)

≤ |Fi| · (d(fi, fi+1) + d(fi+1, f0)/2)

≤ |Fi| · (d(fi, f0) + d(f0, fi+1) + d(fi+1, f0)/2)

= |Fi| · (d(fi, f0) + 3d(fi+1, f0)/2)

Therefore |Fi| ≥ g(xON
i |k

ON
i )

d(fi,f0)+3d(fi+1,f0)/2
. To maximize ρ we

minimize |Fi|, i.e. assume equality, which also implies
equality for g(xON

i |kON
i ) and C(fi, Fi). To minimize Fi, i.e.

C(f0, Fi) and to maximize the nominator we can assume
d(fi, fi+1) = d(fi, f0) +d(f0, fi+1). We use the term for |Fi|
in the denominator and later in the nominator of ρ:

C(f0, Fi) ≥ |Fi|d(fi+1, f0)/2 =
g(xON

i |k
ON
i )d(fi+1, f0)/2

d(fi, f0) + 3d(fi+1, f0)/2

≥
g(xON

i |k
ON
i )/3 · d(fi+1, f0)

d(fi, f0) + d(fi+1, f0)

Next, to maximize the competitive ratio we use |Fi| =
g(xON

i |k
ON
i )

d(fi,f0)+3d(fi+1,f0)/2
≤ g(xON

i |k
ON
i )

d(fi,fi+1)
in the nominator. We also

substitute C(f0, Fi) by g(xON
i |k

ON
i )/3·d(fi+1,f0)

d(fi,f0)+d(fi+1,f0)
in the denomina-

tor and by g(xON
i |kON

i )/3 in the nominator, yielding (leaving
aside max and all

∑
i∈[0,sON]

for readability):



16(|Fi| · d(fi, fi+1) + C(f0, Fi))/C(f0, Fi)

≤ 16

g(xON
i |k

ON
i )

d(fi,fi+1)
· d(fi, fi+1) + g(xON

i |k
ON
i )/3

g(xON
i |k

ON
i )/3 · d(fi+1,f0)

d(fi,f0)+d(fi+1,f0)

≤ 128
g(xON

i |k
ON
i )

g(xON
i |k

ON
i ) · d(fi+1,f0)

d(fi,f0)+d(fi+1,f0)

We define a lazy phase consisting of three consecutive
parts: First, Follower is at the same node f0 as OFF (or just
moved there without having answered any request yet). Second,
Follower moves once to another node u 6= f0. Third, with every
migration to a node fi where requests are handled Follower
gets closer to OFF’s server until both coincide again at f0. Thus,
by definition a lazy phase consists of at least two migrations,
i.e. sON ≥ 2.

Lemma V.7. If OFF’s server stays at f0 then for the competitve
ratio ρ′ for a sequence of lazy phases holds: ρ ≤ 2ρ′

Proof: In the beginning OFF’s and Follower’s server are
at the same node f0 by assumption. If none of them moves the
competitive ratio would be 1, since both incur the same (access)
costs. Thus, eventually one of them moves. By assumption OFF
never moves. Due to Lemma V.2 Follower’s last server position
f ′ is the same as OFF’s server position at f0, i.e. f ′ = f0.
Thus, Follower performs at least two movements.

Assume that Follower’s and OFF’s server do not coincide
before Follower increases the distance to OFF’s server (again).
Say Follower’s server is at fi and is moved to wi onto fi+1

due to requests Fi while OFF remains at f0 such that 0 <
d(f0, fi) < d(f0, fi+1).

Using Lemma V.6 we can assume that d(fi, fi+1) =
d(fi, f0) + d(f0, fi+1) and C(fi, Fi) = g(xON

i |kON
i ), i.e.

the access and migration costs for Follower for handling
requests Fi amount to 2g(xON

i |kON
i ). The equality between

movement and access costs, i.e. C(fi, Fi) = g(xON
i |kON

i ),
implies that Follower moves directly from fi to fi+1 without
a detour to wi. The total costs when moving first to f0 due to
requests F ′i and then onto fi+1 due to requests F ′0 amount to
2g(1|kON

i ) + 2g(1|kON
i + 1).

