
Optimal Migration Contracts in Virtual Networks:
Pay-as-You-Come vs Pay-as-You-Go Pricing

Xinhui Hu1, Stefan Schmid2, Andrea Richa1, and Anja Feldmann2

1 SCIDSE, Arizona State University, Tempe, AZ 85287, USA
{xinhui.hu,aricha}@asu.edu

2 TU Berlin & T-Labs, Germany
{stefan,anja}@net.t-labs.tu-berlin.de

Abstract. Network virtualization realizes the vision of an Internet where re-
sources offered by different stakeholders are used and shared by multiple co-
existing virtual networks. The abstraction introduced by network virtualization
opens new business opportunities. We expect that in the near future, infrastructure
providers (or resource brokers and resellers) will offer flexibly specifiable and
on-demand virtual networks over the Internet, similarly to the elastic resources in
today’s clouds.

This paper initiates the discussion on the optimal resource allocations in such
an economic environment. We attend to a scenario where a flexible service (such
as a web service or an SAP database) is implemented over a virtual network. This
service can be seamlessly migrated closer to the current locations of the (mobile)
users. We assume that a virtual network provider offers different contracts to the
service provider, and we distinguish between two fundamentally different pricing
models: (1) a Pay-as-You-Come model where the service provider needs to decide
in advance which time-based contracts to buy in order to implement the service,
and a (2) Pay-as-You-Go-model where the service provider is charged only when
the service terminates and only for the amount of resources actually used. In
both cases, the virtual network provider may offer a discount if more resources
are bought, e.g., buying a resource contract of double duration or of twice as
much bandwidth only costs fifty percent more than a simple contract. We describe
two optimal migration algorithms PAYC (for the Pay-as-You-Come model) and
PAYG (for the Pay-as-You-Go model), provide a quantitative comparison of the
two pricing models, and discuss their implications. Finally, extensions to online
algorithms are discussed.

1 Introduction

The Internet becomes more and more virtualized and programmable (or “software-
defined”), and we witness a trend towards extending the cloud paradigm to the network.
Researchers in the field of network virtualization develop prototype architectures that
herald flexibly specifiable, fully virtual networks (VNets) (also known as CloudNets):
virtual networks that can be requested at short notice (and even be migrated arbitrarily
within the specification constraints), while providing isolation guarantees (e.g., in terms
of QoS or security). This paradigm has the potential to open a network infrastructure

D. Frey et al. (Eds.): ICDCN 2013, LNCS 7730, pp. 285–299, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



286 X. Hu et al.

for a wide range of new and innovative services, and it is believed that new economical
entities will emerge that lease (or re-lease) infrastructure parts to service providers.

We expect that in the near future, such virtual networks connecting arbitrary loca-
tions (and spanning multiple autonomous systems and providers) in the Internet can be
leased similarly to the resource leasing models of today’s clouds. This paper attends
to a use case for such dynamic VNets where a service provider offers a flexible and
latency-critical service (for instance a web service, an SAP server or a game server)
to its mobile customers whose demand and locations changes over time (e.g., due to
time-zone effects or commuting). We assume that the service provider itself uses the
resource services of a substrate infrastructure provider (e.g., a physical infrastructure
provider or a virtual network provider) in order to offer a low-latency access to a server
which can be migrated seamlessly in the VNet (i.e., without reconfiguration or changes
of routable network addresses). The service provider is faced with the challenge that
while moving the server closer to the customers improves QoS (and/or reduces roam-
ing costs), frequent migrations come at service interruption and bulk data transfer costs.
We initiate the study of optimal offline and online migration strategies for the service
provider under two different pricing models.

Our Contribution. This paper initiates the study of the virtual server migration prob-
lem from an economical perspective. We compare the two most basic pricing policies
Pay-as-You-Come and Pay-as-You-Go (see, e.g., [14]), in which a service provider has
to pay in advance for time-based contracts respectively in retrospect for the resources
actually used. The service provider receives a discount when buying larger contracts,
e.g., a contract of twice the resource volume only costs 50% more. As a first step, we, in
this paper, design offline migration algorithms for different settings and discount func-
tions. We find that optimal offline solutions can indeed by computed in polynomial time
by using non-trivial dynamic programs. We theb use these algorithms to quantify and
compare the two pricing models by simulation. We discuss the implications of these
models and find that, as expected, Pay-as-You-Come pricing yields higher costs on the
service provider side than Pay-as-You-Go pricing, especially for moderate discounts.
Interestingly, the distribution and structure of the costs and the used contracts differ
significantly for the two pricing schemes, and it turns out that the QoS guarantees under
the Pay-as-You-Go model are much better due to the efficient resource investments.

Note that offline algorithms are particularly interesting if demand patterns can be
predicted well (e.g., if it depends on time-zone effects or commuter behavior). However,
offline algorithms can also serve as a yardstick to evaluate the performance (i.e., the so-
called competitive ratio) of online algorithms in simulations. This paper also initiates
exploring online migration strategies.

