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Abstract—This paper attends to the problem of embedding
flexibly specified virtual networks connecting cloud resources (e.g,
storage or computation) on a given substrate (e.g., a data center,
an ISP backbone, a router site, or a virtual provider network).
We study a scenario where a substrate provider (or a potential
intermediate broker or reseller) wants to optimize the embedding
of these so-called CloudNets by migrating them to more suitable
locations. For instance, such re-embeddings can be useful if the
CloudNets were requested at short notice and initially placed
heuristically. Subsequent optimizations can, e.g., reduce the peak
resource loads in the network by spreading CloudNets across the
infrastructure or save energy by moving CloudNets together and
switching off unused components.

We present the generic mathematical programming algorithm
used in our CloudNet prototype to compute optimal embeddings.
For example, this algorithm supports different objective functions
(such as load minimization or energy conservation), arbitrary
resource combinations and the mapping of multiple virtual nodes
of a CloudNet to a single substrate node, cost-aware migrations,
and it can deal with all link types that arise in practice (e.g., full-
duplex or even wireless or wired broadcast links with multiple
endpoints). Of course, such rigorous CloudNet optimizations
are time consuming, and we report on the time complexities
obtained from our experiments with our network virtualization
prototype architecture. It turns out that optimizing CloudNets
over moderate sized infrastructures is feasible, even for scenarios
with high flexibility and without tuning the solver software to
speed up computations further.

I. INTRODUCTION

Virtualization is arguably the most important design prin-
ciple to facilitate innovation in the Internet. While node vir-
tualization enabled a very flexible resource allocation in data
centers and clouds, the virtualization trend now seems to spill
over also to Internet Service Providers (ISPs). The decoupling
of services from the constraints of the underlying infrastructure
promises new forms of resource sharing in the ISP network.
Moreover, the possibility to deploy (and migrate) services
closer to the eyeballs of the users can significantly increase
productivity and revenues. These new forms of networking
do not only rely on node virtualization, but also on link
virtualization. For example, Google recently announced to
have adopted a Software-Defined Networking (SDN) approach
to manage its massive internal network using OpenFlow.

The technological advances allows us to realize the vision of
CloudNets [9] which provide an abstraction of both nodes and
links, connecting (and providing access to) virtual cloud re-
sources with virtual networking. Decoupling virtual networks
from the physical constraints of the underlying infrastructure
(the substrate), CloudNets can offer opportunities for cus-
tomized network environments and can be flexibly embedded
(or mapped) at optimal (e.g., economical) locations and even
migrated.

The main challenge for the realization of CloudNets is the
question of how to optimally exploit the flexibility of the
specification in order to embed the virtual CloudNet in the best
location in the substrate network (while guaranteeing all re-
source / performance requirements stated in the specification),
where “best” depends on the objective: in some scenarios,
a CloudNet should be embedded in such a manner that the
maximal load or congestion is minimized; in other scenarios,
the CloudNets should be embedded in a compact manner in
order to be able to shut down the other parts of the physical
network, e.g., to save energy.

In addition to the static embedding, (parts of) a CloudNet
can be migrated. As CloudNet requests arrive over time
and may be hard to predict, certain embeddings computed
online in the past may become suboptimal, and re-embeddings
and migrations are necessary. Another reason for migration
is network or server maintenance: in order to upgrade the
infrastructure, it can be useful to temporarily migrate (parts
of) the network or the servers to an alternative location. While
today’s network virtualization technology facilitates seamless
migration (without session interruption), migration has a cost
(e.g., in terms of computation, bandwidth, or even roaming
fees in case of cross-provider migrations). Whether and where
to migrate is hence a non-trivial problem.

Our Contribution. This paper addresses the problem of
CloudNet embedding optimization by migration. We present
the very generic embedding algorithm used in our CloudNet
prototype architecture [18] which jointly optimizes node place-
ments and link embeddings and exploits this flexibility to com-
pute optimal embeddings (“realizations”) of the CloudNets,
while guaranteeing the allocation and provisioning of the
requested combination of resources. Our algorithm integrates
cost-aware migrations [1], and we believe that as the type
and arrival time of CloudNet requests is hard to predict,
the possibility of reconfigurations and migration is crucial.
Moreover, our algorithm does not rely on any particular
substrate type [22].

In addition, in contrast to other virtual network embedding
algorithms, our approach provides a high flexibility: it supports
all link types that occur in practice, such as half-duplex, full-
duplex, or even broadcast links with multiple endpoints (as
they appear in wireless networks but also in wired contexts
with hubs), in the sense that any of these links can be mapped
on any other; it supports embeddings across resources and
resource types and exact solutions for the mapping of partial
networks to single substrate nodes; it further supports provider-
side placement policies as well as resource prioritization (e.g.,
prioritizing lucrative resource allocations); it also allows us to



take into account node-based loads, e.g., as a function of the
packet rate (shorter packets increase the computational load at
the forwarding engine) etc.; among many more.