For OFF the access costs are C(f0, Fi) = |Fi|davg(f0, Fi).
Using Lemma V.5 we can assume davg(f0, Fi) =
d(f0, fi+1)/2 to minimize C(f0, Fi). Thus, |Fi| =
g(xON

i |kON
i )/(d(fi, f0) + d(f0, fi+1)/2) and OFF’s costs are

|Fi| · d(f0, fi+1)/2. In case Follower migrates first to f0, OFF
incurs no access costs for r ∈ F ′i , since each request r can
be issued from f0, i.e. r = f0, to make Follower move to
f0. To make Follower move to fi+1 we can issue all requests
r ∈ F ′0 from fi+1, i.e. r = fi+1. OFF incurs access costs
|F ′0| · d(f0, fi+1). Next, we use g(x|y)/x = g(z|w)/z for
some values z + w = x+ y:

|Fi| = g(d(fi, f0) + d(f0, fi+1)|kONi )/(d(fi, f0) + d(f0, fi+1)/2)

≥ g(d(fi, f0) + d(f0, fi+1)|kONi )/(d(fi, f0) + d(f0, fi+1))

= g(d(f0, fi+1)|kONi + d(fi, f0))/d(f0, fi+1) = |F ′0|

Thus, if Follower migrates to f0 and then onto fi+1 then
the access costs |F ′0|d(f0, fi+1) for OFF are at most twice the
access costs |Fi| · d(f0, fi+1)/2 when Follower moves directly
to fi+1.

Lemma V.8. If no discounts are given, i.e., g(x|y) = β · x,
the competitive ratio can be bounded by considering any lazy
phase:

ρ ≤ max
σ

128
∑
j∈[0,sON−1] x

ON
i∑

i∈[0,sON−2] x
ON
i ·

d(fi+1,f0)

d(f0,fi)+d(f0,fi+1)

Proof: Due to Lemma V.7 we can consider a sequence
of lazy phases (increasing the competitive ratio by at most
2) with d(fi, fi+1) = d(fi, f0) + d(f0, fi+1). Lazy phases are
independent, since g(x|y) = β · x, i.e. there is no dependence
on prior migrations and a lazy phase starts and ends with the
server being at the same node. Due to the independence of
lazy phases the maximum competitive ratio is the same for any
phase. Thus going through t > 0 phases, where each phase
has the same competitive ratio of say c, also yields an overall
competitive ratio of c. Plugging g(x|y) = β · x into the term
of Lemma V.6 and accounting for a factor of 2 due to using
lazy phases (Lemma V.7) yields:

ρ ≤ max
σ

128
∑
j∈[0,sON−1] g(x

ON
i |k

ON
i )∑

i∈[0,sON−2] g(x
ON
i |k

ON
i ) · d(fi+1,f0)

d(f0,fi)+d(f0,fi+1)

= max
σ

128
∑
j∈[0,sON−1] x

ON
i∑

i∈[0,sON−2] x
ON
i ·

d(fi+1,f0)

d(f0,fi)+d(f0,fi+1)

The following two theorems state that if no discounts based
on the number of prior migrations are given, i.e., g(1|y) = β ≥
n then Algorithm Follower is O(log n/ log log n) competitive.
We start the analysis with a theorem stating the minimum
of a sum involving expressions of numbers xi ∈ [1, n] with
i ∈ [1, s] for parameters s and n.

Lemma V.9. The term
∑

i∈[1,s] xi+1/(xi + xi+1) for a given
xi ∈ [1, n] depending only on i, n, s and s ≥ 2 is minimized
for xi = n1−i/s and is at least s/(2n1/s).

Proof: The sum
∑

i∈[1,s] xi+1/(xi + xi+1) contains vari-
ables xi for i ∈ [1, s] which potentially depend on i, n and s,
i.e., xi is fully characterized by these three values. There is no
dependence of xi on xj for i 6= j. Therefore, we can compute
the partial derivatives ∂

∂xi

∑
i∈[1,s]

xi+1

xi + xi+1
= (((xi)

2xi+1+

(xi−1)2xi+1−xi−1(xi+1)2−xi−1(xi)
2)) /(((xi−1+xi)

2(xi+
xi+1)2)). (Note, for i = 1 we can remove all terms xi−1.) We
are looking for values of variables xi such that the nominator
is 0, i.e.:



0 = ((xi)
2xi+1 + (xi−1)