2 Economical Service Migration

A virtual network topology can be modeled as a graph G = (V,E) where V (G) denotes
the set of nodes and E(G) the set of links. We assume that a service provider can place
its service (i.e., the server) on any location in the virtual network. Requests can originate
from different access points in V (G), and the access cost is given by the shortest path
(depending on some given metric D) to the server location in V (G). In order to reduce



Optimal Migration Contracts in Virtual Networks 287

the access cost, the virtual server can be migrated along the links in E(G). To do so,
the service provider needs to purchase bandwidth along the migration path.

We attend to a scenario where a virtual network provider offers the service provider
a choice of contracts of different durations in which dedicated resources can be leased
in the virtual network (e.g., for migration), i.e., D = {d1, d2, . . . , dk} (we assume
d1< d2<. . .< dk). In addition to the contract durations, the service provider can
choose between different bandwidths along the links, i.e., it can choose among the
following set of bandwidths for each link: B = {b1, b2, . . . , bq} (we also assume that
b1<b2 <. . .<bq).

We consider two different pricing models. Under Pay-as-You-Go pricing, a customer
only needs to pay for the used resources after the actual consumption (or at regular
time intervals T ), and the best contract is determined according to the usage pattern a
posteriori. Pay-as-You-Go pricing is often used in the context of cloud resource leasing.
In contrast, in the Pay-as-You-Come model, a customer needs to decide in advance
which kind of time-based contracts she is interested in, and needs to buy them before
the actual resource usage. Examples for this model can be found, e.g., in the context
of private Internet access where users often pay in advance and independently of the
actual usage pattern.

In this paper, in order to focus on the main tradeoffs, we initiate the study of these
pricing models in a simplified scenario where the virtual network consists of two loca-
tions only (e.g., one in the U.S. and one in Asia); we will refer to these locations by L
(left) and R (right) respectively and normalize their distance to one unit. The server can
be migrated arbitrarily between the two locations if a corresponding resource contract
is present for the bulk-data transfers. Concretely, a contract in the Pay-as-You-Come
model consists of a duration di and the bandwidth bj to lease the virtual link between
the two sites for di units (e.g., days) and at a bandwidth of bj (e.g., Mbit/s). The price
of the contract is given by a function f(di, bj), where f(·, ·) describes a monotonic in-
creasing discount over the contract duration and over the amount of reserved resources.
For example, a twice as long contract may cost only 50% more, and doubling the re-
served bandwidth may cost only 30% more. In the Pay-as-You-Go model, the customer
only needs to pay when the service is finished or after a given duration, i.e., every T
time units (e.g., a month), and only for the resources (and bulk data transfers) that are
actually used. Concretely, if μi migrations are performed during the time period T at a
bandwidth of bj ∈ B, the overall costs amount to f(μi, bj).

The main objective is to minimize the migration and contracting costs (denoted
by MigCost and ConCost) while providing good Quality-of-Service (QoS) guaran-
tees (minimize access cost AccCost). Hence, we seek to minimize the following cost
function:

Cost = AccCost + MigCost + ConCost

We assume there are n requests total, denoted by a set < r1, r2, · · · , rn > at respective
times < t1, t2, · · · , tn >. The access cost is given by the latency of the requests ri ∈
V (G) to the location of the server si ∈ V (G), i.e., AccCost =

∑
iD[ri, si] where ri

and si denote the ith request node and the server location at time ti. The migration cost
MigCost is given by the service interruption time (see also [5]), i.e., the time to transfer



288 X. Hu et al.

the server which is determined by the bandwidth of the weakest link along the migration
path. (In a system supporting live migration, this cost can be negligible and set to zero.)
Concretely, the migration cost is computed as MigCost =

∑
i S ·D[si−1, si]/bi, where

S is the server size, D[si−1, si] denotes whether the locations si−1 ∈ {L,R} and
si ∈ {L,R} differ (recall that D[si−1, si] is 1 if si−1 �= si, and 0 otherwise), and
bi ∈ B is the (minimal) bandwidth along the migration path. Finally, the contract cost
is computed as described above, i.e., ConCost =

∑
i f(di, bi) for the Pay-as-You-Come

model and as ConCost = f(μ, bi) for Pay-as-You-Go model, where di ∈ D, bi ∈ B
and μ is the total number of migrations.

3 Migration Strategies

This section presents optimal algorithms to compute the best set of contracts and op-
timal migration strategies for the two presented pricing models. We will first present
an algorithm PAYC for the Pay-as-You-Come model and prove its optimality, and then
extend this algorithm to a PAYG algorithm which solves the Pay-as-You-Go model.
Both our algorithms PAYC and PAYG are based on dynamic programming, and fill
out matrices such that optimal substructures are reused.

3.1 Pay-as-You-Come

Let us now turn our attention to the first, time-based pricing model. Our PAYC algo-
rithm stores intermediate minimum total cost results (access, migration and contract
costs) in a 3-dimensional matrix Cn×n×4 where n is the total number of requests.
C[i, j, k] denotes an entry of the matrix, where i, j ∈ [1, n] and k ∈ {(s, s′)|s, s′ ∈
{L,R}}. C[i, j, (s, s′)] denotes the minimum total cost for satisfying all requests from
ri to rj for a scenario where at the beginning of the ith request the server is at node s
and at the end of request j the server is at node s′. We also need a matrix (AMm)n×n×4

for each bandwidth bm ∈ B. For a fixed bandwidth bm during the entire interval [ti, tj ],
entry AMm[i, j(s, s′)] stores the combined access and migration costs for the best mi-
gration strategy that satisfies the sequence of requests from ri to rj , assuming that the
server is located at node s at the start of request ri and at node s′ at the end of request
rj . The contract costs, given by the function f , are not included in the entries of AMm.