Finally, our algorithm can be used to study the migration
cost-benefit tradeoff: By computing the embedding that would
result from migration together with the migration cost, it is left
to the (potentially automated) administrator to decide whether
the changes are worthwhile. For example, our algorithm allows
to answer questions of the form: Can we migrate CloudNets
to a more compact form such that 20% of the currently used
resources are freed up, and what would be the corresponding
migration cost?

Interestingly, despite this flexibility, our algorithm is a
(linear) Mixed Integer Program (MIP) and can hence be solved
by standard and optimized tools such as CPLEX. Another
advantage of the mathematical programming approach is that
it enables us to propose different objective functions which can
be easily exchanged. For example, at some point a provider
may choose to place the virtual networks on the “edge” of the
physical network in order to avoid blocking bottleneck links
and hence to maximize the likelihood that future CloudNet
requests can be accepted. At another point in time it wants
to spread the CloudNet embeddings as much as possible in
order to minimize the load or congestion, or to collocate the
CloudNets as much as possible in order to be able to switch
off other parts of the network in order to save energy or for
maintenance work.

In contrast to various existing embedding heuristics for
virtual networks (e.g., [8], [12], [13]), the focus of this paper
is on an integrated approach which emphasizes the quality
of the CloudNet embeddings. In particular, we focus on
the optimal solutions, and investigate the feasibility of this
approach to improve initially heuristically placed CloudNets;
this is interesting for long-lived CloudNets where the resource
investments for computing the optimizations may pay off in
the future. For example, we envision a scenario where a
provider reserves a fraction of the resources of the compo-
nents for such initial, fast placements. If the durations of the
CloudNets are heavy-tailed, our algorithm should optimize the
oldest CloudNets first.

We have three use-cases in mind: (1) a VPN-like scenario
(VPN) where the virtual node locations are given, (2) a data
center like scenario (DC) where the virtual node placements
are fully flexible, and (3) an out-sourcing / (spillover to) cloud
scenario (OC) where some virtual nodes have a fixed location
(location and access network of a company) and others do not
(out-sourced services, e.g., for cloud bursting). Clearly, the
data center scenario is the most challenging for optimization,
while the VPN scenario, without the possibility to optimize
terminal mappings, boils down to a classic flow problem which
can even be solved optimally in polynomial time.

In our evaluation, we will focus on the out-sourcing sce-
nario, which—depending on the flexibility parameter used—
can emulate the other two scenarios. (We refer the reader
to [16] for more scenarios.) Our results confirm that even
without tuning the algorithm or solver parameters to speed up

computations, optimal CloudNet embeddings are feasible on
moderate size substrates, e.g., a router site, or a small physical
or virtual provider network.

II. BAsIC CONCEPTS

The main objective of our algorithm is to (re-)embed
CloudNet requests, consisting of virtual links connecting vir-
tual nodes, by mapping them onto the given substrate network
resources in such a way that the specification is fulfilled (i.e.,
all specified node and link resources are allocated to the
CloudNet); or to reject the request otherwise. (See, e.g., [5]
for an introduction to the general virtual network embedding
problem.) For instance, a virtual node may require a 1GHz
CPU and may only be mapped onto Linux nodes in the US;
however, it does not come with any more specific constraints
on which physical node it is embedded. Similarly, CloudNet
links may need a minimum of 10 MBit/s, and may be realized
as a set of k& > 1 flows connecting the locations where the
the endpoints of the virtual link are mapped (if the endpoints
are mapped to a single physical node, the virtual link may
be realized at almost no cost). The resources offered by the
substrate nodes and links can be shared among the virtual
networks.

The algorithm should be flexible in terms of the objective
function to be optimized for the CloudNet placement, and
the arrival of a new (or re-embedding of an old) CloudNet
should cause minimal changes to the existing embedding of
prior CloudNets (i.e., since CloudNet migration cost is non-
zero there is a tradeoff between migration cost and a superior
embedding).

In the following, we will introduce the main ideas of our em-
bedding algorithm. We pursue a mathematical programming
approach and present a (linear) Mixed Integer Program (MIP)
which has the advantage that standard software tools such as
CPLEX or 1psolve can be used to perform the computations.
(Although we focus on optimal embeddings, these tools also
offer different heuristics for faster but approximate solutions;
all these heuristics are directly applicable to our program as
well.)

