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ABSTRACT
This paper initiates the formal study of a fundamental problem:
How to efficiently allocate a shared communication medium among
a set of K co-existing networks in the presence of arbitrary exter-
nal interference? While most literature on medium access focuses
on how to share a medium among nodes, these approaches are of-
ten either not directly applicable to co-existing networks as they
would violate the independence requirement, or they yield a low
throughput if applied to multiple networks. We present the ran-
domized medium access (MAC) protocol COMAC which guaran-
tees that a given communication channel is shared fairly among
competing and independent networks, and that the available band-
width is used efficiently. These performance guarantees hold in the
presence of arbitrary external interference or even under adversar-
ial jamming. Concretely, we show that the co-existing networks
can use a Ω(ε2 min{ε, 1/poly(K)})-fraction of the non-jammed
time steps for successful message transmissions, where ε is the (ar-
bitrarily distributed) fraction of time which is not jammed.

Categories and Subject Descriptors
C.2.5 [Computer-Communication Networks]: Local and Wide-
Area Networks—Access schemes; F.2.2 [Analysis of Algorithms
and Problem Complexity]: Nonnumerical Algorithms and Prob-
lems—Sequencing and scheduling

General Terms
Algorithms, Reliability, Theory

Keywords
Wireless Ad-hoc Networks, MAC Protocols, Jamming

1. INTRODUCTION
The decentralized allocation of a communication medium among

a set of wireless nodes does not only constitute one of the most
fundamental theoretical problems in distributed computing, but is
also of direct practical relevance. Today, a chunk of the wireless
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spectrum is often simultaneously used by many devices belonging
to different, so-called co-existing networks. It is expected that the
popularity of wireless mobile devices will further increase the re-
source sharing by such networks in the future.

Interestingly, not much is known today on how a given spectrum
can be shared efficiently and fairly among co-existing networks, es-
pecially in environments with uncontrollable external interference.
Existing distributed MAC protocols (typically based on random
backoff schemes) are either not resistent to the unpredictable un-
availability of the medium at all, or are optimized towards a single
network only, in the sense that the nodes of a network collabora-
tively seek to coordinate the access among themselves [24]. How-
ever, the state-of-the-art protocols fail if multiple networks are col-
located (as illustrated, for example, in our simulation study in Sec-
tion 4).

This paper is the first to present (and rigorously prove the perfor-
mance of) a robust MAC protocol suited for co-existing networks
exposed to a harsh environment with unpredictable or even adver-
sarial interference.

1.1 Model
We attend to a simplified scenario where a set of n wireless

nodes V are located within transmission range of each other and
need to communicate over a single shared channel. The wireless
nodes belong to K co-existing networks Ni with node sets Vi, i.e.,
V = V1 ∪ V2 ∪ . . . ∪ VK , for some constant K (which is of un-
known to the nodes). For simplicity we will assume that these net-
works are node disjoint. However, by emulating multiple instances,
a node may also participate in several networks simultaneously; the
performance guarantees derived in this paper would still hold.

We aim to design a distributed MAC protocol for these wireless
nodes. Although the protocol is used by all nodes v ∈ V , it should
not depend on any knowledge of how many nodes n there are in
total, on the number of co-existing networks K, or on the size of
the co-existing network v belongs to. Moreover, it should ensure
that the K networks are independent in the sense that no commu-
nication is required between different networks.

Co-existing wireless networks appear in many scenarios where
different wireless networks share the same wireless medium. For
example, consider a major conference, e.g., organized by the
United Nations, where participants from different countries use
their hand-held devices to communicate with the other represen-
tatives of their country. We assume that the different networks only
share the same medium access protocol, but are otherwise differ-
ent and inter-network communication may not be desired or possi-
ble (except, e.g., for multi-national participants). Another scenario
where ensuring fairness among co-existing networks is crucial are
emergency response networks, where many emergency response



services, such as fire squads, police, and paramedics, all arrive si-
multaneously at some accident or disaster scene and have to share
the wireless medium in a fair and even manner in order to establish
their own separate communication networks.1

This paper presents a robust and fair medium access (MAC) pro-
tocol COMAC that makes effective use of the few and arbitrar-
ily distributed time periods where a wireless medium is available.
We model interference—due to simultaneous transmissions, co-
existing networks, changes in the environment that affect the wire-
less medium, etc., and, when applicable, intentional jamming—
generally as an adversary, which we may sometimes simply refer
to as the jammer (even when a malicious jammer is not present in
the environment and interference may be caused by other factors).
Our adversary may behave in an adaptive manner: we assume that
the adversary has full knowledge of the protocol and its history, and
that it uses this knowledge to decide on whether to jam at a certain
moment in time.

Let us use the simplifying notation N(v) to denote the network
node v ∈ V belongs to. We assume that a node v can distinguish
among the following events at some time t: (1) idle channel (no
node in V transmits and there is no outside interference, including
jamming activity, at time t); (2) successful transmission of a packet
in network N(v) (which occurs every time a single node in N(v)
transmits, and no other node in V nor the adversary transmits); and
(3) medium busy (due to a transmission by a node in some co-
existing network different from network N(v), or to simultaneous
transmissions by two or more nodes in N(v), or to external inter-
ference or jamming).

How to design such a distributed medium access protocol which
shares the bandwidth fairly among the K networks, without sac-
rificing performance? At first sight this may seem impossible: as
the total number of co-existing networks and the number of de-
vices is not known, a node cannot guess its fair share of the chan-
nel time. This paper shows that this is indeed possible, even in
the presence of a powerful adaptive adversarial jammer, referred to
as a (T, 1 − ε)-bounded (adaptive) adversary, which can jam the
medium an arbitrary (1 − ε) fraction of the time for an arbitrarily
small constant ε > 0 and which hence models a wide range of ex-
ternal interference scenarios or jammers. For the ease of presenta-
tion, we assume a synchronous environment where time proceeds
in rounds (also called steps). Formally, the (T, 1 − ε)-bounded
adversary is defined as follows: for some T ∈ N and a constant
0 < ε < 1, the adversary may jam at most (1 − ε)w of the time
steps, for any time window of size w ≥ T . In the following, we
will use the notationN = max{T, n} to denote the maximum over
the adversarial window size and n.

Assuming backlogged traffic at the wireless devices, we require
that our MAC protocol fulfill the following properties: (1) c-
competitiveness: Given a time interval I , we define g(I) as the
number of time steps in I that are non-jammed, and s(I) as the
total number of time steps in I in which a successful transmission
happens in any network. A MAC protocol is called c-competitive
against some (T, 1 − ε)-bounded adversary if, for any sufficiently
large time interval I , s(I) ≥ c · g(I). (2) Fairness: The probabil-
ities of having a successful transmission in any two networks Ni
and Nj , where i, j ∈ [1,K], do not differ by much; moreover, the
nodes inside a network share the bandwidth fairly as well.