Given these data structures, we can describe algorithm PAYC (Algorithm 1) for the
Pay-as-You-Come model. PAYC exploits that the optimal contract from request time
ti to request time tj can either be decomposed into two consecutive subperiods with
no overlapping contracts, or be obtained by buying a contract of long duration dv and
bandwidth bm if dv−1 < tj − ti + 1 ≤ dv , where dv , dv−1 ∈ D.

PAYC starts by initializing the optimal costs if we were to serve only one request
ri, for all possible combinations of starting server location s and ending server location
s′ at time ti. According to our model, the access cost is equal to the distance between
the current requesting node ri and the server location s′ at the end of time ti, denoted
by D[ri, s

′]. If the request at time ti comes from the server location s′, then no access
cost is needed since D[ri, s

′] is 0; otherwise the access cost is positive. Recall that the
migration cost for request ri is computed as S ·D[s, s′]/bm, where bm ∈ B is the se-
lected bandwidth and S is the migrated server size. We store the respective optimal cost



Optimal Migration Contracts in Virtual Networks 289

Algorithm 1. Algorithm PAYC
Input: Requests <r1, r2, ..., rn> at respective times <t1, t2, ..., tn>.
Output: Minimum cost.
1: for i = 1 to n do
2: for all pairs (s, s′) ∈ {L,R}2 do
3: for m = 1 to q do
4: AMm[i, i, (s, s′)]← D[s′, ri] + S ·D[s, s′]/bm
5: C[i, i, (s, s′)]← min1≤m≤q{AMm[i, i, (s, s′)] + f(d1 ∗D[s, s′], bm)}
6: for l = 2 to n do
7: for i = 1 to n− l + 1 and pairs (s, s′) ∈ {L,R}2 do
8: j ← i+ l − 1
9: C[i, j, (s, s′)]← mini≤u<j;s′′∈{L,R}{C[i, u, (s, s′′)] + C[u+ 1, j, (s′′, s′)]}

10: if dv−1 < tj − ti + 1 ≤ dv, for some v = {1, · · · , k} then
11: for m = 1 to q do
12: AMm[i, j, (s, s′)] ← mins′′∈{L,R}{AMm[i, i, (s, s′′)] + AMm[i + 1, j,

(s′′, s′)]}
13: if C[i, j, (s, s′)] > min1≤m≤q{AMm[i, j, (s, s′)] + f(dv, bm)} then
14: C[i, j, (s, s′)]← min1≤m≤q{AMm[i, j, (s, s′)] + f(dv, bm)}
15: return minsfinal∈{L,R} C[1, n, (sinit, sfinal)]

of satisfying request ri (which may or may not incur a non-zero access cost D[ri, s
′],

depending on whether ri �= s′ or not) using bandwidth bm, with starting and ending po-
sitions of the server s and s′ respectively, in AMm[i, i, (s, s′)]. We choose a bandwidth
bm ∈ B such that the total cost, including the contract cost f(d1, bm) if a migration
accurs, is minimized, and store the optimal total cost in C[i, i, (s, s′)].

Next, we consider the total costs for sequences of more than one request. Note that
there are l requests occurring between time ti and tj , where i < j are defined in Lines 7
and 8 of the algorithm and l (= j − i + 1) > 1. We have two alternative options: (i)
we can split the interval [ti, tj] at the time tu of request ru, where i ≤ u < j, and
buy contracts for the intervals [ti, tu] and [tu+1, tj] independently for the two possible
locations s′′ of the server at time tu; or (ii) we can buy a long contract of duration
dv ∈ D and some bandwidth bm ∈ B to cover all the l requests if the period tj − ti+1
is between dv−1 and dv . The smaller cost of these two cases gives the optimal cost for
the interval [ti, tj].

We also update AMm[i, j, (s, s′)], for all possible bandwidths bm. Basically
we extend the intervals already considered by one request (ri), and we store in
AMm[i, j, (s, s′)] the migration strategy that minimizes the total access and migration
costs for satisfying requests ri through rj using bandwidth bm for starting and ending
positions of the server s and s′ respectively. Note that by taking into account all possible
positions of the server at the end of request ri, we consider all the possibilities of adding
ri to all the best possible strategies already computed for the subsequence ri+1, . . . , rj
(ending at node s′).

We process the previous steps in increasing order of l until l spans all the requests.
Thus, the optimal cost is given by minsfinal∈{L,R}C[1, n, (sinit, sfinal)], where sinit is the
initial server location.



290 X. Hu et al.

Theorem 1. PAYC (see Algorithm 1) computes the optimal contracts for Pay-as-You-
Come model. The time complexity of PAYC is O(n2(n+ kq)), where n is the number
of requests, k is the number of contract durations and q is the number of different
bandwidth contracts.

