Competitive and Deterministic Embeddings
of Virtual Networks*

Guy Even', Moti Medina®, Gregor Schaffrath?, and Stefan Schmid?

! Tel Aviv University, Israel
{guy,medinamo}@eng.tau.ac.il
2 TU Berlin & T-Labs, Germany
{grsch, stefan}@net.t-labs.tu-berlin.de

Abstract. Network virtualization is an important concept to overcome the ossi-
fication of today’s Internet as it facilitates innovation also in the network core and
as it promises a more efficient use of the given resources and infrastructure. Vir-
tual networks (VNets) provide an abstraction of the physical network: multiple
VNets may cohabit the same physical network, but can be based on completely
different protocol stacks (also beyond IP). One of the main challenges in network
virtualization is the efficient admission control and embedding of VNets. The
demand for virtual networks (e.g., for a video conference) can be hard to pre-
dict, and once the request is accepted, the specification / QoS guarantees must be
ensured throughout the VNet’s lifetime. This requires an admission control algo-
rithm which only selects high-benefit VNets in times of scarce resources, and an
embedding algorithm which realizes the VNet in such a way that the likelihood
that future requests can be embedded as well is maximized.

This paper describes a generic algorithm for the online VNet embedding prob-
lem which does not rely on any knowledge of the future VNet requests but whose
performance is competitive to an optimal offline algorithm that has complete
knowledge of the request sequence in advance: the so-called competitive ratio
is, loosely speaking, logarithmic in the sum of the resources. Our algorithm is
generic in the sense that it supports multiple traffic models, multiple routing mod-
els, and even allows for nonuniform benefits and durations of VNet requests.

1 Introduction

Virtualization is an attractive design principle as it abstracts heterogenous resources
and as it allows for resource sharing. Over the last years, end-system virtualization
(e.g., Xen or VMware) revamped the server business, and we witness a trend towards
link-virtualization: router vendors such as Cisco and Juniper offer router virtualization,
and Multiprotocol Label Switching (MPLS) solutions and Virtual Private Networks
(VPNs) are widely deployed. Also split architectures like OpenFlow receive a lot of
attention as they open new possibilities to virtualize links.

Network virtualization [[14] goes one step further and envisions a world where multi-
ple virtual networks (VNets)—which can be based on different networking protocols—
cohabit the same physical network (the so-called substrate network). VNet requests are

* This contribution is based on the technical report available from the ArXiv document server
(ID: 1101.5221).

L. Bononi et al. (Eds.): ICDCN 2012, LNCS 7129, pp. 106-{121] 2012.
(© Springer-Verlag Berlin Heidelberg 2012

Competitive and Deterministic Embeddings of Virtual Networks 107

issued to a network provider and can have different specifications, in terms of Quality-
of-Service (QoS) requirements, supported traffic and routing models, duration, and so
on. The goal of the provider is then to decide whether to accept the request and at what
price (admission control), and subsequently to realize (or embed) the VNet such that
the specification is met while, e.g., the minimal resources are used—in order to be able
to accept future requests also.

Virtual networks have appealing properties, for instance, (1) they allow to innovate
the Internet by making the network core “programmable” and by facilitating service-
tailored networks which are optimized for the specific application (e.g., content dis-
tribution requires different technologies and QoS guarantees than, e.g., live streaming,
gaming, or online social networking); (2) the given resources can be (re-)used more
efficiently, which saves cost at the provider side; (3) start-up companies can experiment
with new protocols and services without investing in an own and expensive infrastruc-
ture; among many more.

Due to the flexibility offered by network virtualization, the demand for virtual net-
works can be hard to predict—both in terms of arrival times and VNet durations. For
example, a VNet may be requested at short notice for a telephone conference (including
video) between different stakeholders of an international project. It is hence mandatory
that this VNet be realized quickly (i.e., the admission and embedding algorithms must
have low time complexities) and that sufficient resources are reserved for this confer-
ence (to ensure the QoS spec).

This paper deals with the question of how to embed VNets arriving one-by-one in
an online fashion |8]. Each request either needs to be embedded or rejected. The online
setting means that the decision (embed or reject) must be taken without any information
about future requests, and this decision cannot be changed later (no preemption).