Note that the nodes have no knowledge of how many nodes

1Whereas in some scenarios it may be desirable that messages are
broadcast across all emergency unit networks, for better immedi-
ate response action to a disaster/accident, in the longer run, it is
still important to be able to differentiate among the different ad-
hoc networks established.

are there in the same network as itself, nor do the nodes know
how many other networks are co-existing and how many nodes
are there in each of these co-existing networks, respectively. How-
ever, we assume that the nodes have a common parameter γ ∈
O(1/(log T + log logn)). The assumption that nodes know γ is
not critical for the scalability of our protocol, as it requires only a
polynomial estimate of T and an even rougher estimate of n.

Although the presented COMAC protocol converges fast and is
therefore expected to work well under continuously entering and
leaving nodes, in this paper we will just focus on a synchronous
setting where nodes do not join or leave.

1.2 Related Work
The classic approach to design efficient MAC protocols is to use

random backoff schemes (e.g., [5, 6, 12, 13, 18, 22]). However,
these works do not take into account adversarial interference and
are hence not robust against it. Generally, in a random backoff
protocol, each node periodically attempts to transmit a message
starting with a certain probability p. If the message transmission
fails (due to interference), the node may retry sending the message
in the next time steps with polynomially or exponentially decreas-
ing probabilities (for example, p2, p4, p8, . . .) until the message is
successfully transmitted or the minimum allowable probability is
reached. Thus, in a dense network (as in our single-hop scenario),
an adversary with knowledge of the MAC protocol could simply
wait until the nodes have reached transmission probabilities that
are inversely proportional to the number of nodes and then start
jamming the medium, forcing the nodes to lower their transmis-
sion probabilities to a point where a competitive throughput is not
achievable.

There also exist several interesting results on protocols that
are robust to more complex or even adversarial interference (see,
e.g., [7] or [29] for a nice overview). There are two basic ap-
proaches in the literature. The first assumes randomly corrupted
messages (e.g., [21]), which is much easier to handle than adaptive
adversarial jamming [4]. The second line of work either bounds
the number of messages that the adversary can transmit or disrupt
with a limited energy budget (e.g. [1, 11, 16, 17]), or bounds the
number of channels the adversary can jam (e.g. [8, 9, 10, 19]). The
protocols in, e.g., [17] can tackle adversarial jamming at both the
MAC and network layers, where the adversary may not only jam
the channel but also introduce malicious (fake) messages (possibly
with address spoofing). However, these solutions depend on the
fact that the adversarial jamming budget is finite, so it is not clear
whether the protocols would work under heavy continuous jam-
ming. (The result in [11] seems to imply that a jamming rate of 0.5
is the limit whereas the handshaking mechanisms in [17] seem to
require an even lower jamming rate.)

Our work is motivated by the jamming-resistant single network
MAC protocols studied in [3, 23, 24]. In particular, our adversarial
model was introduced by Awerbuch et al. [3] who present a single-
hop MAC protocol that guarantees a constant throughput against an
adaptive adversary that can block the medium a constant fraction of
the time. The MAC protocol and the throughput guarantees were
subsequently generalized to multi-hop networks [23, 26], and also
the adversary was strengthened further such that it can even jam
the medium reactively, i.e., it has a binary feedback whether the
medium will be idle or busy in the current round [24], before it has
to make a decision whether to jam the current round. It has also
been shown that the MAC protocol can serve as a basis to design
robust applications such as leader election [25].

However, the performance achieved by the MAC protocols de-
scribed in [3, 23, 24] drops sharply if multiple networks are collo-



cated. This is due to the fact that in these protocols, each individual
co-existing network will strive to achieve a constant competitive
throughput in the non-jammed time periods, which requires a con-
stant cumulative access probability per co-existing network. As we
will explain in the next section in more detail, this necessarily leads
to a throughput which is exponentially small in the number of co-
existing networks.

It turns out that in a co-existing scenario, the nodes must strike a
good balance between a less aggressive (more cooperative) medium
access strategy while remaining robust against external interfer-
ence. We will show that this can be achieved by monitoring the
availability of the wireless medium over time and adjusting the
sending probabilities or backoffs according to the fraction of ob-
served idle time periods. (A similar approach is used in the Idle-
Sense [14] Distributed Coordination Function to synchronize the
nodes’ contention windows.) Implicitly synchronizing access via
idle time periods is also the key to enable fairness between co-
existing networks. The performance analysis of such an algorithm
however is involved, as the distributed and randomized decisions
exhibit many non-trivial dependencies. Nevertheless, we are able
to rigorously prove good competitive throughput and fairness prop-
erties, which is also confirmed by our simulation study.

Interestingly, although co-existing networks are ubiquitous and
many different aspects are discussed intensively (e.g., the packet
inter-arrival time and fairness in co-existing 802.11a/g and 802.11n
networks [2], interference cancelation phenomena [27], trans-
mission capacities in multi-antenna adhoc networks [15], or
even explicit inter-network communication for frequency cooper-
ation [30]) in different contexts (e.g., in the current debate on white
space liberalization [20] where primary TV and microphone users
announcing their reservations in a central database are given strict
priority), we are not aware of any work on the design of MAC pro-
tocols for independent co-existing networks with rigorous formal
competitive throughput and fairness guarantees.

1.3 Our Contributions
To the best of our knowledge, this is the first paper to present

a robust medium access protocol which provably performs well in
an environment with co-existing networks. The COMAC protocol
features a guaranteed competitive throughput in the presence of co-
existing networks as well as a wide range of external interference
patterns that can be subsumed and modeled as a (T, 1−ε)-bounded
adaptive adversary blocking the medium a (1 − ε) fraction of all
time. Moreover, it features fairness among co-existing networks
and within an individual network. Finally, the protocol is attractive
for its simple design. Our main theoretical result is summarized in
the following theorem.

THEOREM 1.1. The COMAC medium access protocol
guarantees that in a backlogged scenario, if executed for
Ω( 1

ε
logN max{T, 1

εγ2
log3 N}) many time steps, COMAC

achieves a competitive throughput of Ω(ε2 min{ε, 1/poly(K)})
w.h.p., for any (T, 1 − ε)-bounded adaptive adversary that arbi-
trarily jams the medium up to a (1 − ε) fraction of the time, and
which has complete knowledge of the protocol history. Moreover,
the cumulative probabilities among different networks, as well
as the access probabilities of individual nodes within the same
network, differ only by a small factor.

Simulations complement our theoretical asymptotic bounds.

2. MAC FOR CO-EXISTING NETWORKS
Before presenting the formal MAC algorithm, we explain its

variables and provide some intuition.

2.1 Intuition
In the COMAC protocol, each node v maintains a medium ac-

cess probability pv which determines the probability that v trans-
mits a message in a communication round. The nodes adapt and
synchronize (inside a co-existing network) their pv values over time
(which as a side-effect also guarantees fairness within the network)
in a multiplicative-increase multiplicative-decrease manner in or-
der to ensure a throughput that is as good as possible. More pre-
cisely, the sending probabilities are changed by a factor of (1 + γ).
Moreover, we impose an upper bound of p̂ on pv , for some constant
0 < p̂ < 1. As we will see, unlike in most classic backoff proto-
cols, our adaptation rules for pv ensure that the adversary cannot
influence pv much by adaptive jamming.