Proof. The correctness follows by induction over the number of request l and by the
optimal substructure property. Due to space constraints, we only sketch the proof. The
claim is trivially true for sequences of one request (Lines 1–5). Consider the time inter-
val from ti to tj with l requests, where 1 ≤ i ≤ j ≤ n and 2 ≤ l(= j− i+1) ≤ n. This
interval is split into two subintervals (Case I), or a long contract is bought that covers
the entire interval (Case II). In Case I, we split the cost at time tu with the server located
at s′′ such that the total cost C[i, u, (s, s′′)] + C[u + 1, j, (s′′, s′)] is minimized, where
i ≤ u ≤ j and s′′ ∈ {L,R}. Since the number of requests in the two subintervals,
u− i+ 1 and j − u, are shorter than l, by the induction hypothesis, C[i, u, (s, s′′)] and
C[u+ 1, j, (s′′, s′)] already store the optimal costs for these two intervals respectively.
In Case II, we buy a long contract to cover the whole interval. Given a certain server lo-
cation s′′ at the start of the time ti+1, AMm[i+1, j, (s′′, s′)] already stores the optimal
access and migration strategy cost for bandwidth bm for interval [ti+1, tj ]. Therefore,
an optimal migration strategy for interval [ti, tj ] using bandwidth bm can be obtained
by adding ri to the optimal strategies selected for the interval [ti+1, tj] and optimizing
over the choice on whether to migrate the server to serve ri or not (resulting in the two
possible choices for s′′, the position of the server right after satisfying request ri).

Now we consider the time complexity of the PAYC algorithm. Clearly, the first phase
of the algorithm requires time O(nq). The second phase consists of three nested loop
and has a complexity of O(n2 · (n+ kq)). ��

3.2 Pay-as-You-Go

Optimal solutions can also be computed for the Pay-as-You-Go model, and the algo-
rithm PAYG is similar to the algorithm PAYC. As discussed above, in the Pay-as-
You-Come model we need to decide when to migrate, which contracts to buy, and how
much bandwidth to use. In the Pay-as-You-Go model, we still need to make a decision
on when to migrate and how much bandwidth should be reserved, but we do not have to
explicitly decide on a time contract. However, unlike the Pay-as-you-Come model, in
the Pay-as-you-Go model, a bandwith bm has to be chosen and fixed for satisfying the
entire sequence of requests ri, . . . , rj . Also, the contract cost in this model is directly
dependent on the number of migrations of the server, and hence we explicitly have to
keep track of this number.

Algorithm PAYG is listed in Algorithm 2. PAYG uses a new matrix (Am)n×n×4

to store the access cost under a certain bandwidth bm, 1 ≤ m ≤ q, and another ma-
trix (Nm)n×n×4 is used to store the migration number for bandwidth bm. A matrix
(Cm)n×n×4 stores the total cost for bandwith bm. In the entries of the new matrices,
the elements Am[i, j, (s, s′)] and Nm[i, j, (s, s′)] store the access cost and the number
of migrations, respectively, for the optimal solution between time ti and tj with an ini-
tial server location s and a final server location s′, where s, s′ ∈ {L,R}. The entry
Cm[i, j, (s, s′)] stores the total optimal cost within this time period for bandwith bm.



Optimal Migration Contracts in Virtual Networks 291

Algorithm 2. Algorithm PAYG
Input: Requests <r1, r2, ..., rn> at respective times <t1, t2, ..., tn>.
Output: Minimum Cost.
1: for i = 1 to n do
2: for all pairs (s, s′) ∈ {L,R}2 and 1 ≤ m ≤ q do
3: Am[i, i, (s, s′)]← D[s′, ri]
4: Nm[i, i, (s, s′)]← D[s, s′]
5: Cm[i, i, (s, s′)]← Am[i, i, (s, s′)] + S ·Nm[i, i, (s, s′)]/bm + f(D[s, s′], bm)
6: for l = 2 to n do
7: for i = 1 to n− l + 1 do
8: j ← i+ l − 1
9: for all pairs(s, s′) ∈ {L,R}2 and 1 ≤ m ≤ q do

10: Cm[i, j, (s, s′)] ← mini≤u<j;s′′∈{L,R}{Am[i, u, (s, s′′)] + Am[u + 1, j,
(s′′, s′)] + S · (Nm[i, u, (s, s′′)] + Nm[u + 1, j, (s′′, s′)])/bm +
f((Nm[i, u, (s, s′′)] +Nm[u+ 1, j, (s′′, s′)]), bm)}

11: Let (u, s′′) be the parameter and location of request ru at tu that minimized
Line 10.

12: Am[i, j, (s, s′)]← Am[i, u, (s, s′′)] +Am[u+ 1, j, (s′′, s′)]
13: Nm[i, j, (s, s′)]← Nm[i, u, (s, s′′)] +Nm[u+ 1, j, (s′′, s′)]
14: return minsfinal∈{L,R}, 1≤m≤q Cm[1, n, (sinit, sfinal)]

The basic idea behind PAYG is to compute the optimal solution for a scenario where
all the requests require the same bandwidth, and then choose the smallest cost among all
the bandwidth options. PAYG starts off by computing the optimal costs for satisfying
one request (Lines 1-5). Given the request ri and the starting and ending server locations
s, s′, the access cost is given by D[s′, ri] which is 0 if the final server location s′

and the request location ri coincide, and 1 otherwise. Meanwhile D[s, s′] will indicate
that the server migrates to the other location to serve the current request if D[s, s′]
is 1. Otherwise, there is no migration, and the starting and ending server locations s,
s′ describe the same node. We store the optimal solution in Cm[i, i, (s, s′)] for each
bandwidth bm, where Cm[i, i, (s, s′)] = D[s′, ri] + S ·D[s, s′]/bm + f(D[s, s′], bm).