2xi+1 − xi−1(xi+1)
2 − xi−1(xi)

2)

⇔ 0 = (xi)
2(xi+1 − xi−1) + (xi−1)

2xi+1 − xi−1(xi+1)
2

⇔ (xi)
2 = −

(xi−1)
2xi+1 − xi−1(xi+1)

2

xi+1 − xi−1

⇔ xi = ±

√
−
(xi−1)

2xi+1 − xi−1(xi+1)
2

xi+1 − xi−1

Since we have that xi ∈ [1, n] we do not have to consider
the negative solution. Substituting xi = n1−i/s yields that the
partial derivatives are 0:

n1−i/s = ±

√
−
n3(1−i/s)(n1/s − n−1/s)

n1−i/s(n−1/s − n1/s)

⇔ n1−i/s = ±n1−i/s = n1−i/s (since we require xi > 0)

To show that this is indeed a minimum, we require the second
derivatives ∂2

∂(xi)2

∑
i∈[1,s]

xi+1

xi + xi+1
to be larger than zero at

xi = n1−i/s. For the nominator of the second derivative we get:
2(−xi−1x3i −3xi−1xix

2
i+1−xi−1x3i+1 +x3ixi+1 +x3i−1xi+1 +

3x2i−1xixi+1).
The denominator equals (xi−1 + xi)

3(xi + xi+1)3. The
denominator contains only positive terms. Therefore it is
positive. Substituting xi = n1−i/s in the nominator for each
term and removing factor n4−4i/s from all terms (i.e. putting it
in front) yields: 2n4−4i/s(−n1/s− 3n−1/s−n−2/s +n−1/s +
n2/s + 3n1/s). Since 2n4−4i/s > 0 we can further simplify:
2(n1/s−n−1/s)−n−2/s +n2/s. Suppose the worst case graph
was of diameter one, i.e. n = 1 then xi ≤ 1 for any i and∑

i∈[1,s] xi+1/(xi + xi+1) ≤ s/2 = s/(2n1/s). Assume that
the graph is of diameter at least two, i.e. xi ∈ [1, n] with
n > 1. For any s > 0 we have n1/s > 1 (and n−1/s < 1).
Therefore, the term 2(n1/s − n−1/s) − n−2/s + n2/s is also
larger or equal to 0 and thus the second derivative is positive
at xi = n1−i/s, yielding a minimum at this point. Therefore:

∑
i∈[1,s]

xi+1/(xi + xi+1) ≤
∑
i∈[1,s]

n1−(i+1)/s

n1−i/s + n1−(i+1)/s
≤

∑
i∈[1,s]

n1−(i+1)/s/(2n1−i/s) ≤ max
s

∑
i∈[1,s]

1/2n1/s = s/(2n1/s)

Now we can prove a bound on the competitive ratio, if there
is no discount for performing several migrations, i.e., g(1|y)
is independent of y.

Theorem V.10. For g(x|y) := β ≥ n Algorithm Follower is
O(log n/ log log n) competitive.

Proof: Using xON
i = 1 ∀i and due to Lemma V.8 we can

maximize the following term to get the competitive ratio:

ρ ≤ max
σ

128

∑
j∈[0,sON−1] x

ON
i∑

i∈[0,sON−2] x
ON
i ·

d(fi+1,f0)

d(f0,fi)+d(f0,fi+1)

= max
σ

128
sON∑

i∈[0,sON−2]
d(fi+1,f0)

d(f0,fi)+d(f0,fi+1)

To maximize the overall expression, we have to
minimize the following sum (depending on sON)∑

i∈[0,sON−2] d(fi+1, f0)/(d(f0, fi) + d(f0, fi+1)). By
definition we have that for two migrations fi 6= fi+1. In
particular due to Lemma V.8, we need to consider only one
lazy phase. Thus, we can assume that only the first and last
position of Follower’s server coincide with OFF’s server.
We have that the distances d(fi, f0) for i ∈ [1, sON − 1]
are at least 1 and at most the diameter of the graph, i.e.,
d(fi, f0) ∈ [1, n]. We can use Lemma V.9 to bound the
sum

∑
i∈[1,sON−2] d(fi+1, f0)/(d(f0, fi) + d(f0, fi+1)) by

sON/(2n
1/sON ). Lemma V.9 requires independence of the terms

d(fi, f0), which is the case since the distances d(f0, fi) for
any i can be chosen independent of d(f0, fj) with j 6= i. The
first term of the sum d(f1, f0)/(d(f0, f0) + d(f0, f1)) = 1.
Thus, we get:

ρ ≤ max
s

s

1 + s/(2n1/s)
≤ 1/2max

s

s · n1/s

n1/s + s

For a term a · b/(a + b) holds a · b/(a + b) ≤ min(a, b).