In addition, each node maintains two variables, a threshold vari-
able Tv and a counter variable cv . Tv is used to estimate the adver-
sary’s time window T . A good estimation of T can help the nodes
recover from a situation where they experience high interference in
the network. In times of high interference, Tv will be increased and
the sending probability pv will be decreased.

While these concepts have already been used in our other pro-
tocols in [3, 23, 24], they are not sufficient to ensure a jamming-
resistant protocol that also works well in case of co-existing net-
works. The basic problem lies in the fact that all of these proto-
cols aim at reaching a constant cumulative probability, irrespective
of the adversarial jamming, so that a good throughput can be ob-
tained in those steps that are not jammed. In co-existing networks,
however, this is not a good idea: Suppose that we have K co-
existing networks such that each has a constant cumulative prob-
ability. Then the overall cumulative probability would be Θ(K)
and therefore, the probability of having a successful transmission
in any network would be as low as Θ(K)e−Θ(K), which is expo-
nentially low in K.

Hence, a less aggressive approach than the one pursued in [3, 23,
24] is needed. Ideally, this approach should also make sure that the
available bandwidth is shared in a fair way among the networks.
Surprisingly, a relatively simple change in the protocol in [24] can
achieve jamming-resistance, a good throughput in co-existing net-
works, and also fairness. The basic idea behind this change is to
remember the latest idle time step, and whenever there is a new
idle time step, then with a probability qv that is inversely propor-
tional to the time difference to the previous idle time step, pv and Tv
are adapted. (The protocol in [24] would always adapt pv and Tv
in case of an idle channel.) Since this probabilistic rule turned out
to be very hard to analyze, we transformed it into a deterministic
rule that shows the same performance in the experiments.

2.2 Algorithm
Now we are ready to provide the detailed and formal description

of the COMAC algorithm. Initially, each node v sets pv = p̂ (p̂ ≤
1/24), cv = Tv = 1, and qv = 0. In the following, Lv ≥ 1 is the
time that went by from v’s viewpoint since the last idle time step.
(If there has not yet been an idle time step, Lv =∞.)

In each step, each node v does the following: v decides with
probability pv to send a message along with the tuple (cv, Tv, pv).
If it decides not to send a message, it checks the following two
conditions:

1. If v senses an idle channel, then qv := qv + 1/Lv . If qv ≥ 1
then

• pv := min{(1+γ)pv, p̂}, Tv := max{1, Tv−1}, and



• qv := qv − 1.

2. If v successfully receives a message from node u with the
tuple (cu, Tu, pu) then

• pv := (1 + γ)−1pu, cv = cu, and Tv = Tu.

Afterwards, v sets cv := cv + 1. If cv > Tv then it does the
following: v sets cv := 1, and if there was no idle step among the
past Tv time steps, then pv := (1 + γ)−1pv and Tv := Tv + 2.

3. ANALYSIS
For the analysis of our protocol we will use the following no-

tation. We are given K ≥ 2 co-existing networks denoted by
N1, . . . , NK . Each network Ni consists of a node set Vi where
ni = |Vi| ≥ 2 (otherwise, the network would be irrelevant).
The cumulative probability due to nodes in Ni is given by Pi =∑
v∈Vi pv , and the cumulative probability over all co-existing net-

works is given by P =
∑K
i=1 Pi. Whenever we consider some

specific time step t, Pi(t) is the value of Pi at time t and P (t) is
the value of P at time t.

3.1 Basic Observations
Given that we have a single-hop network, any idle time period

is observed by all nodes in all co-existing networks. Hence, the qv
and Lv values of all nodes are identical if all start at the same time
(otherwise, two idle time steps suffice to synchronize the Lv val-
ues so that the increase of the qv’s is synchronized from that point
on, which would also be sufficient for our analysis to go through).
Henceforth, we will drop the subscript v from qv and Lv . Since
after the first successful transmission in Ni, the Tv and cv values
are synchronized among the nodes inNi, we arrive at the following
fact, which establishes fairness within a network.

FACT 3.1. After the first successful transmission in networkNi,
the access probabilities pv of the nodes v ∈ Vi differ by a factor of
at most (1 + γ).

Throughout our analysis, we will make use of generalized Cher-
noff bounds that are derived from [28].

LEMMA 3.2. Consider any set of random variables X1,
. . . , Xn with values in [0, 1]. If there exist values p1, . . . , pn ∈
[0, 1] with E[

∏
i∈S Xi] ≤

∏
i∈S pi for every set S ⊆ {1, . . . , n},

then it holds for X =
∑n
i=1 Xi and µ =

∑n
i=1 pi and any δ > 0

that

P[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ
≤ e−

δ2µ
2(1+δ/3)

If, on the other hand, it holds that E[
∏
i∈S Xi] ≥

∏
i∈S pi for

every set S ⊆ {1, . . . , n}, then it holds for any 0 < δ < 1 that

P[X ≤ (1− δ)µ] ≤
(

e−δ

(1− δ)1−δ

)µ
≤ e−δ

2µ/2

The following lemma follows immediately from the Taylor series
of the exponential function.

LEMMA 3.3. For all 0 < x < 1 it holds that e−x/(1−x) ≤
1− x ≤ e−x.

This implies the following lemma.

LEMMA 3.4. For any non-jammed time step,

e
− P

1−p̂ ≤ P[channel is idle] ≤ e−P and

Pi ·e−
P

1−p̂ ≤ P[successful msg transmission in Ni] ≤
Pi

1− p̂ ·e
−P

3.2 Cumulative Probability
In the following, we will derive the first fundamental property of

our protocol: we show that the overall cumulative probability P =∑K
i=1 Pi converges to some range of values so that the contention

on the wireless medium is moderate. This is a necessary condition
for a good performance. Our proof framework basically follows
the framework of [3] but the proof arguments significantly differ in
various places when it comes to analyzing the specifics of our new
protocol. We refer to Section 2 of [3] for a comparison.

The proof works by induction over sufficiently large time frames.
Let I be a time frame consisting of α

ε
logN subframes I ′ of size

f = max{T, αβ
2

εγ2
log3 N} rounds, where α and β are sufficiently

large constants and N = max{T, n}. Let F = α
ε

logN · f denote
the size of I .

First, we show that for any subframe I ′ in which initially the
overall cumulative probability is at least 1/(f2(1 + γ)2

√
f ), also

afterwards this cumulative probability is at least 1/(f2(1+γ)2
√
f ),

w.h.p.

LEMMA 3.5. For any subframe I ′ = [t0, t1) in which P (t0) ≥
1/(f2(1 + γ)2

√
f ), also P (t1) ≥ 1/(f2(1 + γ)2

√
f ) w.h.p.

PROOF. We start with the following claim about the maximum
number of times nodes decrease their probabilities in I ′ due to cv >
Tv .

CLAIM 3.6. If in subframe I ′, Tv is decreased at most k times,
then node v increases Tv by 2 at most k/2 +

√
f many times.