Now PAYG iterates over the number of requests l (Line 6). For each value of l, we
compute all the possible cases, as in Lines 7-13. First, we select from [1, n− l− 1] the
value i denoting the index of the first of these l requests. Obviously, the index of the last
of the l requests (denoted by j) would be i+ l− 1, as in Line 8. Assume that the server
is located at node s at the time when the ith request occurs, and located at node s′ at
the end of the jth request, where s, s′ ∈ {L,R}. We look for a way to split the duration
such that the total cost Cm[i, j, (s, s′)] is minimized, as shown in Line 10. We use u, m,
and s′′ to denote the index of the request occurring at the chosen split point, the chosen
bandwidth, and the location of the server (Line 11). Therefore, the total cost consists of
the summation of the access costs of two subintervals, the summation of the migration
costs of two subintervals, and a long contract cost covering the whole period. Here,
the access cost is computed as Am[i, u, (s, s′′)] + Am[u+ 1, j, (s′′, s′)], the migration
cost is computed as (Nm[i, u, (s, s′′)]+Nm[u+1, j, (s′′, s′)])/bm and the contract cost



292 X. Hu et al.

is computed as f(Nm[i, u, (s, s′′)]+Nm[u+1, j, (s′′, s′)], bm), for a certain bandwidth
bm. We store the access cost in Am[i, j, (s, s′)] (Line 12) and the number of migrations
in Nm[i, j, (s, s′)] (Line 13) for the current duration.

For each bandwidth bm, we store the optimal solution to serve all the re-
quests in Cm matrix. Thus the optimal cost is hence obtained by computing
minsfinal∈(L,R),1≤m≤q Cm[1, n, (sinit, sfinal)] (Line 14).

The following claim follows by simple induction over the number of requests.

Theorem 2. PAYG (see Algorithm 2) computes the optimal contracts for the Pay-as-
You-Go model. The time complexity is O(qn3), where n is the number of requests and
q is the number of different contract bandwidths.

Proof. We argue by induction on the number of the requests l considered. In base case,
when there is just one request (l = 1), lines 1-5 will give the optimal solutions under
each bandwidth. As for the inductive step, we follow a similar strategy as for PAYC. We
split at time tu with the server located at s′′ such that the access cost and the migration
cost of two sub intervals will minimize the total amount for the current duration. Since
we consider all possible splits at all times within the whole interval as well as all the
server migrations (Line 10), we choose the best option for the longer interval.

Regarding the time complexity, Lines 3, 4, and 5 each take O(1) time, respectively.
Since Lines 3-5 are executed 4nq times, the total running time of Lines 1-5 is O(nq).
Considering that Lines 10-13 are executed O(n2q) times and l ≤ n, we know that the
running time of Lines 6-13 is O(qn3). Therefore, the time complexity of Algorithm 2
is O(qn3). ��

4 Quantitative Comparison

The presented economical migration algorithms allow us to shed light on the properties
of the two pricing models. We study three different discount functions flin, fsqrt, flog

which offer cheaper contracts if longer (in terms of days) or larger (in terms of
leased bandwidth) contracts are bought: flin is linear (“get twice as much for a 50%
higher price”), fsqrt grows according to a square root function and hence describes
a steeper discount, and flog even gives an even steeper logarithmic discount. For all
three discount functions, the cost of a one-day contract with 50 Mbit/s bandwidth
is the same, namely fi(1, 50) = 6 for i ∈ {lin, sqrt, log}. Concretely, we use
flin(di, bj) = 1.5 · flin(di/2, bj) = 1.5 · flin(di, bj/2)=1.5(�logdi�+bj/50−1) · flin(1, 50),
fsqrt(di, bj) =

√
dibj/50 · fsqrt(1, 50), and flog(di, bj) = log(dibj/50) · flog(1, 50). We

assume a server of size S = 250 MB, and we assume that the access cost for one re-
mote request is five units (a request originating at the node where the service is located
is free). We study a scenario where the provider offers two different bandwidth capaci-
ties, namely 50 Mbit/s and 100 Mbit/s, and four types of contract durations, namely 1,
30, 60 and 100 days (i.e., B = {50, 100} and D = {1, 30, 60, 100}).

We study a simple request pattern where requests originate from L and R in turn,
e.g., requests originating in Asia alternate with requests originating in the U.S..



Optimal Migration Contracts in Virtual Networks 293

Simplified Demand Scenario: We assume that requests alternate infinitely between
the two sites L and R in the following manner: requests originate from one site (one
per round) for a time interval duration which is chosen according to an exponential
distribution with parameter λ, before requests originate from the opposite side again
(according to the same distribution).

We simulate n = 1500 requests, and present the average over five runs for each experi-
ment.