The goal is to maximize the overall profit, i.e., the sum of the benefits of the em-
bedded VNets. We use competitive analysis for measuring the quality of our online
algorithm. The competitive ratio of an online algorithm is « if, for every sequence of
requests o, the benefit obtained by the algorithm is at least an « fraction of the optimal
offline benefit, that is, the benefit obtainable by an algorithm with complete knowledge
of the request sequence ¢ in advance.

1.1 VNet Specification and Service Models

There are many service models for VNets [25], and we seek to devise generic algorithms
applicable to a wide range of models. The two main aspects of a service model concern
the modeling of traffic and the modeling of routing.

Traffic. We briefly outline and compare three models for allowable traffic. (1) In the
customer-pipe model, a request for a VNet includes a traffic matrix that specifies the
required bandwidth between every pair of terminals. (2) In the hose model [[15/19]], each
terminal v is assigned a maximum ingress bandwidth b;,, (v) and a maximum egress
bandwidth b, (v). Any traffic matrix that is consistent with the ingress/egress values
must be served. (3) Finally, we propose an aggregate ingress model, in which the set
of allowed traffic patterns is specified by a single parameter Z. Any traffic in which the
sum of ingress bandwidths is at most Z must be served.

108 G. Even et al.

The customer-pipe model sets detailed constraints on the VNet and enables efficient
utilization of network resources as the substrate network has to support only a single
traffic matrix per VNet. On the other hand, the hose model offers flexibility since the
allowed traffic matrices constitute a polytope. Therefore, the VNet embedding must to
take into account the “worst” allowable traffic patterns.

Multicast sessions are not efficiently supported in the customer-pipe model and the
hose model. In these models, a multicast session is translated into a set of unicasts from
the ingress node to each of the egress nodes. Thus, the ingress bandwidth of a multicast
is multiplied by the number of egress nodes [16[17/20122].

In the aggregate ingress model, the set of allowable traffic patterns is wider, offers
simpler specification, and more flexibility compared to the hose model. In addition,
multicasting and broadcasting do not incur any penalty at all since intermediate nodes
in the substrate network duplicate packets exiting via different links instead of having
multiple duplicates input by the ingress node. For example, the following traffic patterns
are allowed in the aggregate ingress model with parameter Z: (i) a single multicast
from one node with bandwidth Z, and (ii) a set of multicast sessions with bandwidths
fi» where Y. f; < Z. Hence, in the aggregate ingress model traffic may vary from a
“heavy” multicast (e.g., software update to multiple branches) to a multi-party video-
conference session in which every participant multicasts her video and receives all the
videos from the other participants.

Routing. We briefly outline three models for the allowed routing. (1) In tree routing, the
VNet is embedded as a Steiner tree in the substrate network that spans the terminals of
the VNet. (2) In single path routing, the VNet is embedded as a union of paths between
every pair of terminals. Each pair of terminals communicates along a single path. (3)
In multipath routing, the VNet is embedded as a union of linear combinations of paths
between terminals. Each pair of terminals v and v communicates along multiple paths.
The traffic from node w to node v is split among these paths. The linear combination
specifies how to split the traffic.

In tree routing and single path routing, all the traffic between two terminals of the
same VNet traverses the same single path. This simplifies routing and keeps the packets
in order. In multipath routing, traffic between two terminals may be split between mul-
tiple paths. This complicates routing since a router needs to decide through which port
a packet should be sent. In addition, routing tables are longer, and packets may arrive
out of order. Finally, multicasting with multipath routing requires network coding [1].

Packet Rate. We consider bandwidth as the main resource of a link. However, through-
put can also depend on the capacity of the network nodes. Since a router needs to inspect
each packet to determine its actions, the load incurred on a router is mainly influenced
by the so-called packet rate, which we model as an additional parameter of a VNet
request.

Duration and Benefit. The algorithms presented in this paper can be competitive with
respect to the total number of embedded VNets. However, our approach also supports
a more general model where VNets have different benefits. Moreover, we can deal with
VNets of finite durations. Therefore, in addition to the specification of the allowable

Competitive and Deterministic Embeddings of Virtual Networks 109

traffic patterns, each request for a VNet has the following parameters: (i) duration, i.e.,
the start and finish times of the request, and (ii) benefit, i.e., the revenue obtained if the
request is served.