A MIP consists of a (linear) objective function expressed
using a set of variables, plus a set of (linear) constraints on
these variables that ensure “valid” solutions. If a problem
can be specified in this form (what we do in this paper for
the CloudNet embedding problem), state-of-the-art optimized
algorithms can be used for evaluation. This section serves
to introduce the reader to our approach and the different
variables and constants used in our program. The complete
formal program description appears in Figure 1.

Graph Representation. Shared communication channels,
i.e., links with several end points (both in the virtual and
the substrate network) constitute a first challenge for such a
generic embedding algorithm. To describe virtual and substrate
networks as classic graphs G = (V, E) consisting of vertices
V' that are connected pairwise by edges E, we introduce the
notion of network elements (NEs): network elements represent



both nodes (set N Ey) and links (set N Ey,). Network elements
are connected by interfaces, which form the edges of the graph.

We distinguish between virtual network elements of the
CloudNet (set NEy = N Eyn U N Eyq, of virtual nodes and
virtual links) and substrate network elements of the substrate
network (set NEg = N EsnUN Egr,). In principle, any virtual
node can be mapped onto any substrate node, depending on the
requirements. A virtual link can be embedded onto a substrate
node, a substrate link, or onto a set of paths in the substrate
network (resulting in a multi-flow embedding).

The purpose of the embedding algorithm is to find a
mapping of the virtual networks and their elements to the
network elements of the substrate. To handle links with several
endpoints, we replace each link with a vertex and add graph
edges accordingly.

Placement Policies and Suitability. We use the binary ma-
trix new(u,v) to denote whether a virtual CloudNet element
u € N Ey is mapped to a substrate network element v € N Eg
(new(u,v) = 1) or not (new(u,v) = 0).

A substrate element allocates resources for all virtual ele-
ments it hosts. To describe these allocations, we introduce the
variables alloc,., (u,v) which captures the amount of virtual
resource ry of u hosted on v and alloc,4(u, v, rv) describing
the substrate resources rg used to allocate it. The resources
ry requested for u are represented by the constant matrix
req(u,rv,s), where s € VT refers to the value type of
request (e.g., minimum, maximum, ...). To ensure that the sum
of the allocated resources never exceeds substrate capacities
of substrate we use the constant capacity matrices cap,(v),
caprs (v, w), and cap(rs). The first two hold individual ca-
pacities of substrate components v and substrate interfaces
interconnecting v and w with respect to rg. The last represents
the capacity of a resource rg itself. All three are required to
correctly model various possible shared resources assignments
in the substrate.

It is not always possible to map a virtual network element to
any arbitrary substrate element. For example, a virtual cloud
node may be restricted to substrate elements within the US.
The constant binary matrix suit(u,v) specifies whether v is
suitable to host network element u (suit(u,v) = 1) or not.

Our mathematical program considers placement restrictions:
a provider may want to bias or fix a mapping for a specific
CloudNet according to internal placement policies or cost
factors. We thus use a constant weight matrix weight(u,v)
to introduce a cost for each node placement. These weights
can also be used as policy support to prioritize certain resource
allocations over others in the objective function.

Link Types and Resources. Next, we discuss how we
handle the different link types: If the bandwidth in both
directions is the same we call a link symmetric, otherwise it is
called asymmetric. A full-duplex link supports traffic in both
directions independently. A full-duplex link can be regarded
as two independent unidirectional links. A shared (wireless,
or non-switched, hub-like) channel is referred as half-duplex
link. Note that half-duplex links are symmetric by nature.

We explicitly distinguish between two classes of resources

R = Ry U Rg, namely virtual resources ry € Ry and
substrate resources rs € Rg. To handle the different
link types, virtual half-duplex links are associated to an

ry of attribute ’/link/symmetric/bandwidth’
whereas  substrate  full-duplex links receive two
T with " /link/upstream/bandwidth’ and

" /link/downstream/bandwidth’ respectively. In our
embedding program, we assume a proportional relationship
between ry and rg, that is, we consider a proportional factor
prop(rv,rs). As different relation functions are possible
(e.g., involving constant instantiation overhead), the respective
constraints should be considered exemplary.

Interestingly, differentiating between 7y and rg in both
CloudNet specification and MIP is not only useful for handling
different link types but also for mapping nodes: It enables us
to map and even split resources of arbitrary resource types
onto arbitrary other resource types.

To handle a shared communication channel we decompose
its multiple endpoints into a set of flows. In particular, for
each link u, we introduce a set Fl(u) that describes the set of
possible source-sink pairs for u.

Each flow f € Fl(u) inherits the requirements of wu.
Analogously to the alloc matrices, flow,,(f,v,w) and
flow,(f,v,w,ryv) reflect tentative resource allocations on
substrate interfaces, and new(f,v) denotes corresponding
tentative flow mappings. Resources of these flows f € Fi(u)
form the set Ry C Ry.