PROOF. Only an idle time step can potentially reduce Tv by 1.
If there is no idle time step during the last Tv many steps, Tv is
increased by 2. Suppose that k = 0. Then the number of times a
node v increases Tv by 2 is upper bounded by the largest possible
` so that

∑`
i=0 T

0
v + 2i ≤ f , where T 0

v is the initial value of Tv .
For any T 0

v ≥ 1, ` ≤
√
f , so the claim is true for k = 0. For each

decrease of Tv , the current Tv as well as all subsequent values of Tv
(until a Tv is reached with Tv = 1) get reduced by one. Hence, for
an arbitrary value of k ≥ 0 we are searching for the maximum ` so
that

∑`
i=0 max{T 0

v +2i−k, 1} ≤ f . This ` is at most k/2+
√
f ,

which proves our claim.

This claim allows us to prove that the overall cumulative proba-
bility P will exceed a certain threshold in a subframe w.h.p.

CLAIM 3.7. Suppose that in I ′ = [t0, t1), P (t0) ∈ [1/(f2(1+

γ)
√

2f ), 1/f2]. Then there is a time step t in I ′ with P (t) ≥ 1/f2,
w.h.p.

PROOF. Suppose that there are g non-jammed time steps in I ′.
Let k0 be the number of these steps with an idle channel and k1 be
the number of these steps with a successful message transmission
in any of the co-existing networks. Let the binary random variable
Xi be 1 if and only if the nodes increase their access probabilities
in the i-th idle time step in I ′, and letX =

∑k0
i=1 Xi. Furthermore,

let k2 be the maximum number of times a node v increases Tv by
2 in I ′.



Suppose for the moment that P (t0) = 1/f2. If all time steps t
in I ′ satisfy P (t) ≤ 1/f2, then it must hold that the total decrease
of P (t) in I ′ (due to successful transmissions and cases in which
access probabilities are decreased when cv > Tv), which is at most
(1 + γ)k1+k2 , has to be at least as large as the total increase of
P (t) (due to idle time steps), which is equal to (1 + γ)X . Hence,
we must have thatX ≤ k1 +k2. For an arbitrary initial probability
P (t0) ≤ 1/f2, we must therefore have

X − log1+γ((1/f2)/P (t0)) ≤ k1 + k2 (1)

to avoid a time step t in I ′ with P (t) > 1/f2. Our goal is to show
that this inequality is violated w.h.p., which implies that I ′ has a
time step t with P (t) > 1/f2 w.h.p.

Next, we focus on k2. Consider some fixed k0 ≥ 2 (as we will
see later, k0 ≥ 2 w.h.p.). Let Li be the L-value of the nodes at the
i-th idle time step (note that they are all the same) and let qi = 1/Li
denote the increase of the q-values of the nodes in the i-th idle time
step. Also, let q̄ = 1

k0−1

∑k0
i=2 qi. Certainly, the number of times

any node v decreases Tv in I ′ is bounded by the number of times
q is at least 1, which is at most d

∑k0
i=1 qie ≤ d1 + (k0 − 1)q̄e.

Hence, it follows from Claim 3.6 that

k2 ≤ dq̄(k0 − 1) + 1e/2 +
√
f (2)

On the other hand, the number of times any node v increases
pv in I ′ is at least b

∑k0
i=2 qic = b(k0 − 1)q̄c (because due to

Fact 3.1 it follows from P (t) ≤ 1/f2 that pv(t) < p̂ for all
v). Plugging this together with (2) into (1) and using the fact that
P (t0) ≥ 1/(f2(1 + γ)

√
2f ), we obtain

b(k0 − 1)q̄c − d(k0 − 1)q̄ + 1e/2 ≤
√

2f + k1 +
√
f

⇒ (k0 − 1)q̄/2 ≤ k1 + 4
√
f (3)

given that f is large enough. It remains to lower bound q̄ and k0

and to upper bound k1 in order to arrive at a contradiction.
We start with q̄. Let L̄ = 1

k0−1

∑k0
i=2 Li. Since

∑k0
i=2 Li < f ,

it holds that L̄ < f
k0−1

. Moreover, we make use of the following
well-known fact.

FACT 3.8. For any sequence of positive numbers x1, . . . , xn it
holds for its arithmetic mean A = (1/n)

∑n
i=1 xi and its har-

monic mean H = ((1/n)
∑n
i=1 1/xi)

−1 that A ≥ H .

Hence, it follows that L̄ ≥ 1/( 1
k0−1

∑k0
i=2 1/Li) and therefore,

1
k0−1

∑k0
i=2 1/Li ≥ 1/L̄. This in turn implies that

q̄ ≥ 1/L̄ ≥ k0 − 1

f

Next we provide an upper bound for k1 that holds w.h.p. Certainly,
for any time step t with P (t) ≤ 1/f2,

P[≥ 1 message transmitted at step t] ≤ 1/f2.

Hence, E[k1] ≤ g · (1/f2) ≤ 1/f . In order to prove an upper
bound on k1 that holds w.h.p., we can use the general Chernoff
bounds stated in Lemma 3.2. For any step t let the binary random
variable Yt be 1 if and only if at least one message is transmitted
successfully at time t and P (t) ≤ 1/f2. Then

P[Yt = 1] = P[P (t) ≤ 1/f2] ·
P[successful msg transmission | P (t) ≤ 1/f2]

≤ 1/f2.

Moreover, it certainly holds for any set S of time steps prior to
some time step t that

P[Yt = 1 |
∏
s∈S

Ys = 1] ≤ 1/f2.

Therefore, we have

P[
∏
s∈S

Ys = 1]

= P[Y1 = 1] · P[Y2 = 1|Y1 = 1] · P[Y3 = 1|
∏
s=1,2

Ys = 1] · . . .

· P[Y|S| = 1|
∏

s=1,2,...,|S|−1

Ys = 1]

≤ (1/f2)|S|

and

E[
∏
s∈S

Ys = 1] = P[
∏
s∈S

Ys = 1] ≤ (1/f2)|S|.

Thus, the Chernoff bounds and our choice of f imply that w.h.p.
either

∑
t∈I′ Yt < ε2f/8 and P (t) ≤ 1/f2 throughout I ′, or

there must be a time step t in I ′ with P (t) > 1/f2, which would
finish the proof. Therefore, unless P (t) > 1/f2 at some point in
I ′, k1 < ε2f/8 w.h.p.

Next we prove a lower bound on k0 that holds w.h.p. For any
time step t with P (t) ≤ 1/f2 it holds that

P[channel is idle] ≥ e−P (t)/(1−p̂) ≥ 1− P (t)

1− p̂ ≥ 1− 1/f

Hence, E[k0] ≥ g · (1 − 1/f) ≥ εf(1 − 1/f). Using similar
arguments as for k1, it follows that k0 > (7/8)εf w.h.p. unless
P (t) > 1/f2 at some point in I ′. When combining the bounds for
q̄ and k0, we obtain

(k0 − 1)q̄/2 ≥ (k0 − 1)2

2f
≥ (7/8)2ε2f/2

> ε2f/8 + 4
√
f > k1 + 4

√
f

w.h.p., if f is large enough, which violates Inequality (3) and there-
fore completes the proof of Claim 3.7.

Similarly, we can also prove that once the cumulative probability
exceeds a certain threshold, it cannot become too small again.