1.2 Previous Work

For an introduction and overview of network virtualization, the reader is referred to [[14].
A description of our prototype network virtualization architecture (under development
at Deutsche Telekom Laboratories) appears in [31].

The virtual network embedding problem has already been studied in various settings,
and it is well-known that many variants of the problem are computationally hard (see,
e.g., [2013])). There exist several results for the offline variant of the embedding problem.
In the customer-pipe model, an optimal multipath fractional solution is obtained by
solving a multicommodity flow problem. An integral reservation for multipath routing
is equivalent to the generalized Steiner network problem for which a 2-approximationis
known [24]. In the hose model, constant approximation algorithms have been developed
for tree routing [[16/20l22]. Moreover, the cost of the tree competes with the optimal
single path routing. In the special case that the sum of the ingresses equals the sum of
the egresses, an optimal tree can be found efficiently, and the cost of an optimal tree
is within a factor three of the cost of an optimal reservation for multipath routing [23|]
(see also [28])). Finally, an optimal reservation for multipath routing in the hose model
is presented in [[17].

Published online algorithms for VNet embeddings are scarce. In [21129], an online
algorithm for the hose model with tree routing is presented. The algorithm uses a pruned
BFS tree as an oracle. Edge costs are the ratio between the demand and the residual
capacity. We remark that, even in the special case of online virtual circuits (“call ad-
mission”), using such linear edge costs lead to trivial linear competitive ratios [3]. The
rejection ratio of the algorithm is analyzed in [21429], but not the competitive ratio. The
problem of embedding multicast requests in an online setting was studied in [27]. They
used a heuristic oracle that computes a directed Steiner tree. The competitive ratio of
the algorithm in [27] is not studied. In fact, much research has focused on heuristic
approaches, e.g., [18] proposes heuristic methods for constructing different flavors of
reconfiguration policies; and [34] proposes subdividing heuristics and adaptive opti-
mization strategies to reduce node and link stress. In [4]], an online algorithm is pre-
sented for the case of multiple multicast requests in which the terminals the requests
arrive in an arbitrarily interleaved order. The competitive ratio of the online algorithm
in [4]] is O(log n - log d), where n denotes the number of nodes in the substrate network
and d denotes the diameter of the substrate network. Simultaneously to our work, Bansal
et al. [7] have presented an interesting result on network mapping in cloud environments
where the goal is to minimize congestion induced by the embedded workloads. They
consider two classes of workloads, namely depth-d trees and complete-graph work-
loads, and describe an online algorithm whose competitive ratio is logarithmic in the
number of substrate nodes. In contrast, we, in this paper, apply the online primal-dual
framework to support a wide range of traffic models in virtual networks where the focus
is on revenue maximization.

110 G. Even et al.

Circuit switching can be regarded as a special case of VNet embeddings as each
VNet consists of two terminals, i.e., our model can be seen as an online call admission
problem for telephone conferences with multiple participants. Online algorithms for
circuit switching were presented in [5]. A general primal-dual setting for online packing
and covering appears in [9I11]].

1.3 Our Contribution

This paper describes an algorithmic framework called GIPO (for general integral pack-
ing online algorithm) for online embeddings of VNet requests. This framework allows
us to decide online, depending on the VNet request’s benefit and resource costs, whether
the VNet should be admitted or not. For the embedding itself, an oracle is assumed
which computes the VNets: While our framework yields fast algorithms, the embedding
itself may be computationally hard and hence approximate oracles maybe be preferable
in practice. We provide an overview of the state-of-the-art approximation algorithms
for the realization of these oracles, and we prove that the competitive ratio is not in-
creased much when approximate oracles are used in GIPO. Our framework follows the
primal-dual online packing scheme by Buchbinder and Naor [911]] and also provides
an explanation of the algorithm of Awerbuch et al. [5].

In our eyes, the main contribution of this paper lies in the generality of the algo-
rithm in terms of supported traffic and routing models. In particular, we introduce a
traffic model, called aggregate ingress model, that allows a router to duplicate packets
to support efficient multicasting and broadcasting. In the aggregate ingress model, the
set of allowable traffic patterns is simply specified by the set of terminals and the sum of
ingress rates of the terminals. The aggregate ingress model is well suited for uniformly
modeling unicasts, multicasts, and broadcasts and supports efficient multicasting and
broadcast.