(a) Cost PAYC (b) Cost PAYC (in %)

(c) Cost PAYG (d) Cost PAYG (in %)

Fig. 1. Cost distribution for PAYC and PAYG

We discuss the following simulations in more detail.

Cost Distribution and Number of Migrations. We analyze how the cost distributes
among the access cost, the migration cost, and the contract cost for the two algorithms
PAYC and PAYG. All experiments discussed here are conducted under the natural flin

discount function. Figure 1(a) shows the absolute costs of PAYC as a function of λ.
We observe that the total cost and the access cost decrease for larger λ while the migra-
tion and contract stay much more stable. This is clear as requests originating from one
site for longer time periods render it worthwhile to migrate and buy longer contracts.



294 X. Hu et al.

The contract increases firstly and then decrease after some point, since the total mi-
gration numbers decrease and hence the contract cost is reduced. As the number of
migrations decrease, the average number of migrations within a contract is also de-
creased. Therefore, PAYC will buy smaller bandwidth for such contract, which will
result in larger migration costs(also shown in Table 2). Figure 1(b) presents the relative
shares of the three costs. While the access costs approach zero for larger λ since the
server is often at the right location, the contract costs and the migration costs stay stable
since PAYC migrates a lot even for larger λ. The same results for PAYG are shown in
Figures 1(c) and 1(d), respectively. As a first takeaway, we see that the cost distribution
of Figure 1(c) defers from Figure 1(a) in that the total costs are lower, i.e., Pay-as-You-
Go is always the cheaper option than Pay-as-You-Come pricing for the customer. Also
note that in contrast to the Pay-as-You-Come model, the migrations constitute a larger
share of the overall costs, since the contract cost is given by the number of migrations
and the amount of leased bandwidth under the discount function; hence the contract
cost is lower than the one of PAYC for the same number of migrations. Moreover,
there are relatively more frequent migrations under the PAYG model, see Figure 2(a),
which also explains the lower access costs (i.e., this improves QoS experienced by the
users). Regarding the relative cost shares (Figure 1(d)), we can see that the percent-
age for the access cost is decreasing while the percentages for the migration cost and
the contract cost are increasing slowly. Again, when λ is large enough and the
requests become more local, since migrations only occur at the beginning of each
interval, the number of migrations (as well as all three cost components) eventually
decreases.

Contract Distribution. Different pricing models and scenarios result in different types
and combinations of contracts, and it is interesting to study the frequency (or popularity)
distribution of the contracts. Table 1 reports on the average number of the contracts as
a function of λ, for different contract durations and bandwidths, under the PAYC algo-
rithm and for flin. We see that when λ is small and migrations are dense, longer duration
contracts occur frequently since the server migrates often. However, as λ increases, all
lengths of contracts decrease. As λ increases, the average number of migrations in a
contract decreases and hence the smaller bandwidth will benefit more than the larger
one. Therefore, it turns out to buy more contracts with smaller bandwidth. This can also
be seen in Table 2 which records the average number of migrations in different contracts
accordingly (average over five runs).

Table 1. Distribution of purchased contracts (discount function flin)

�����Dur-Bw
λ

3 4 5 6 7 8

1-50 11.2 8 15.4 13.8 18.4 39.2
60-50 0 0 0 0 2.4 0.8
60-100 1.4 2 1.4 2.8 1 0.4
100-50 0 0 0 0.6 2 5.4
100-100 11 11 11.2 10 7.6 3.4



Optimal Migration Contracts in Virtual Networks 295

(a) Number of Migrations (b) Cost Discount

(c) Cost Discount (in %)

Fig. 2. Number of migrations and effect of discount function

Table 2. Number of migrations for each contract (discount function flin)

�����Dur-Bw
λ

3 4 5 6 7 8

1-50 1 1 1 1 1 1
60-50 0 0 0 0 8,5 0
60-100 17.67 14 13.5 11.5 0 0
100-50 0 0 0 13 13 12.57
100-100 27.33 23.58 19.45 17.33 15 14.5

Impact of Discount Function. Finally, let us compare the different discount functions
in more detail. Figure 2(b) and Figure 2(c) explore the absolute and relative (in %)
cost distributions for PAYC and PAYG under different discount functions. Clearly, the
higher the discount, the smaller the total cost. Moreover, not surprisingly the perfor-
mance of PAYG is always better than that of PAYC since the total cost is less for
PAYG compared to that for PAYC. However, the difference of the costs for the two
models is smaller for higher discounts, i.e., the difference for the logarithmic discount
function is smaller than for a discount function which follows a square root.



296 X. Hu et al.

5 A First Look at Online Migration

Although the main focus of this paper is on predictable demand scenarios and offline
algorithms, in this section, we want to initiate the discussion of online algorithms. The
online discussion builds upon our offline results in two respects: First, some algorith-
mic techniques from the offline variant may be used also for the online variants. For
example, an online algorithm may try to predict the future from the past, and apply an
optimal offline algorithm on a sequence of recent past requests in order to make de-
cisions on how to deal with upcoming requests. Second, offline algorithms are often
needed to evaluate the performance of an online algorithm. The ratio of the cost of an
online algorithm divided by the cost of an optimal offline algorithm is also known as
the competitive ratio [3].

Both online algorithms presented in the following are inspired by the (optimal) of-
fline variants and seek to amortize costs over time. To simplify the presentation, we
assume a constant bandwidth scenario.