CLAIM 3.9. Suppose that for the first time step t0 in I ′,
P (t0) ≥ 1/f2. Then there is no time step t in I ′ with P (t) <

1

f2(1+γ)
√

2f
, w.h.p.

PROOF. Consider some fixed subinterval I ′′ = [t1, t2) in I ′

with the property that P (t1) ≥ 1/f2 and P (t) ≤ 1/f2 for all
other t in I ′′ (i.e., we will use conditional probabilities based on
P (t) ≤ 1/f2 like in the bound for k1 in the proof of Claim 3.7).
Suppose that there are g non-jammed time steps in I ′′. If g ≤
β logN for a (sufficiently large) constant β, then it follows for the
probability P (t2) at the end of I ′′ that

P (t2) ≥ 1

f2
· (1 + γ)−((3/2)β logN+

√
f) ≥ 1

f2(1 + γ)
√

2f

given that f is large enough (i.e., ε = Ω(1/ log3 N)). This is be-
cause in the worst case for the decrease of P (t) all non-jammed
time steps are successful. In this case, P (t) is decreased at most



β logN times due to these steps. Moreover, from Claim 3.6 it fol-
lows that P (t) can be decreased another at most β logN/2 +

√
f

times due to cv > Tv .
So suppose that g > β logN . LetX be the number of time steps

in I ′′ in which P (t) increases and k1 be the maximum number
of time steps in I ′′ (over all networks) with a successful message
transmission. Furthermore, let k2 be the maximum number of times
a node v increases Tv in I ′′. If P (t2) < 1

f2(1+γ)
√

2f
then it must

hold that the total increase in P (t) (which is equal to (1 + γ)X ) is
at most the total decrease in P (t) (which is at most (1 + γ)k1+k2 ),
or in other words,

X ≤ k1 + k2.

From the previous claim we know that this is not true w.h.p. given
that P (t) ≤ 1/f2 for all t > t1 in I ′′ and the constant β is suf-
ficiently large to achieve polynomially small probability bounds.
Since there are at most f2 possible values for t1 and t2, there is no
time step t2 in I ′ with P (t2) < 1

f2(1+γ)
√

2f
w.h.p., which com-

pletes the proof.

Combining Claims 3.7 and 3.9 completes the proof of
Lemma 3.5.

Next we show an upper bound for P (t). In the following, K′ =
O(K) is a sufficiently large constant ≥ K.

LEMMA 3.10. For any subframe I ′ = [t0, t1) with Tv ≤
(3/4)

√
F for all nodes v at the beginning of I ′, P (t1) ≤ 12 lnK′

w.m.p.

PROOF. First, we will show that if P (t) ≥ 4 lnK′ through-
out I ′, then for each Ni, there must be a step t′ with Pi(t′) ≤
(2 lnK′)/K′ w.h.p., and once such a step is reached, we show
that Pi(t′′) < (4 lnK′)/K′ w.m.p. for all time steps t′′ follow-
ing t′. Hence, there must be a time step t′′ in I ′ with Pi(t′′) <
(4 lnK′)/K′ for all i, w.m.p., contradicting the assumption that
P (t) ≥ 4 lnK′ throughout I ′. Once we have that, we will show
that at the end of I ′, P (t1) ≤ 12 lnK′ w.m.p.

Consider some fixed network i. Let k0 be the number of idle
steps in I ′ and k1 be the number of successful time steps for net-
work i. Moreover, let X be the total number of times Pi(t) is
increased by (1 + γ) due to an idle channel in I ′. For Ni to avoid
a time step t′ in I ′ with Pi(t′) ≤ (2 lnK′)/K′, we must have
that the total increase of Pi(t) (which is equal to (1 + γ)X ) is
at least the total decrease of Pi(t) once we have reached a point
t with Pi(t) = (2 lnK′)/K′, which is the case after at most
log1+γ(ni · p̂) reductions of Pi(t). Hence, we must have

X ≥ k′1 − log1+γ(ni · p̂) (4)

where k′1 is the total decrease (in the exponent) of Pi(t) due to
successful transmissions to avoid a time step t′ in I ′ with Pi(t′) ≤
(2 lnK′)/K′. Notice that k′1 is not equal to k1 because if, for
example, a node successfully transmits twice in a row, Pi(t) does
not get decreased the second time.

In order to contradict this bound, we first need to have a closer
look at what happens when there is a successful transmission inNi.

CLAIM 3.11. If the node v successfully transmitting a mes-
sage in Ni at time t is different from the node that previously
successfully transmitted a message in Ni, then Pi(t + 1) ∈
[ 1
1+γ

Pi(t),
1√
1+γ

Pi(t)] for any ni ≥ 2.

PROOF. The lower bound is obvious. Moreover, it follows from
the protocol that

Pi(t+ 1) = pv,t +
∑

w∈Vi\{v}

1

1 + γ
· pv,t

=
1

1 + γ
· Pi(t) +

γ

1 + γ
· pv,t

≤ 1

1 + γ
· Pi(t) +

γ

1 + γ
· Pi(t)
ni

=
1

1 + γ

(
1 +

γ

ni

)
Pi(t)

≤ 1

1 + γ
(1 + γ)1/ni Pi(t) ≤

1√
1 + γ

Pi(t)

given that ni ≥ 2.

If the same node v successfully transmits again at time t, then
Pi(t + 1) = Pi(t), which only happens with probability at most
(1+γ)/ni because in this case the transmitting node has an access
probability that is by a (1 + γ) factor larger than the other access
probabilities in Ni. Hence, on expectation, at least 1/3 of the time
steps with successful transmission, Pi(t) is reduced by at least (1+

γ)1/2, which implies that E[k′1] ≥ k1/6.
Based on this insight, the next claim shows that under certain

conditions, Inequality (4) is not true w.h.p. Let gi be the number of
useful time steps for Ni, which are time steps that are either idle or
successful for Ni in I ′.

CLAIM 3.12. If all time steps t ∈ I ′ satisfy P (t) ≥ 4 lnK′

and gi ≥ δ log1+γ N for a sufficiently large constant δ, then X +

log1+γ ni < k′1 w.h.p.

PROOF. It is easy to see that for any useful time step t,

P[t successful for Ni] ≥ Pi(t) · P[t idle] (5)

and therefore E[k1] ≥ 2 lnK′

K′ E[k0] unless there is a time step t
with Pi(t) < (2 lnK′)/K′. For a given number of useful time
steps gi, since k0 +k1 = gi and therefore also E[k0]+E[k1] = gi,
E[k1] ≥ 2 lnK′

K′ (gi −E[k1]), which implies that E[k1] ≥ lnK′

K′ · gi
if K′ = O(K) is a sufficiently large constant. Since E[k′1] ≥
k1/6, gi = Ω(log1+γ N), and for each useful time step there is an
independent probability whether this time step is idle or successful,
it follows from the Chernoff bounds that k′1 ≥ lnK′

8K′ gi w.h.p.
Next we bound X . Let the binary random variable Xj denote

the increase of Pi(t) by (1 + γ)Xj in the j-th idle time step. Then
X =

∑k0
j=1 Xj . Moreover, let Lj be the number of time steps

between the (j − 1)-th and j-th idle time steps. It holds that

P[t idle] ≤ e−P (t) ≤ 1/(K′)4

for every t ∈ I ′ given that P (t) ≥ 4 lnK′. Hence,

E[Xj ] =
∑
`≥1

P[Lj = `] · 1/` ≤
∑
`≥1

1

(K′)4

(
1− 1

(K′)4

)`−1

· 1

`

≤ 1

(K′)4 − 1

∑
`≥1

e−`/(K
′)4/` ≤ 1

(K′)4 − 1
· 2 ln(K′)4

=
4 lnK′

(K′)4 − 1

and therefore, E[X] ≤ 4 lnK′

(K′)4−1
· k0 ≤ 4 lnK′

(K′)4−1
· gi. Since the

upper bound on E[Xj ] holds independently for each j, it follows
from the Chernoff bounds that X ≤ 6 lnK′

(K′)4 · gi w.h.p.