Thus, we bound the term
s · n1/s

n1/s + s
by min(s, n1/s), which

is maximized for s = n1/s. The last equality is not solvable
in closed form, i.e., it yields s = log n/LambertW (log n),
where LambertW denotes the Lambert function. However,
using s = c log n/ log log n there exists a c ∈ [1, 3]
such that: n1/s = s with n1/s = 2logn·log logn/(c logn) =
2log logn/c = (log n)1/c. Thus, we want to find c such
that (log n)1/c = c log n/ log log n. For c ≤ 1 we have
(log n)1/c > c log n/ log log n. For c ≥ 3 we get (log n)1/c <
c log n/ log log n. Thus, there exists c ∈ [1, 3] such that
n1/s = s. We get:

ρ ≤ 1/2max
s

s · n1/s

n1/s + s
≤ 1/2min(s, n1/s) ≤ c/2 · logn/ log logn

Therefore, s ∈ O(log n/ log log n).

C. Costs Based on Distance Migrated

In the first lemma we relate the average distance davg(fi, Fi)
of a request in Fi from the current server position fi to a center
of gravity. Then we prove that if OFF moved at least a constant
fraction of the average distance davg(fi, Fi), it also incurs a
constant fraction of Follower’s total costs to handle requests
Fi. This implies the next Lemma V.13 saying that in case the
average distance to fi+1 is (somewhat) larger than the one to
fi, OFF incurs a constant fraction of Follower’s costs to handle
requests Fi. This is used in Lemma V.14 to show that either
OFF incurs a constant fraction of Follower’s costs for Fi or
(eventually) the distance between Follower’s and OFF’s server
must shrink fast. This in turn allows to bound the competitive
ratio.

Lemma V.11. For co.di. and some subsequence F ′ =
(r0, ...) ⊆ Fi = (r0, r1, ...) (starting from the first request r0
in Fi) holds for any u ∈ CG(F ′)\fi: d(fi, u) ≤ 2davg(fi, F

′).



Proof: Assume d(fi, u) > 2davg(fi, F
′). Using the re-

verse triangle inequality we have C(u, F ′) =
∑

r∈F ′ d(r, u) ≥∑
r∈F ′ |d(fi, u) − d(fi, r)| ≥

∑
r∈F ′ d(fi, u) − d(fi, r) =∑

r∈F ′ d(fi, u) −
∑

r∈F ′ d(fi, r) > |F ′|2davg(fi, F
′) −

|F ′|davg(fi, F
′) = |F ′|davg(fi, F

′) = C(fi, F
′). Thus the

access costs at u are larger than at fi and therefore u /∈ CG(F ′).

Lemma V.12. For co.di. and the sequence σ(l), i.e. the
first l requests of σ, assuming COFF

M (σ(l)) ≤ CON
M (σ(l)) with

Fi ⊆ σ(l) and OFF dio ≥ davg(fi, Fi)/32, OFF incurs costs at
least C(fi, Fi)/1024.

Proof: Consider the set F ′ := Fi \ r|Fi|−1, i.e. the set Fi

without the last request r|Fi|−1 ∈ Fi. Assume 4davg(fi, F
′) ≥

davg(fi, Fi). Due to |F ′| = |Fi| − 1, we have 2|F ′| ≥ |Fi|
and:

C(fi, Fi) = |Fi|davg(fi, Fi) ≤ 2|F ′|4davg(fi, F ′) = 8C(fi, F
′) (2)

Since Follower has not migrated after requests F ′ we have
for any u ∈ CG(F ′):

C(fi, F
′) < g(d(fi, u)|kON

i ) (3)

Since F ′ ⊂ Fi and d(r, fi) ≥ 0 for any r ∈ Fi, we
have C(fi, F

′) ≤ C(fi, Fi). Together with 2|F ′| ≥ |Fi|
we get: 2davg(fi, Fi) = 2C(fi, Fi)/|Fi| ≥ C(fi, F