In summary, the algorithm presented in this paper allows the VNet requests to follow
the important customer-pipe models, hose models, or aggregate ingress models, and
routing can either be multipath, single path, or on trees. Thus, different requests may
belong to different traffic and routing types. This implies that the network resources can
be fully shared between requests of all types.

We prove that the competitive ratio of our deterministic online algorithm is, in
essence, logarithmic in the resources of the network. The algorithm comes in two fla-
vors: (i) A bi-criteria algorithm that achieves a constant fraction of the optimal ben-
efit while augmenting resources by a logarithmic factor. Each request in this version
is either fully served or rejected. (ii) An online algorithm that achieves a logarithmic
competitive ratio without resource augmentation. However, this version may serve a
fraction of a request, in which case the associated benefit is also the same fraction of
the request’s benefit. However, if the allowed traffic patterns of a request consume at
most a logarithmic fraction of every resource, then this version either rejects the request
or fully embeds it.

2 Problem Definition and Main Result

We assume an undirected communication network G = (V, E) (called the physical
network or the substrate network) where V represents the set of substrate nodes (or

Competitive and Deterministic Embeddings of Virtual Networks 111

routers) and F represents the set of links. Namely, {u,v} € E for u,v € V denotes
that v is connected to v by a communication link. Edges are associated with capacities
(e.g., bandwidth),i.e.,c: E — R=20 denotes the link capacity function. In Section [4.1]
we will extend the model also to node capacities (processing power of a node, e.g., to
take into account router loads).

The operator (or provider) of the substrate network G receives a sequence of VNet
requests o = {ry,72...}. Upon arrival of request 7;, the operator must either reject
or embed it. A request r; and the set of valid embeddings of r; depend on the service
model. A VNet request r; has the following parameters: (1) A set U; C V of termi-
nals. (2) A set T'r; of allowed traffic patterns between the terminals. For example, in
the customer-pipe model, T'r; consists of a single traffic matrix. In the hose model, T'r;
is a polytope of traffic matrices. (3) The routing model (multipath, single path, or tree).
(4) The benefit b; of r;. This is the revenue if the request is fully served. (5) The dura-
tion T} = [t§0), t§1)] of the request. Request r; arrives and starts at time t§0) and ends
at time tg-l).

The set of valid embeddings of a VNet request r; depends on the set T'r; of allowed
traffic patterns, the routing model, and the edge capacities. For example: (1) In the
customer-pipe model with multipath routing, an embedding is a multicommodity flow.
(2) In the hose model with tree routing, a valid embedding is a set of edges with capacity
reservations that induces a tree that spans the terminals. The reserved capacities must
not exceed the edge capacities. In addition, the traffic must be routable in the tree with
the reserved capacities.

If the allowed traffic patterns of a request r; consume at most a logarithmic fraction
of every resource, then our algorithm either rejects the request or fully embeds it. If a
request may consume a larger fraction of the resources, then the operator can accept and
embed a fraction of a request. If an operator accepts an e-fraction of r;, then this means
that it uniformly serves an e-fraction of every allowed traffic pattern. For example, in
the customer-pipe model with a traffic matrix 7'r, only the traffic matrix € - 71'r is routed.
The benefit received for embedding an e-fraction of r; is € - b;. The goal is to maximize
the sum of the received benefits.

Note that we can assign two values to the embedding: (1) The benefit, namely, the
sum of the benefits of the embedded VNets. (2) The maximum congestion of a resource.
The congestion of a resource is the ratio between the load of the resource and the ca-
pacity of a resource. For example, the load of an edge is the flow along the edge, and
the usage of a node is the rate of the packets it must inspect. A bi-criteria competitive
online packing algorithm is defined as follows.

Definition 1. Let OPT denote an optimal offline fractional packing solution. An online
packing algorithm Alg is («, 5)-competitive if: (i) For every input sequence o, the
benefit of Alg(o) is at least 1/« times the benefit of OPT. (ii) For every input sequence
o and for every resource e, the congestion incurred by Alg(c) is at most (.

The main result of this paper is formulated in the following theorem. Consider a se-
quence of VNet requests {r; }; that consists of requests from one of the following types:

112 G. Even et al.

(1) customer pipe model with multipath routing, (ii) hose model with multipath routing,
or single path routing, or tree routing, or (iii) aggregate ingress model with multipath
routing, or single path routing, or tree routing.