The Flow Problem. While we consider virtual nodes atomic
in the context of our MIP, virtual links can be realized either as
single path or multiple paths within the substrate network. The
aggregated resources of the paths must satisfy the requirements
of the virtual link while not exceeding the capacity limits of
the substrate elements. For instance, the sum of the bandwidths
of the different paths must equal the link’s bandwidth demand.
This constitutes a flow problem. However, since we tackle
placement and embedding at the same time this corresponds to
a multi-commodity flow problem with a twist: The endpoints
are not fixed, but candidate locations overlap.

Our mathematical program ensures that the allocated flows
are connected, consistent with the requirements and capacities.
We enforce a flow preservation invariant, that is, we guarantee
that the amount of flow arriving at a node equals the amount
of flow leaving the node. However, we must exempt the source
and the sink of the flow from this invariant: We ensure that the
traffic leaving the source equals the demand of the virtual link.
The link’s sink simply consumes the incoming flows. This is
implemented via selector variables that render the constraint
trivially true for endpoints (a tautology).

Migration Support. Support for network migration is one
of the key features of our algorithm. For example, migra-
tions can be useful to re-embed a CloudNet due to a new
demand (e.g., due to user mobility), because other CloudNets
expire, because physical resources may change prices over
time or maintenance is needed, or just to optimize long-lived
CloudNets which were initially quickly placed to satisfy the
user request fast.



Migration costs depend on many factors. For instance,
classic server migrations may entail service interruption costs
that depend on the available bandwidth along the migration
path, while live migration technology may provide a seamless
service and only come at a cost of bulk data transfers (or
even at no cost if it is constrained to a fully switched
rack). There can also be costs of removing resources, and a
migration can entail a management overhead Cieme. If, ..,
a virtual network provider triggers a cross-provider migration,
the termination of provisioning contracts may entail penalties
Ceontract- Temporary redundant allocations of resources and
reconfiguration based service outages during migration entail
opportunistic costs Creconfig- An example cause for the latter
would be outages triggered by switchovers to and from transi-
tional provisioning solutions. The resource transferral cost may
depend on the migration destination and relate to the actual
transfer and possible property changes. Bulk data transfers
may entail both real and opportunistic transit costs Ciransit-
E.g., transfer of host state may require additional bandwidth to
be leased from transit providers. Furthermore, adaptations may
impose overhead if crucial properties change (e.g., migrating
a virtual host from Xen to KVM). We denote this cost factor
by Cadaptation. And so on.

It is not always necessary to migrate entire networks, and
sometimes, already small local reconfigurations may reduce
the overall resource overhead and improve the embedding
substantially.

To this end, we introduce matrices and constraints that
allow the specification of reconfiguration costs and enable the
solver to weight them against the respective benefits. Analogue
to new(u,v), we use the constant binary matrix old(u,v)
to describe existing mappings, and specify whether a virtual
network element u is currently mapped to a substrate element
v (old(u,v) = 1) or not (old(u,v) = 0).

We account for the cost of migration in two respects: desti-
nation independent cost factors are reflected in the constant
penalty matrix penalty(u) = Ccontract(u) + Cmgmt(u) +
Chreconfig(1). Destination dependent Ciransit and Cadaptation
cost factors to migrate virtual network element w from its
current position to substrate element v are summed up in the
constant matrix transit(u,v).

Node migration is typically more expensive relative to link
migration (penalty(u) = e for Vu € N Eyy, and an arbitrarily
small € > 0), as links do not involve state or bulk data transfers
but are rather re-instantiated. We will reflect costs by the link’s
transit(u,v) variables.

III. THE EMBEDDING ALGORITHM

Based on the above ideas we next describe the MIP in
details. While we introduced most sets, variables, and con-
stants above we will describe the remaining ones in support of
specific objective functions, and proceed with an explanation
of the constraints.

How is an optimal embedding of a CloudNet on a set of
resources in the substrate network characterized? The answer

Sets
Virtual Network Elements
Virtual Nodes
Virtual Links
Substrate Network Elements
Substrate Nodes
Substrate Links
Ry Set of Virtual Resource
Rg Set of Substrate Resource
Rf B Rf C Ry Set of Virtual Flow Resources
vT Value Types
Flows ((source,sink)-Tuples)

TABLE I
SET DEFINITIONS

depends on the goals of the mapping entity, and also relies
crucially on the predictability of future resource requests. Even
with good predictions, an optimal solution found at time ¢
may be suboptimal upon the arrival of the next request at
some time t > tg.