′)/|F ′| =
davg(fi, F

′). This together with Lemma V.11 yields d(fi, u) ≤
2davg(fi, F

′) ≤ 4davg(fi, Fi). Due to the fact that OFF mi-
grates at most the same distance as Follower, i.e. kOFF

i ≤ kON
i ,

and by assumption (1) about g:

∀x > 0 : g(x|kOFF
i ) ≥ g(x|kON

i ) (4)

Furthermore:

C(fi, F
′) ≤ g(d(fi, u)|kONi ) (due to Eq. 3)

≤ g(4davg(fi, Fi)|kONi ) ≤ 4g(davg(fi, Fi)|kONi )

Thus, if OFF moved davg(fi, Fi)/32, it incurs costs:

g(davg(fi, Fi)/32|kOFFi ) ≥ (due to Ass. 1)

g(davg(fi, Fi)/32|kONi ) ≥ (due to Eq. 4)

1/32g(davg(fi, Fi)|kONi ) ≥ (due to Eq. 1)
C(fi, F

′)/128 ≥ (due to Eq. 5)
C(fi, Fi)/1024 (due to Eq. 2)

Assume 4davg(fi, F
′) < davg(fi, Fi). The access costs

can be bounded by two terms. The first term is the costs
due to requests F ′ = Fi \ r|Fi|−1, i.e. |F ′|davg(fi, F

′) ≤
|Fi|davg(fi, F

′), and the second term d(r|Fi|−1, fi) is the
costs due to the last request r|Fi|−1. To bound the
second term we use: C(fi, Fi) = |Fi|davg(fi, Fi) =
|Fi|davg(fi, F

′) + |Fi|(davg(fi, Fi) − davg(fi, F
′)). There-

fore, d(r|Fi|−1, fi) ≥ |Fi|(davg(fi, Fi) − davg(fi, F
′)). Fur-

thermore, due to 4davg(fi, F
′) < davg(fi, Fi) it holds

|Fi|(davg(fi, Fi) − davg(fi, F
′)) ≥ 3/4|Fi|davg(fi, Fi), i.e.

the costs for the last request are at least 3/4C(fi, Fi).
Together with the assumption 4davg(fi, F

′) < davg(fi, Fi)
this implies that d(r|Fi|−1, fi) ≥ 3/4C(fi, Fi) and also
d(r|Fi|−1, fi) ≥ davg(fi, Fi). If OFF moved for distance
dio ≥ 0, it incurs costs d(r|Fi|−1, fi)− dio + g(dio|kON

i ), where
d(r|Fi|−1, fi) − dio are the costs due to the last request. In
case dio ≥ davg(fi, Fi)/64 but dio ≤ d(r|Fi|−1, fi)/2 the
costs are at least d(r|Fi|−1, fi)/2 ≥ 3/8C(fi, Fi). In case
dio > d(r|Fi|−1, fi)/2 the costs are also at least 3/8C(fi, Fi),
since by assumption about g for x ≥ 0: g(x|kON

i ) ≥ x.

Lemma V.13. If davg(fi, Fi) < c · davg(fi+1, Fi) for a con-
stant c ∈ [1, 3] then OFF incurs costs at least C(fi, Fi)/1024.

Proof: If OFF moved more than davg(fi+1, Fi)/2 ≥
davg(fi, Fi)/32 we can use Lemma V.12 to lower bound the
cost by C(fi, Fi)/1024. Thus, assume from now OFF moved
less.

Consider a set of maximal cardinality of distinct pairs P
from Fi, i.e. for any (r1, r2) ∈ P with r1, r2 ∈ Fi we have
r1 6= r2 and for any (r1, r2), (r3, r4) ∈ P holds {r1, r2} ∩
{r3, r4} = {}. Additionally, for each (r1, r2) ∈ P : d(r1, r2) ≥
davg(fi+1, Fi)/4 > davg(fi, Fi)/(4c) (by assumption).