Theorem 1. Let § = O(log(|E| - (maxe c.) - (max; b;))). For every sequence {r;}
of VNet requests, our GIPO algorithm is a (2, 3)-competitive online integral VNet em-
bedding algorithm.

The proof of Theorem [appears in Sections 3] and [l

3 A Framework for Online Embeddings

Our embedding framework is an adaptation of the online primal-dual framework by
Buchbinder and Naor [10/11]. We allow VNet requests to have finite durations and
introduce approximate oracles which facilitate faster but approximate embeddings. In
the following, our framework is described in detail.

3.1 LP Formulation

In order to devise primal-dual online algorithms, the VNet embedding problem needs
to be formulated as a linear program (LP). Essentially, a linear program consists of two
parts: a linear objective function (e.g., minimize the amount of resources used for the
embedding), and a set of constraints (e.g., VNet placement constraints). As known from
classic approximation theory, each linear program has a corresponding dual formula-
tion. The primal LP is often referred to as the covering problem, whereas the dual is
called the packing problem. In our online environment, we have to deal with a dynamic
sequence of such linear programs, and our goal is to find good approximate solutions
over time [10J11]].

In order to be consistent with related literature, we use the motivation and for-
malism from the online circuit switching problem [5] (with permanent requests). Let
G = (V, E) denote a graph with edge capacities c.. Each request r; for a virtual circuit
is characterized by the following parameters: (i) a source node a; € V and a destination
dest; € V, (ii) a bandwidth demand d;, (iii) a benefit b;. Upon arrival of a request 7,
the algorithm either rejects it or fully serves it by reserving a bandwidth of d; along a
path from a; to dest;. We refer to such a solution as integral or “all-or-nothing”. The
algorithm may not change previous decisions. In particular, a rejected request may not
be served later, and a served request may not be rerouted or stopped (even if a lucrative
new request arrives). A solution must not violate edge capacities, namely, the sum of
the bandwidths reserved along each edge e is at most c.. The algorithm competes with
an optimal fractional solution that may partially serve a request using multiple paths.
The optimal solution is offline, i.e., it is computed based on full information of all the
requests.

First, let us devise the linear programming formulation of the dual, i.e., of online
packing. Again, to simplify reading, we use the terminology of the online circuit switch-
ing problem with durations. Let A; denote the set of valid embeddings of r; (e.g., 4;
is the set of paths from a; to dest; with flow d;). Define a dual variable y; , € [0, 1] for
every “satisfying flow” f; » € A;. The variable y; , specifies what fraction of the flow

Competitive and Deterministic Embeddings of Virtual Networks 113

f;,¢ is reserved for request r;. Note that obviously, an application of our framework
does not require an explicit representation of the large sets A; (see Section).

Online packing is a sequence of linear programs. Upon arrival of request r;, the
variables y; ¢ corresponding to the “flows” f; ; € A; are introduced. Let Y denote the
column vector of dual variables introduced so far (for request 1, ..., ;). Let B; denote
the benefits column vector (b1, ..., b;)”. Let C denote the “capacity” column vector
(c1,...,cn)T, where N denotes the number of “edges” (or resources in the general
case). The matrix A; defines the “capacity” constraints and has dimensionality N x
> i<j|Ail- Anentry (A;)c (i ¢) equals the flow along the “edge” e in the “flow” f; ¢. For
example, in the case of circuit switching, the flow along an edge e by f; ¢ is d; if e is in
the flow path, and zero otherwise. In the general case, we require that every “flow” f; ,
incurs a positive “flow” on at least one “edge” e. Thus, every column of A; is nonzero.
The matrix A4 is an augmentation of the matrix A;, i.e., |A;4+1| columns are added
to A; to obtain A;41. Let D; denote a 0-1 matrix of dimensionality j x >, |A;l.
The matrix Dj is a block matrix in which (D;); (7 ¢y = 1if i = ', and zero otherwise.
Thus, D1 is an augmentation of D);; in the first j rows, zeros are added in the new
|Ajt1| columns, and, in row j + 1, there are zeros in the first Zigj |A;| columns,
and ones in the last |A;| columns. The matrix D; defines the “demand” constraints.
The packing linear program (called the dual LP) and the corresponding primal covering
LP are listed in Figure [Il The covering LP has two variable vectors X and Z;. The
vector X has a component z. for each “edge” e. This vector should be interpreted as
the cost vector of the resources. The variable Z; has a component z; for every request r;
where ¢ < j.