We hence do not propose any specific objective func-
tions here (recall that one advantage of our mathematical
programming approach is the ease of exchanging different
objective functions with only limited implementation effort)
but just consider a canonical example: minimizing resource
usage to ensure localizing embeddings. The minimization of
the amount of substrate resources used for CloudNet allo-
cations is a natural objective that maximizes the chances to
be able to embed also future requests, to save energy by
switching off unused hardware, or to perform maintenance
work. The objective function also used for our experiments
hence balances resource usage and migration cost: ), By
> veNEs 2orseRs Weight(u, v)-alloc,g (u, v,1v) + 3 cn gy
(penalty(u) - mig(u)+ 3_, ¢ y g, transit(u,v) - new(u, v)).

Alternatively, in our prototype, we also employ an objective
function that seeks to distribute the load equally among all
network elements to minimize peak loads and congestion.
Please refer to the technical report for more details.

The embedding must fulfill various type, capacity, and other
consistency constraints, see Figure 1 for a complete and formal
constraint list.

Nodes: This constraints category is used to ensure that each
CloudNet node is mapped to an appropriate substrate node. In
contrast to links, we do not map nodes to multiple substrate el-
ements, and hence Constraint map_node is necessary to guar-
antee a unique mapping location. At the location where the
node is mapped (and only there!), resource requirements must
be fulfilled (Constraint set_new). Depending on the sub-
strate resource type (minimum, maximum, or constant),
the resource constraints are imposed in a different manner
(Constraints req_min, req_max, req_con).

Mapping: The mapping constraints ensure that the substrate
element has sufficient capacity (Constraint ne_capacity)
allocated. If resources are shared amongst substrate elements,
we need to check against the capacity of the resource itself
(Constraint capacity). In order to limit link splitups, we set
a minimal resource allocation unit (Constraint relate_V).
Moreover, virtual elements hosted must be of the correct
type (Constraint allowed). Constraint 1oad and Constraint
max_load define the load of a resource (i.e. the fraction of



Constants Range
weight(u, v) Resource Weight Vu € NEy,v € NEg € [0,1]
penalty(u) Migration Cost Yu € NEy >0
transit(u, v) Costs transferring w resources to v transit(u,v),Yu € NEy,v € NEg >0
old(u, v) 0ld Mapping Vu € NEy,v € NEg € {0,1}
suit(u, v) Suitable Mapping Vu € NEy,v € NEg € {0,1}
caprg (v) Capacity of v w.rt. rg Vv € NEg,rg € Rg >0
caprg (v, w) Connection Capacity V(v, w) € NE%, rg € Rg >0
cap(rg) Resource g Capacity Vrg € Rg >0
req(u, ry, s) Resource Request Vu € NEy,ry € Ry,s € VT >0
prop(ry,rg) Scaling Factor vry € Ry, rg € Rg >0
weightrg Load Weight Factor vrg € Rg e o, 1]
c summax Load Priority Factor > er €Rg weightrs
min_alloc,«v Min. 7y, allocation unit Vry € Ry >0

Variables Range

allocrg (w, v, 7y) Allocated Resources Vu € NEv,v € NEg, Vry € Ry, 7g € Rg >0

allocrv (u, v) Hosted Resources Vu € NEy,v € NEg,Vry € Ry >0
new(u, v) Mapping Matrix for Elements Vu € NEy,v € NEg € {0,1}
new(f, v) Mapping Matrix for Flows Vf € Fi(u),v € NEg,Vu € NEy1, e {0,1}
mig(u) Migration Selector Vu € NEy e {0,1}

flowrg (f, v, w,7y) | Allocated Resources for Flow Y(v,w) € NE2, >0

Vf € Fi(u), ry € Ry,rg € Rg,Vu € NEyy,
flowr, (f, v, w) Hosted Resources for Flow Y(v, w) € NEZ, >0
Vf € Fi(u),ry € Ry,u € NEy[,
load(rg) Load on Resource 7g Vrg € Rg >0
maxz_load Max Load over All 7. >0

TABLE I
CONSTANTS AND VARIABLES

Nodes:
map_node: ZvENES new(u,v) =1 Vu € NEyN
set_new: allocrs (u, v, my) < caprs(v)new(u, v) VYu € NEyN,v € NEg,my € Ry, rg € Rg
req_min: allocyy, (u, v) > new(u, v)req(u, ry, s) Vu € NEyN, Ty € Ry,rg € Rg, s = minimun
req_max: allocrv (u,v) < new(u, v)req(u, ry, s) VYu € NEyN, 7Ty € Ry,rg € Rg, s = maxinun
req_con: allocpy (u, v) = new(u, v)req(u, ry, s) Vu € NEyy, Ty € Ry, rg € Rg, s = constant
Mapping:
relate_V: allocTv (u,v) > nL'in_allom»v - new(u, v) VYu € NEy,v € NEg,ry € Ry
allowed: suit(u, v) > new(u, v) Vu € NEy,v € NEg