ONC: The online Pay-as-You-Come algorithm ONC tracks the access costs it incurs
at the current location using a counter C. Once the counter exceeds the migration cost
(given by the server size divided by the bandwidth), ONC migrates the server and resets
C. If there is currently no contract available for migration, ONC checks whether a
contract longer than the most recently used contract would have been better for the
past requests. Concretely, ONC checks longer contracts one by one (in increasing order
of length) and compares their costs in the corresponding intervals (starting from the
last migration) to the cost ONC incurred during that time period. As soon as a better
contract is found, it is chosen. Otherwise, ONC checks whether a contract shorter than
the most recent contract should be chosen. The following heuristic is applied: ONC
checks whether during the last contract, the number of migrations was larger in the first
half or the second half of the contract time interval. In case of the first half, ONC will
buy the shorter contract; otherwise, ONC chooses the same contract as last time.

Now let us discuss a simple online algorithm ONG for the Pay-as-You-Go model. Since
the customers only need to pay for the resources actually consumed, ONG just needs to
decide when to migrate.

ONG: Let the counter C1 record the number of the migrations performed so far and let
the counter C2 denote the total access costs. If the access cost C2 reaches the migration
cost plus marginal migration contract costs (i.e., f(C1+1, b)−f(C1, b), for bandwidth
b), ONG migrates the server, increments counter C1, and resets counter C2.

Given our optimal offline algorithms, it is interesting to study the competitive ratio
of ONC and ONG. We conduct simulations with the same three discount functions
flog, fsqrt and flin, the same contract set and the same access cost as in Section 4. The
bandwidth used in our experiments is 50 Mbit/s.

The competitive ratios for ONC and ONG are presented in Figure 3. We observe that
the ratios for both algorithms are relatively small (between 1.5 and 4) and decrease for
larger λ (lower dynamics). This can be explained by the fact that with higher λ, requests



Optimal Migration Contracts in Virtual Networks 297

(a) Competitive ratio for ONC. (b) Competitive ratio for ONG.

Fig. 3. Effect of discount function on competitive ratio. We simulate 1500 requests and present
the average over five runs.

remain more local and migration patterns more obvious. A second takeaway is that the
competitive ratio for the lowest discount function flin is best, while higher discounts
like flog are handled worse by our online algorithms. Especially in the Pay-as-You-
Come model, our online algorithm has more difficulties to deal with high discounts, as
it tends to buy too many short contracts (ONC migrates more often than the offline algo-
rithm). Also under Pay-as-You-Go pricing, the offline algorithm can exploit discounts
relatively better, although to a lesser extent. (The offline algorithm migrates relatively
more frequently for higher discounts.)

6 Related Work

Our work is motivated by the advent of first network virtualization prototype architec-
tures such as GENI. For a good overview of the network virtualization field, see [7].
Theoretical research on network virtualization often focuses on the problem of how
to embed VNets, e.g., [6,19,15] (and especially the survey [4]), while benefitting from
specification flexibilities [13]. Naturally, there are also many papers and results on mi-
gration (e.g., [1,3,11,18]): the possibility to migrate is one of the key advantages of
the virtualization abstraction; it is due to the decoupling of services from the physical
infrastructure. Indeed, it has been shown that it can make sense to migration a Samba
front-end server closer to the clients even for bulk-data applications [12]. Our work
builds upon the formal migration model studied in [3] and ports it to an economical
setting.

Economical aspects of network virtualization are much less well-understood, but
there exist strong ties with related problems in, e.g., cloud computing. For example,
Armbrust et al. [2] made an effort to understand cloud computing economical mod-
els for long-term hosting a service in the cloud. Dash et al. [9] proposed an economic
model for self-tuned cloud caching targeting the service of scientific data. Recently, Pal
and Hui [14] devised and analyzed three inter-organizational economic models rele-
vant to cloud networks, and formulated non-cooperative price and QoS games between



298 X. Hu et al.

multiple cloud providers existing in a cloud market. In the context of network virtual-
ization, Schaffrath et al. [16] identified stakeholders and economical roles in a network
virtualization environment. The authors distinguish between a physical infrastructure
provider, a virtual network provider (i.e., resource reseller), a virtual network operator
and a service provider. In terms of pricing, Even et al. [10] presented an online algo-
rithm which decides which VNets to accept and embed such that the overall provider
benefit is maximized. The benefit threshold of when to accept a VNet can be seen as a
simple form of pricing. Migration is not considered in [10].

Finally, a description of our own network virtualization prototype (currently using
VLANs) which is developed at Telekom Innovation Laboratories and NTT DoCoMo
Eurolabs and which motivates our work can be found in [16]. Currently, migration is
seamless (i.e., without the need for reconfigurations) but not live. See [8] for a migration
demo.

7 Conclusion

There is a large body of literature on economical aspects of cloud computing, but much
less is known about efficient (virtual) network pricing. Interestingly, while cloud (or
node) resources are often priced according to a flexible per-use or pay-as-you-go pol-
icy, networking services such as MPLS connectivity are often charged according to
usage-independent, time-based policies. [17] This is particularly surprising as network
demand is likely to exhibit a higher variance over time than, e.g., storage resources. For
instance, distributed SAP systems may be fully synchronized only sporadically (but
then lead to high network loads), whereas the resource requirements of, e.g., a mail
service normally grows monotonically over time.