Assume |P | ≥ |Fi|/8. On average for a pair (r1, r2) ∈ P
OFF incurs costs at least the average distance davg(fi+1, Fi)/4
between the pair, minus the distance davg(fi, Fi)/32 OFF
moved at most: davg(fi+1, Fi)/4 − davg(fi, Fi)/32 ≥
davg(fi, Fi)/12− davg (fi, Fi)/32 ≥ davg(fi, Fi)/24.

Thus, OFF incurs costs 2|P |davg(fi, Fi)/24 ≥
|Fi|/4davg(fi, Fi)/24 ≥ C(fi+1, Fi)/96. Assume
|P | < |Fi|/8. Since each pair (r1, r2) ∈ P consists by
definition of two requests with d(r1, r2) ≥ davg(fi+1, Fi)/4,
there must be a set of requests U ⊆ Fi with |U | ≥ 3|Fi|/4
such that :

d(r1, r2) < davg(fi+1, Fi)/4 ∀r1, r2 ∈ U, |U | ≥ 3|Fi|/4 (5)

Then the total access costs to handle all requests U for
a server being at a center of gravity u ∈ CG(U) can
be bounded as follows: C(u, U) ≤ C(∀r ∈ Fi, U) ≤
3|Fi|/4davg(fi+1, Fi)/4. Assume there is a node w ∈ CG(Fi)
such that for the furthest request r′ ∈ U holds d(w, r′) ≥
davg(fi+1, Fi)/2 + x for some x > 0. Due to Eq. (5) for
any request r ∈ U : d(w, r) ≥ davg(fi+1, Fi)/4 + x. In this
case C(w,Fi) = C(w,U) +C(w,Fi \U) = |U |davg(w,U) +
|Fi \ U |davg(w,Fi \ U) ≥ |U |(davg(w, r)/4 + x) + |Fi \
U |davg(w,Fi \ U). Therefore, assume we position the server
at a request r ∈ U with d(r, r′) = davg(fi+1, Fi)/2 instead
of w ∈ CG(Fi) with d(w, r′) ≥ davg(fi+1, Fi)/2 + x
for some x > 0. This reduces overall costs by at least
|U |x−|Fi\U |x ≥ |Fi|x, since by Equ. (5): |U | ≥ 3|Fi|/4 and
for any two requests r1, r2 ∈ U : d(r1, r2) ≤ davg(fi+1, Fi)/4.
Thus, for any w ∈ CG(Fi) for the furthest request r′ ∈ U
holds d(w, r′) ≤ davg(fi+1, Fi)/2.

The requests Fi \ U induce access costs at least
C(fi+1, Fi \ U) = C(fi+1, Fi) − C(fi+1, U) ≥



C(fi+1, Fi) − 3|Fi|/4davg(fi+1, Fi)/4 ≥ C(fi+1, Fi)/2.
We have davg(fi+1, Fi \ U) ≥ davg(fi+1, Fi). If OFF
moves less than davg(fi+1, Fi)/32 it incurs on average
davg(fi+1, Fi\U)−davg(fi+1, Fi)/32 ≥ davg(fi+1, Fi\U)/2
per request r ∈ Fi \ U and overall at least
C(fi+1, Fi \ U)/2 ≥ C(fi+1, Fi)/4. Overall OFF
incurs costs C(fi+1, Fi)/4 = |Fi|davg(fi+1, Fi)/4 ≥
davg(fi+1, Fi)/(4c)|Fi| ≥ C(fi, Fi)/12.

Lemma V.14. To handle requests Fi OFF either incurs
costs Ω(C(fi, Fi) + g(dio|kOFF

i )) or the following two con-
ditions hold: d(oic, fi+1) < 3d(fi, fi+1)/4 and C(fi, Fi) <
4g(d(fi, fi+1)|kON

i ).

Proof: The case |Fi = {r}| = 1 is straight forward, since
then fi+1 = r and C(fi, Fi) = g(d(fi, fi+1)|kON

i ).
Assume 0 ≤ davg(fi+1, Fi) ≤ d(fi, fi+1)/2. Using the

triangle inequality and the previous assumption we have
davg(fi, Fi) ≤ d(fi, fi+1) + davg(fi+1, Fi) ≤ 3/2d(fi, fi+1).
If d(oic, fi+1) > 3d(fi, fi+1)/4 then OFF incurs on average
costs at least d(oic, fi+1)− davg(fi, Fi+1) ≥ 3d(fi, fi+1)/4−
d(fi, fi+1)/2 ≥ d(fi, fi+1)/4, i.e. total costs of at least
|Fi|d(fi, fi+1)/4. From davg(fi, Fi) ≤ 3/2d(fi, fi+1) follows
C(fi, Fi) ≤ 3/2d(fi, fi+1)|Fi|. Thus, OFF incurs costs at least
1/6C(fi, Fi).