Since gi = Ω(log1+γ N), X + log1+γ ni < k′1 w.h.p. if
K′ = O(K) is sufficiently large, which completes the proof of
the claim.

Otherwise, suppose that gi < δ log1+γ N . For every node v it
follows from the COMAC protocol and the choice of f and F that
if initially Tv ≤ (3/4)

√
F , then Tv can be at most

√
F during

I ′. Let us cut I ′ into m intervals of size 2
√
F each. It is easy to

check that if β in the definition of f is sufficiently large compared
to δ, then m ≥ 3δ log1+γ N . Since there are less than δ log1+γ N

useful steps in Ni in I ′, at least 2δ log1+γ N of these intervals do
not contain any useful step, which implies that pv is reduced by
(1 + γ) by each v ∈ Vi in each of these intervals.

Hence, altogether, every pv gets reduced by a factor of at least
(1+γ)−2δ log1+γ N during I ′ inNi. The useful time steps can only
raise that by at most (1 + γ)δ log1+γ N , so altogether we must have
Pi(t

′) ≤ (2 lnK′)/K′ at some time point t′ in I ′, w.h.p.
Next we prove the following claim, which implies that for all

t′′ > t′ in I ′, Pi(t′′) < (4 lnK′)/K′ w.m.p.

CLAIM 3.13. If all time steps t ∈ I ′ satisfyP (t) ≥ 4 lnK′ and
initially Pi(t) ≤ (2 lnK′)/K′, then for all steps t ∈ I ′, Pi(t) ≤
(4 lnK′)/K′ w.m.p.

PROOF. Consider some fixed subinterval I ′′ = [t1, t2) in I ′

with the property that Pi(t1) ≤ (2 lnK′)/K′ and Pi(t) ≥
(2 lnK′)/K′ for all other t in I ′′. Suppose that there are gi useful
time steps in I ′′. If gi ≤ ln1+γ 2, then it follows for the probability
Pi(t2) at the end of I ′′ that Pi(t2) ≤ 2 lnK′

K′ · (1 + γ)ln1+γ 2 ≤
4 lnK′

K′ . Otherwise, suppose that gi > ln1+γ 2, which is at least
1/(2γ) = Ω(ln f). Let X be the number of time steps in I ′′ in
which Pi(t) increases and k1 be the number of time steps in I ′′

with a successful transmission in Ni. Furthermore, let k2 be the
maximum number of times a node v ∈ Vi increases Tv in I ′′. If
P (t2) > (4 lnK′)/K′ then it must hold that the total increase in
Pi(t) (which is equal to (1 + γ)X ) is at least the total decrease in
P (t) (which is at most (1 + γ)k1+k2 ) plus ln1+γ 2, or formally,

X ≥ k′1 + ln1+γ 2 (6)

where k′1 is the total decrease (in the exponent) of Pi(t) due to
successful transmissions. We know that E[k′1] ≥ k1/6. Also, from
the proof of the previous claim it follows that E[k1] ≥ lnK′

K′ gi if
K′ = O(K) is a sufficiently large constant, unless there is a time
step t in I ′ with Pi(t) < (2 lnK′)/K′. Since gi = Ω(ln f), it
follows from the Chernoff bounds that k′1 ≥ lnK′

8K′ gi w.m.p. On
the other hand, it follows from the proof of the previous claim that
X ≤ 6 lnK′

(K′)4 · gi w.m.p. Hence, inequality (6) is violated w.m.p.,

which implies that Pi(t2) ≤ 4 lnK′

K′ w.m.p. Since there are at most
f2 different values of t1 and t2, there is no time step t2 in I ′ with
Pi(t2) > 4 lnK′

K′ w.m.p., which completes the proof.

Combining the insights above, it follows that there must be a
time step t in I ′ with P (t) < 4 lnK′ w.m.p. To finish the proof,
we need the following claim.

CLAIM 3.14. If for the first time step t0 in I ′, P (t0) ≤ 4 lnK′,
then P (t) ≤ 12 lnK′ for all time steps t in I ′ w.m.p.

PROOF. Consider some subinterval I ′′ = [t1, t2) in I ′ with
the property that P (t1) ≤ 4 lnK′ and P (t) ≥ 4 lnK′ for
all t > t1 in I ′′. Suppose that there are g useful time steps
in I ′′, where a time step is useful if there was either a suc-
cessful transmission in some network or the channel is idle. If

g ≤ log1+γ 2, then certainly P (t) ≤ 12 lnK′ for all t in I ′.
So suppose that g > log1+γ 2. Consider some fixed network
Ni. Let X be the number of time steps in I ′′ in which Pi(t)
increases and k1 be the number of time steps in I ′′ with a suc-
cessful message transmission in Ni. Furthermore, let k2 be the
maximum number of times a node v ∈ Vi increases Tv in I ′′.
If P (t2) > 12 lnK′ then there must be a network Ni with
Pi(t2) > max{(8 lnK′)/K′, 2Pi(t1)}. To see this, let I1 be the
set of all iwithPi(t1) < (4 lnK′)/K′ and I2 be the set of all other
i. As long as for all i, Pi(t2) ≤ max{(8 lnK′)/K′, 2Pi(t1)}, it
must hold that P (t2) ≤

∑
i∈I1(8 lnK′)/K′ +

∑
i∈I2 2Pi(t1) ≤

(8 lnK′)/K′ · K + 2P (t1) ≤ 12 lnK′ if K′ = O(K) is suffi-
ciently large.

First, consider the case that for some i with Pi(t1) ≥
(4lnK′)/K′, Pi(t2) > 2Pi(t1). Then the total increase of Pi(t)
in I ′′ (which is equal to (1 + γ)X is at least the total decrease in
Pi(t) plus log1+γ 2. Hence,

X ≥ k′1 + log1+γ 2 (7)

where k′1 is the total decrease (in the exponent) of P (t) due to
successful transmissions in Ni. From Inequality (5) we know that
E[k1] ≥ 4 lnK′

K′ · E[k0] and therefore E[k1] ≥ 2 lnK′

K′ · g if K′ =
O(K) is large enough. Since E[k′1] ≥ k1/6 and g = Ω(ln f) it
follows from the Chernoff bounds that k′1 ≥ lnK′

4K′ ·g w.m.p. On the
other hand, we also know thatX ≤ 6 lnK′

(K′)4 ·g w.m.p., which implies
that Inequality (7) is violated w.m.p. Hence, Pi(t2) ≤ 2Pi(t1)
w.m.p.