We understand this paper as a first step to study the effect of virtual network pricing
policies on service migration. We focused on the offline setting where demand pat-
terns are given (e.g., describe regular time-of-day or commuter effects). Such online
algorithms can also be useful to evaluate the competitive ratio of online algorithms in
simulations. We presented two optimal algorithms for efficient service migration in dif-
ferent economic settings. We believe that the used algorithmic techniques are relatively
general and can be extended to more complex scenarios, e.g., to networks supporting
live migration or more complex virtual network topologies.

Acknowledgments. The authors would like to thank the anonymous reviewers for their
valuable comments.

References

1. Agarwal, S., Dunagan, J., Jain, N., Saroiu, S., Wolman, A., Bhogan, H.: Volley: automated
data placement for geo-distributed cloud services. In: Pro. 7th USENIX NSDI (2010)

2. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Patterson,
D., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing. Commun. ACM 53(4),
50–58 (2010)



Optimal Migration Contracts in Virtual Networks 299

3. Arora, D., Bienkowski, M., Feldmann, A., Schaffrath, G., Schmid, S.: Online strategies for
intra and inter provider service migration in virtual networks. In: Proc. IPTComm (2011)

4. Belbekkouche, A., Hasan, M., Karmouch, A.: Resource discovery and allocation in network
virtualization. IEEE Communications Surveys Tutorials (99), 1–15 (2012)

5. Bienkowski, M., Feldmann, A., Jurca, D., Kellerer, W., Schaffrath, G., Schmid, S., Widmer,
J.: Competitive analysis for service migration in VNets. In: Proc. ACM VISA, pp. 17–24
(2010)

6. Chowdhury, K., Rahman, M.R., Boutaba, R.: Virtual network embedding with coordinated
node and link mapping. In: Proc. IEEE INFOCOM (2009)

7. Chowdhury, N.M.K., Boutaba, R.: A survey of network virtualization. Computer Net-
works 54, 862–876 (2010)

8. CloudNet. Migration Demo (2012), http://www.youtube.com/
watch?v=llJce0F1zHQ

9. Dash, D., Kantere, V., Ailamaki, A.: An economic model for self-tuned cloud caching. In:
Proc. IEEE International Conference on Data Engineering, pp. 1687–1693 (2009)

10. Even, G., Medina, M., Schaffrath, G., Schmid, S.: Competitive and Deterministic Embed-
dings of Virtual Networks. In: Bononi, L., Datta, A.K., Devismes, S., Misra, A. (eds.) ICDCN
2012. LNCS, vol. 7129, pp. 106–121. Springer, Heidelberg (2012)

11. Hajjat, M., Sun, X., Sung, Y.-W.E., Maltz, D., Sripanidkulchai, S.R.K., Tawarmalani, M.:
Cloudward bound: Planning for beneficial migration of enterprise applications to the cloud.
In: Proc. ACM SIGCOMM (2011)

12. Hao, F., Lakshman, T.V., Mukherjee, S., Song, H.: Enhancing dynamic cloud-based services
using network virtualization. SIGCOMM Comput. Commun. Rev. 40(1), 67–74 (2010)

13. Ludwig, A., Schmid, S., Feldmann, A.: The price of specificity in the age of network virtu-
alization (short paper). In: Proc. 5th IEEE/ACM UCC (2012)

14. Pal, R., Hui, P.: Economic Models for Cloud Service Markets. In: Bononi, L., Datta, A.K.,
Devismes, S., Misra, A. (eds.) ICDCN 2012. LNCS, vol. 7129, pp. 382–396. Springer, Hei-
delberg (2012)

15. Schaffrath, G., Schmid, S., Feldmann, A.: Optimizing long-lived cloudnets with migrations.
In: Proc. 5th IEEE/ACM UCC (2012)

16. Schaffrath, G., Werle, C., Papadimitriou, P., Feldmann, A., Bless, R., Greenhalgh, A., Wund-
sam, A., Kind, M., Maennel, O., Mathy, L.: Network virtualization architecture: proposal and
initial prototype. In: Proc. ACM VISA (2009)

17. Schönherr, M.: T-labs berlin. Personal Communication (2012)
18. Wood, T., Shenoy, P., Ramakrishnan, K., der Merwe, J.V.: Cloudnet: Dynamic pooling of

cloud resources by live wan migration of virtual machines. In: Proc. ACM VEE (2011)
19. Zhang, S., Qian, Z., Wu, J., Lu, S.: An opportunistic resource sharing and topology-aware

mapping framework for virtual networks. In: Proc. IEEE INFOCOM (2012)

http://www.youtube.com/watch?v=llJce0F1zHQ
http://www.youtube.com/watch?v=llJce0F1zHQ

	Optimal Migration Contracts in Virtual Networks: Pay-as-You-Come vs Pay-as-You-Go Pricing
	Introduction
	Economical Service Migration
	Migration Strategies
	Pay-as-You-Come
	Pay-as-You-Go

	Quantitative Comparison
	A First Look at Online Migration
	Related Work
	Conclusion