ne_capacity: YueN By Ly €Ry @llocrg (w,v.ry) < caprg (v) Vv € NEg, rg € Rg
capacity: ZvENES EuGNEV ZTVERV allocrg (u, v, ry) < cap(rg) Vrg € Rg
Toad: weightyg /cap(rg)- Vrg € Rg
Y veNEg ZueNEBy Xry Ry @llocrg (u, v, ry) < load(rg)
max_load: load(rg) < maz_load Vrg € Rg
Resource-Variable Relation:
resource: E"'SERS prop(ry, 7‘S)allocrs (u, v, ry) = allocyy, (u, v) Vu € NEy,v € NEg,my € Ry
flow res:  TpgeRg Prop(ry, rg)flowrg (f,v, w,ry) = flowry (f,v,w) V[ € Fl(u), (v, w) € NEZ, ry € Ry,
Vu € NEyp,
Links:
map_link  T,eNEg new(u,v) 21 Vu € NEyL
map_src: new(u,v) > new(qf,v) Vf € Fl(u),v € NEg, qg source of f;Vu € NEvy,
map_sink: new(u, v) > new(df,u) Vf € Fl(u),v € NES,df sink of f; Vu € NEvy,
req_fmin: SweN By (Flowry, (f, v, w) — flowry, (f,w,v)) 2 new(qs, v)req(u, ry, s) — new(ds, v)oo
Vf € Fl(u),v € NEg, ry € Rf;Vu € NEvy7y,, s = minimum
req_fmax: EweNES(flowTV(f,v,w) = flowry, (f, w,v)) < new(qp,v)req(u, ry,s) + new(dy, v)oo

Vf € Fi(u),v € NEg,ry € Ry;Vu € NEy,, s = maximun
SweNBg (Flowry (f, v, w) = flowpy (F,w,v)) = new(ap, v)req(u, ry, s) — new(ds, v)req(u, rv, s)
Vf € Fi(u),v € NEg,ry € Rg;Vu € NEy[,, s = constant

reqg_fconst:

Link Allocation:

exp_out: SweNBg flowrg (f, v, w,rv) < allocrg (u, v, 7v) Vf € Fi(u),v € NEg, ry € Ry,
rg € Rg,Vu € NEyq,
exp_in: ZweNES flou;,-S (fyw,v,ry) < alloc,-s(u,'u.Tv) Vf € Fl(u),v € NEg, ry € Rf,

rg € Rg,Vu € NEvyT,

Yf € Fi(u), (v, w) € NE3,

ry € Ry, 7g € Ry, Vu € NEyL,
Vf € Fi(u),Vu € NEvr,,

v € NEg,ry € Rf,TS € Rg

direction: flowrs (fyv,w,ry) < new(u, v)cap,«s (v, w)

relate_f: SweNBg flowrg (v, w,rv) + flowrg (f,w, v, 7y) = new(u, v)

Migration:

Vu € NEy
Yu € NEy,v € NEg

new: Sven g old(u, v) = mig(u)

migrated:  old(u, v) — new(u, v) < mig(u)

Fig. 1. Embedding constraints for linear Mixed Integer Program. Explanations are given in the text.



its capacity used) and the maximum of all individual resourc
loads, respectively.
Resource-Variable Relation: This set of constraints deals
with the relation between the resource types rg that host
resources of type ry. In our mathematical program, we as-
sume a linear relation, which is given by the constant factor
prop(rv,rs) (Constraints resource and flow_res).
Links: Mapping links is similar to mapping nodes, and hence,
several constraints apply also to links. However, in contrast
to nodes, links may be mapped to more than one substrate
element (as one or several paths). Shared communication
channels need to allocate resources to satisfy their require-
ments with respect to every virtual node pair connected. In
order to calculate allocations in this case, links are expanded
into a set of flows, as described earlier. Clearly, each virtual
link must be mapped to at least one substrate element (Con-
straint map_11ink). Sources and sinks of the expanded flows
definitely are part of this mapping (Constraints map_src
and map_sink). Note that this allows to find a valid mapping
even for pure local links, i.e. if all virtual nodes are mapped
to a single substrate node. As a simplification, we assume that
pure local links require only nominal resources, considering
only resource allocation corresponding to min_alloc,,'.
The multi-path propagation of each flow f must satisfy
flow preservation, except for the source and sink element. The
constraint depends on the value type (minimum, maximum,
or constant): In case of a minimum type, the net flow
of a given resource type must be a least the requested
resources at the source and preserved otherwise. If the sub-
strate element is the sink, the flow preservation invariant
is suspended and the constraint becomes fulfilled trivially.
To implement a corresponding selector, multiplication by a
sufficiently large number (e.g., slightly larger than the maximal
amount of involved resources, here simply represented by oco)
is used in the subtrahend. This yields the desired tautology
(see Constraint req_fmin). The Constraints req fmax
and req_fconst are defined analogously. Note however that
it is not possible to mathematically strictly ensure maximum
or constant bandwidth in combination with half-duplex links.
Link Allocation: The rg allocated for a virtual u on a
substrate element v is the maximum of the rg required for
every single of u’s flows. Constraints exp_out and exp_in
ensure that these resources are allocated on sources and
destinations of the respective flows. Constraint direction
enforces direction specific capacity constraints on full-suplex
substrate resources.
Migration: Our program allows us to migrate already embed-
ded CloudNet elements to new locations, if the reconfiguration
costs are amortized by the more efficient embedding. The
migration constraints set the migration flag mig(u) if?> the
mapped element is not new (Constraint new) and was previ-