For the case that Pi(t1) < (4 lnK′)/K′ let t′1 be the first step
in I ′′ with Pi(t′1) ≥ (4 lnK′)/K′. If t′1 does not exist, we are
done, and otherwise we prove in the same way as above that w.m.p.
Pi(t2) ≤ (12 lnK′)/K′.

Since there are at most f2 ways of choosing t1 and t2, there is
no time step t in I ′ with P (t) ≤ 12 lnK′ w.m.p., which completes
the proof.

All claims combined imply Lemma 3.10.

A proof similar to Lemma 3.10 also implies the following result.

COROLLARY 3.15. For any subframe I ′ that satisfies P (t) ≤
12 lnK′ at the beginning of I ′, all time steps t of I ′ satisfy P (t) ≤
36 lnK′ w.m.p.

We also need to show that for a constant fraction of the non-
jammed time steps in a subframe where initially P (t) ≤ 12 lnK′,
P (t) is also lower bounded by a constant for a sufficiently large
fraction of time steps t.

LEMMA 3.16. For any subframe I ′ in which initially P (t0) ≥
1/(f2(1 + γ)2

√
f ), at least ε/8 of the non-jammed steps t satisfy

P (t) ≥ εp̂/4, w.h.p.

PROOF. Let G be the set of all non-jammed time steps in I ′ and
S be the set of all steps t in G with P (t) < εp̂/4. Let g = |G| and
s = |S|. If s ≤ (1− ε/8)g, we are done. Hence, consider the case
that s ≥ (1− ε/8)g.

Suppose that P (t) must be increased ` many times to get from
its initial value up to a value of εp̂/4. (If P (t0) ≥ εp̂/4 then
` = 0.) Let k0 be the number of time steps in S with an idle
channel and k1 be the number of time steps in S with a successful
message transmission in any of the co-existing networks. Let the
binary random variable Xi be 1 if and only if the nodes increase
their access probabilities in the i-th idle time step in S, and let



X =
∑`
i=1 Xi. Furthermore, let k2 be the maximum number of

times a node v decreases pv due to cv > Tv in I ′. For S to be
feasible (i.e., probabilities can be assigned to each t ∈ S so that
P (t) < εp̂/4), we must have

X ≤ `+ k1 + k2 (8)

For the special case that ` = k2 = 0 this follows from the fact
that whenever there is a successful message transmission, P (t) is
reduced by (1 + γ)−1, at most. On the other hand, whenever the
nodes decide to increase P (t) for some t ∈ S, P (t) can indeed
increase because of P (t) < εp̂/4 and therefore pv < p̂ for all
v. Thus, if X > k1, then one of the steps in S would have to
have a probability of at least εp̂/4, violating the definition of S. `
comes into the formula due to the startup cost of getting to a value
of εp̂/4, and k2 comes into the formula since the reductions of the
pv(t) values due to cv > Tv allow up to k2 additional decreases of
P (t) for S to stay feasible.

Certainly, ` ≤ 2 log1+γ f + 2
√
f . Moreover, for k1 it holds that

E[k1] ≤ εp̂/4 ·s and therefore, k1 ≤ εp̂/2 ·s w.h.p. For k2 it holds
that k2 ≤ (X + εg/8)/2 +

√
f . Hence, Inequality (8) implies that

X ≤ 2 log1+γ f + 2
√
f + εp̂s/2 + (X + εg/8)/2 +

√
f

⇒ X ≤ (p̂ + 1/16)εg + 8
√
f (9)

if f is sufficiently large. It remains to compute a lower bound for
X .

Let X ′ be the total number of times P (t) is increased over all
time steps in G, k′0 be the number of idle time steps in G, and q̄
be the average increase of the qv-values in I ′. From the proof of
Claim 3.7 we know that q̄ ≥ (k′0−1)/f and thatX ′ ≥ b(k′0−1)q̄c.
Moreover, X ≥ X ′ − εg/8. Hence, X ≥ b(k0 − 1)2/fc − εg/8.
We know that E[k0] ≥ (1 − εp̂/4)s and therefore, k0 ≥ 3g/4
w.h.p. Hence, X ≥ g2/(4f) − εg/8 ≥ εg/8 w.h.p. Since this
violates Inequality (9), the lemma follows.

In the following, let us call a subframe I ′ good if its initial step
t0 satisfies P (t0) ≤ 12 lnK′. Combining the results above, we
get:

LEMMA 3.17. For any good subframe I ′, there are at least
ε2f/8 non-jammed time steps t in I ′ with P (t) ∈ [εp̂/4, 36 lnK′]
w.m.p.

Consider now the first eighth of frame I , called J . The following
lemma follows directly from Lemma 2.14 in [3].

LEMMA 3.18. If at the beginning of J , pv ≥ 1/(f2(1+γ)2
√
f )

and Tv ≤
√
F/2 for all nodes v, then we also have pv ≥

1/(f2(1 + γ)2
√
f ) at the end of J for every v and the number

of non-jammed time steps t in I ′ with P (t) ∈ [εp̂/4, 36 lnK′] is at
least ε2f/16 w.h.p.

We finally need the following lemma, which follows from
Lemma 2.15 in [3].

LEMMA 3.19. If at the beginning of J , Tv ≤
√
F/2 for all v,

then it holds that also Tv ≤
√
F/2 at the end of J w.h.p.

Inductively using Lemmas 3.18 and 3.19 on the eighths of frame
I implies that COMAC satisfies the property of Lemmas 3.18 for
the entire I and at the end of I , pv ≥ 1/(f2(1 + γ)2

√
f ) and

Tv ≤
√
F/2 for all v w.h.p. Since our results hold with high

probability, we can also extend them to any polynomial number of
frames.

3.3 Throughput
Summarizing the results above, we obtain the following result

for the throughput.

THEOREM 3.20. For any polynomial sequence of time steps of
length at least F , COMAC achieves a competitive throughput of
Ω(ε2 min{ε, 1/poly(K)}) for any constants ε and K.

3.4 Fairness
Finally, we show that COMAC also ensures a limited degree

of fairness. Note that by Lemma 3.4, we can directly bound the
probabilities of having a successful transmission within networks
Ni and Nj by their respective cumulative probabilities, which we
bound on the following theorem.

THEOREM 3.21. If all nodes v initially start with access prob-
ability p̂, then it takes at most F time steps until a time step is
reached in which the difference between minimum and maximum
cumulative probability of a network is at most O(K2).