Assume davg(fi+1, Fi) > d(fi, fi+1)/2. Due to the tri-
angle inequality we have davg(fi, Fi) ≤ d(fi, fi+1) +
davg(fi+1, Fi) < 3davg(fi+1, Fi). Due to Lemma V.13 with
c = 3 we get a lower bound of the access costs for OFF of
C(fi, Fi)/1024.

Assume C(fi, Fi) ≥ 8g(d(fi, fi+1)|kON
i ). Using Lemma

we have d(fi, fi+1) ≤ 2davg(fi, Fi). In other words, in
case C(fi, Fi) = davg(fi, Fi)|Fi| < |Fi|d(fi, fi+1)/2
OFF does not migrate to fi+1 (but stays at fi).
Thus, g(d(fi, fi+1)|kON

i ) ≥ |Fi|d(fi, fi+1)/2. From
C(fi, Fi) ≥ 4g(d(fi, fi+1)|kON

i ) ≥ 2|Fi|d(fi, fi+1) fol-
lows davg(fi, Fi) ≥ 2d(fi, fi+1). Using the triangle inequal-
ity davg(fi, Fi) ≤ d(fi, fi+1) + davg(fi+1, Fi), implying
davg(fi, Fi)− d(fi, fi+1) ≤ davg(fi+1, Fi) and d(fi, fi+1) ≤
davg(fi+1, Fi). Therefore, if C(fi, Fi) ≥ 4g(d(fi, fi+1)|kON

i )
we have C(fi, Fi)/1024 costs for OFF.

Theorem V.15. For the competitive ratio for co.di. it holds
ρ ∈ O(1).

Proof: Due to Lemma V.14 in case the distance between
OFF and Follower decreases (or is) below 3/4 of d(fi, fi+1) af-
ter handling requests Fi and C(fi, Fi) < 4g(d(fi, fi+1)|kON

i ),
i.e. d(oic, fi+1) ≤ 3/4d(fi, fi+1), OFF potentially incurs
no costs for Fi and Follower incurs access costs at most
C(fi, Fi) < 4g(d(fi, fi+1)|kON

i ). Assume the distance be-
tween fi and fi+1 was d′ := d(fi, fi+1). Then the maximal
number nm of migrations of Follower until both servers
coincide at the same node can be upper bounded as follows.
For each migration the distance shrinks by 3/4, which gives
the following inequality until the distance between Follower’s
and OFF’s server is less than 1: (3/4)nm · d′ < 1, i.e. nm =
(log d′)/ log(4/3). This amounts to access costs for Follower

of
∑nm

j=0 4g((3/4)jd′|kON
i+j ) ≥ 4g(O(d′)|kON

i ). This in turn
corresponds to total costs of at most 5g(O(d′)|kON

i ). Thus, the
costs until both servers coincide after being at distance d′ are at
most larger by a constant factor than the costs to separate them
for distance d′. In case the distance between OFF and Follower
decreases after handling requests Fi but access costs for
Follower are larger, i.e. C(fi, Fi) ≥ 4g(d(fi, fi+1)|kON

i ) and
d(oic, fi+1) ≤ 3/4d(fi, fi+1), OFF incurs costs proportional
to the access costs C(fi, Fi) of Follower and also movement
costs g(dio|kOFF

i )/2 due to Lemma V.14. In case the distance
between OFF and Follower increases after handling requests
Fi OFF incurs costs proportional to the access costs due to
Lemma V.14. Due to Lemma V.3 the competitive ratio is
constant, if OFF moved more than Follower. Thus assume OFF
moved less than Follower. The costs per unit moved are larger
for OFF than for Follower using g(x|y)/x ≥ g(z|y)/z for
x ≤ z. Thus, if OFF moved a constant fraction of the distance
Follower moved its server, OFF incurs also a constant fraction
of Follower’s total costs, since by Lemma V.1 the total access
costs are less than the total migration costs.
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