This can be extended trivially by adding a variant of constraints req_x
for links w, where new(u, v) is replaced by new(u’, v) for all virtual nodes
u’ connected to u

2and only if, whenever migration costs are relevant - ie., > 0, and
minimized in the objective function
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Fig. 2. Runtime per embedded CloudNet without migration for multiple runs
(top: time series, bottom: boxplot).

ously embedded at a different location, where it was removed
(Constraint migrated).

IV. EXPERIMENTS

While the potential benefits of rigorous and generic re-
optimizations may be attractive, the question remains on what
is the time frame needed to perform them. In the following,
we report on the simulations we have performed using our net-
work virtualization prototype architecture [18]. Our prototype
which is currently based on VLANs as a link virtualization
technology (this however is irrelevant for our simulations here)
contains a module to generate the MIP programs presented
in this paper. As a solver, IBM’s standard CPLEX software
is used in deterministic mode with a limit of six concurrent
threads on a 8-core Xeon server running at 2.5GHz. We will
focus on the out-sourcing scenario, and refer the reader to [16]
for the other scenarios.

In order to model the physical substrate network, we ex-
tracted Rocketfuel topologies [19]. Connected subsets of these
graphs are also used to describe the topology of the CloudNet
requests. For the OC use case, the virtual cloud nodes of
the CloudNets are partitioned into freely allocatable cloud
resources (CR) and fixed access points (AP) (e.g., connection
points to corporate subnets of the requesting entity). Unless
stated otherwise, substrate network elements feature capacity
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Fig. 3. Top: Runtime (log scale) per embedded CloudNet with and without

migration (sample run). Bottom: Runtime (log scale) per embedded CloudNet
for different degrees of freedom (sample runs). CPLEX is used in deterministic
mode yielding constant runtimes.

for fifteen virtual network elements, no placement preferences
are given (with destination independent migration penalties for
all node pairs and with unit weights) and the embeddings are
optimized with the load objective function.

Concretely, for each CloudNet we chose (uniformly at
random) between one and three flexible cloud nodes and
between one and seven fixed access nodes. We refer to the
percentage of flexible nodes in the CloudNet by the variable
freedom € [0, 1]. For our experiments, we use a substrate net-
work of twenty-five nodes, and we iteratively place incoming
CloudNet requests. Evaluations are repeated ten times, and
all CloudNet requests are accepted as long as resources are
available. We study scenarios with and without migration.

Figure 2 shows the runtime (real time, in seconds) required
to embed CloudNets iteratively (one after the other, sorted on
the x-axis) in a scenario without migrations. There are several
takeaways from these experiments: First, we observe that the
embedding times are small (never exceeding 14 seconds).
Moreover, depending on the load on the substrate network
(the number of already embedded CloudNets), the runtime
increases slightly. The data also exhibits a relatively high
variance, which can be explained by the randomized nature of
the to be embedded CloudNets (in terms of size and nature).

The runtimes generally increase if we enable the option to
migrate, see Figure 3 (fop), although there are instances where
the results are comparable. This is to be expected as migration
increases flexibility and therefore the complexity of the MIP.
An interesting feature of integrating migration support is that
we can at any time check if a subset of the resources, e.g.,
half of the network is sufficient to fulfill the demand. In the
above cases such a run takes on average 2.73 seconds with a
standard deviation of 0.42 seconds.

As the above experiment suggests, the main parameter that
determines the time complexity of the embeddings is the
freedom of the node placement. We conducted on a series
of experiments where the CloudNet size and the proportion
of CRs, i.e., the variable freedom, varies. The findings are
summarized in Figure 3 (bottom) which confirms this depen-
dency. Interestingly, despite the flexibility of the CloudNets
and the existing load on the substrate, the runtimes are still in
the range of several minutes.