PROOF. Consider the potential function summing up the differ-
ences of the networks’ cumulative probabilities compared to the
minimum probability Φ =

∑
i |xi − xmin| where xi = log1+γ Pi

and xmin = mini xi. We focus on the events with a success-
ful transmission, since only successful transmissions can change
the difference among individual network probabilities. Assume
that a successful tranmission occured in Ni, if xi > xmin, then
the change in Φ, denoted by ∆Φ, satisfies ∆Φ = −1. If
xi = xmin, then ∆Φ ≤ K. Hence, E[∆Φ] ≤ −P[xi >
xmin successful] + KP[xi = xmin successful]. Suppose that
xmax ≥ xmin + log1+γ(2K2). Then, P[xi > xmin successful] ≥
2K · P[xi = xmin successful] as there can be up to K − 1 many
Ni with xi = xmin. Certainly, P[xi > xmin successful] + P[xi =
xmin successful] = 1 given that there is a successful transmission.
Hence in this case, P[xi > xmin successful] ≥ 2K

2K+1
, which im-

plies that E[∆Φ] ≤ − 2K
2K+1

+ K
2K+1

= − K
2K+1

≤ −1/3, when-
ever there is a successful transmission.

Now, let us define the random variable Xt as follows for the
t-th successful transmission: Xt = 1 if either xmax < xmin +
log1+γ(2K2) (i.e., we reached our goal) or the successful trans-
mission is from a network Ni with xi > xmin; and Xt = −K
otherwise.

Suppose that there are s successful transmissions across all net-
works. Let X =

∑s
t=1 Xt. Then it holds that E[X] ≥ s/3.

In order to apply Chernoff bounds, let us define Yt = (Xt +
K)/(K + 1) and Y =

∑s
t=1 Yt. Then Yt is a binary ran-

dom variable with E[Yt] ≥ (K + 1/3)/(K + 1) and therefore
E[Y ] ≥ s(K + 1/3)/(K + 1). Since the upper bound on E[Yt]
holds irrespective of previous Yj’s, it follows from the Chernoff
bounds that P[Y ≤ (1 − δ)s(K + 1/3)/(K + 1)] ≤ e−δ

2s/3,
for any 0 < δ < 1. Since Y = (X + s · K)/(K + 1),
we get P[X ≤ (1 − δ)s/3 − δsK] ≤ e−δ

2s/3. If we choose
δ = 1/(6(K+1/3)) then P[Y ≤ (1−δ)s(K+1/3)/(K+1)] =

P[X ≤ s/6] and hence, P[X ≤ s/6] ≤ e−δ
2s/3. Now, from The-

orem 3.20 we know that s = Ω(ε2 min{ε, 1/poly(K)}F ) w.h.p.,
so s = ω(K logN). This implies that when running the protocol
for F time steps, X > K logN w.h.p. Thus, if the initial value of
the potential Φ0 is at most K logN , we must have reached a point
where xmax < xmin + log1+γ(2K2) as otherwise we would end
up with a negative potential. It remains to bound Φ0.

Given that all nodes start with the same access probability p̂,
the maximum initial difference between Pi and Pj for any i and
j is N and therefore, xmax < xmin + log1+γ N . Hence, Φ0 ≤
K log1+γ N , which implies the theorem.
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Figure 1: Left: Throughput of COMAC and ANTIJAM [24] as a function of the number of co-existing networks and for two different
adversaries (ε = {0.5, 0.3}). The total number of nodes for each K = 1, . . . , 10 is 500, and each co-existing network has the same
size (up to an additive node due to rounding). The protocol is executed for 7000 rounds, and the result is averaged over 10 runs. The
adversary is modeled in a simplified manner and simply jams each round with independent probability 1− ε. Right: Fairness as the
min/max competitive throughput ratio for ε = 0.3.
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Figure 2: Left: Throughput and fairness of COMAC and ANTIJAM [24] for a setting like in Figure 1 but where the size of the
co-existing networks is heterogenous, i.e., the i-th largest network is roughly 1.5 times the size of (i + 1)-largest network. Right:
Fairness as the min/max competitive throughput ratio for ε = 0.3.

Fact 3.1 ensures that the access probabilities of the nodes within
a network differs by at most a (1 + γ) factor, ensuring fairness
within each network Ni.

4. SIMULATION
Although the focus of this paper is on the formal, asymptotic and

worst-case performance guarantees achieved by COMAC, we also
briefly report on some of our quantitative insights from a simulation
study. We are interested in: (i) how the competitive throughput of
all the networks changes when the number of networks varies;2 (ii)
the fairness of COMAC, i.e., whether the successful transmissions
are evenly distributed among all the networks. Also, we compare
COMAC to the state-of-the-art jamming resistent MAC protocol
ANTIJAM in [24], and find that COMAC indeed better suits co-
existing networks.

There is a total of 500 nodes among all the co-existing networks,
and the number of networks K ranges from 1 to 10. All the results
are averaged over 10 runs, and the confidence intervals are provided
as well. More specifically, we conduct competitive throughput and
fairness experiments in two different scenarios.
2The competitive throughput of all the networks is defined as the
fraction of non-jammed time steps that are used for successful
transmissions among all K networks.

Scenario 1: The size of individual networks are the same,
namely |Vi| ∈ {b500/Kc, d500/Ke}. In Figure 1 (left) we study
the competitive throughput, i.e., the fraction of non-jammed time
steps that are used for successful transmissions among all K net-
works. We observe that for a single network (K = 1) the com-
petitive throughput of COMAC is relatively worse compared to
ANTIJAM as pv is raised more strictly when the channel is idle.
However, COMAC is always better than ANTIJAM when there is
more than one network (K > 1) as the additional interference in-
troduced by co-existing networks is bounded. For example, when
K = 10, the competitive throughput of COMAC is still above 20%
even when adversary can jam 70% of all time steps, while the com-
petitive throughput of ANTIJAM is below 10%. Note that there is
a trend towards smaller competitiveness for larger K, as expected
from our formal worst-case analysis. Figure 1 (right) studies the
fairness of COMAC in terms of min/max competitive throughput
ratio, where the minimum and maximum competitive throughput
are selected from the K co-existing networks. The closer this ratio
is to 1, the fairer the protocol. Obviously COMAC is fair in a sense
that even when K = 10, the min/max competitive throughput ratio
is above 0.78.

Scenario 2: The size of i-th largest network is roughly 1.5 times
the size of (i+1)-th largest network. Figure 2 shows that even when



the size of individual networks vary a lot, COMAC still achieves
a better competitive throughput (above 20% when K = 10) com-
pared to ANTIJAM (below 10% when K = 10), and more impor-
tantly, COMAC is still fair in a sense that the min/max competitive
throughput ratio when K = 10 is still above 0.73.

5. CONCLUSION
Motivated by our observation that MAC algorithms optimized

for a single network often yield a poor performance in scenarios
with multiple co-existing networks due to too high sending proba-
bilities, this paper presented the first protocol for provably robust,
efficient and fair medium allocation among a set of co-existing
networks (e.g., of a multi-nation conference or of an emergency
network). Interestingly, with simple adaptions, our protocol could
even be used in scenarios where the throughput is required to be
distributed according to some specific proportions (i.e., not nec-
essarily fairly) among the co-existing networks. For instance, a
spectrum owner may require the co-existing networks to use only a
share of the medium that corresponds to the negotiated or auctioned
share. We believe that our work raises a series of interesting ques-
tions for future research. For example, we have assumed a rather
naive interference model and it would be interesting to generalize
our results for the SINR physical interference model.
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