We conclude that although the option to migrate and the
placement flexibility effect the execution times, optimal so-
lutions for relatively large problems are feasible and can be
computed in reasonable time (e.g., within hours or over night).
Moreover, as the runtimes without migration support are
lower than their counterparts, hybrid designs, where incoming
CloudNets are first placed ad-hoc, and persisting ones are
optimized regularly (by an offline, background process) seem
to be attractive.

V. RELATED WORK

There has been a significant interest in virtual and cloud
networks and over the last years. The reader is referred to
the recent surveys [5] and [10]. The work described here is
conducted in the context of our network virtualization project
where we develop a CloudNet prototype (see [18] for an
overview of the prototype and [17] for the used resource
description language).

The virtual network embedding problem has already been
studied intensively and there exist also interesting connections
to resource allocation and migration problems in grid environ-
ments. [14], [20]. The survey by Belbekkouche [2] provides a
nice overview of allocation and embedding algorithms. Most
of the algorithms proposed in the literature today are heuris-
tics, and come without any formal performance guarantees. For
example, Fan and Ammar [8] study dynamic re-configurable
topologies to accommodate communication requirements that
vary over time, Zhu and Ammar [24] consider virtual network
assignment problems with and without reconfiguration but
only for bandwidth constraints, Ricci et al. [15] pursue a
simulated annealing approach, and Lu and Turner [13] seek to
find the best topology in a family of backbone-star topologies.
Many approaches in the literature fail to exploit the flexibility
to embed virtual nodes and links simultaneously and solve the
two mappings sequentially (e.g., [12]), which entails a loss of
efficiency [6]. To deal with the computational hardness, Yu et
al. [22] advocate to rethink the design of the substrate network
to simplify the embedding, e.g., by allowing to split a virtual



link over multiple paths and perform periodic path migrations.
The focus of the work by Butt et al. [3] is on re-optimization
mechanisms that ameliorate the performance of the previous
virtual network embedding algorithms in terms of acceptance
ratio and load balancing; their algorithm is able to prioritize
resources and is evaluated by simulations. Virtual network
embeddings have also been studied for cross-provider set-
tings [21] and from a distributed computing perspective [11].

There are other mathematical programming approaches for
network embedding problems: Chowdhury et al. [4] present an
integer embedding program and pursue a relaxation strategy,
applying randomized and deterministic rounding to find ap-
proximate solutions. The presented graph extension approach
supports exact solutions for placements where interconnected
virtual nodes do not share candidate substrate nodes, as it
would add bogus resources otherwise. Another recent inter-
esting work is by Zhang et al. [23] who initiate the discussion
of opportunistic resource sharing to improve the resource
usage further, and also study two simple heuristics to include
topology-awareness in the mapping process. However, both the
algorithms in [4] and in [23] are much less generic than ours
(e.g., in the combination of supported resources, migrations,
and link types, among many more), and focus more on time-
constrained and heuristic solutions. Finally, there is also work
on the related problem of access control [7].

In contrast to the literature reviewed above, our work puts
an emphasis on generality and quality of the embeddings, and
attends to a scenario where initially quickly placed networks
are subsequently optimized with less stringent time constraints.
To the best of our knowledge, there is no algorithm to embed
CloudNet like networks in a manner whose generality and
flexibility is close to ours. In particular, none of the solutions
above can handle all the heterogeneous links occurring in
practice and map, e.g., a (wireless) broadcast link onto a set
of asymmetric and full-duplex links; besides the virtual links,
also the expressiveness of the node mapping is restricted, and
we are not aware of any algorithm which e.g., allows to capture
loads induced due to packet rates of the flows in a CloudNet;
finally, we believe that the support of cost-aware migration is
crucial, as is lies at the heart of network virtualization.

VI. CONCLUSION

This paper has argued that CloudNets embeddings do not
always have to be computed within seconds in time. For ex-
ample, rigorous optimizations of more long-lived (and maybe
initially heuristically placed) CloudNets may pay off in the
long run, especially as network virtualization can support
seamless migrations. Another scenario where it is worthwhile
to invest more time in the computation of CloudNets em-
beddings, are CloudNet templates: CloudNet requests which
appear frequently and may be known in advance, e.g., be-
cause they are part of a standard catalogue offered by the
infrastructure provider. We have described such a rigorous
and general embedding approach which is also used in our
prototype system. We find that joint optimal embeddings of
long-lived CloudNets are feasible for moderate size networks,

especially in a management hierarchy as we envision it in our
federated prototype architecture and implementation [18].
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