minZJ-T-1+XT~C s.t. maxBjT~Yj s.t.
z'-Dj+ X" A; > B A; Y <C
X,ijo DJ}/ng
Y; >0

) an

Fig. 1. (I) The primal covering LP. (II) The dual packing LP

3.2 Generic Algorithm

This section presents our online algorithm GIPO to solve the dynamic linear programs
of Figure[Tl The formal listing appears in Algorithm 1]

We assume that all the variables (primal and dual) are initialized to zero (using lazy
initialization). Since the matrix A;,; is an augmentation of A;, we abbreviate and refer
to A; simply as A. Let col; »)(A) denote the column of A (in fact, A;) that corresponds
to the dual variable y; o. Let y(j, ¢) & X7 -col; ¢ (A). Itis useful to interpret (3, £) as
the X -cost of the “flow” f; ; for request j. Let w(j, £) = 17 -col; ¢(A), namely, w(j, £)
is the sum of the entries in columns (3, £) of A. Since every column of A is nonzero, it
follows that w(3, £) > 0 (and we may divide by it).

114 G. Even et al.

Algorithm 1. The General Integral (all-or-nothing) Packing Online Algorithm (GIPO).
Upon the jth round:

1. fj¢ < argmin{y(4,¢) : f;« € A;} (oracle procedure)
2. Ify(j,£) < b; then, (accept)

(@ yje < 1

(b) Foreachrowe:If A, ;) # 0do

w(j,£)

(C) Rj = bj - 7(]7 f)
3. Else, (reject)
(a) z; < O.

Definition 2. Let Y* denote an optimal offline fractional solution. A solution’ Y > 0
is («, B)-competitive if: (i) For every j, B;‘»F Y > é . B]-T - Y*. (ii) For every j,

AJY; gﬁCandD]Y] < 1.
The following theorem can be proved employing the techniques of [[10].

Theorem 2. Assume that: (i) for every row e of A, max; ¢ A (o) < e, (ii) for ev-
ery row e of A, minj ¢ A, ;o) > 1, and (iii) min; b; > 1. Let 3 2 logy(1 + 3 -
(max; e w(j,£)) - (max; b;)). The GIPO algorithm is a (2, 3)-competitive online inte-
gral packing algorithm.

Proof. Let us denote by Primal; (respectively, Dual;) the change in the primal (respec-
tively, dual) cost function when processing request j.

We show that Primal; < 2-Dual; for every j. We show that GIPO produces feasible
primal solutions throughout its execution. Initially, the primal and the dual solutions are

0, and the claim holds. Let ;vgj) denote the value of the primal variable z. when r; is
processed. If r; is rejected then Primal; = Dual; = 0 and the claim holds. Then for
each accepted request rj, Dual; = bj and Primal; = 3_ c p(; o) (:vgj) - xéjfl)) “Ce +
zj, where E(j,¢) = {e € {1,...,N} : A, (s # 0}. Step (2b) increases the cost
XT.C =% z.-ceas follows:

.) Ae,(5.0) 1 Ae,(3,0)
Z (xgﬂ) _ xgg—l)) cce < Z {xe (2 Eranl 1)+ . i 1) -ce
c€BGH0) c€B L) w(6)
1) A, iy /e
= Z Te + - . (2 e, (4,0)/Ce _ 1) - Ce
e€E(j,6) (w(g, £)
1 .
S Z (xe + —) ° Ae,(j,() = ’Y(J74) + 1 N
Tl w(j, £)
J:0)

Where the third inequality holds since max; ¢ A (; ¢y < c.. Hence after Step (2¢):

Primal; < (j,€) + 1+ (bj —v(5,€)) =1+b; <2-by,

Competitive and Deterministic Embeddings of Virtual Networks 115

where the last inequality holds since min; b; > 1. Since Dual; = b; it follows that
Primal; < 2-Dual;. After dealing with each request, the primal variables {z. }e U{z}:
constitute a feasible primal solution. Using weak duality and since Primal; < 2-Dual;,
it follows that: BjT Y <X T.c+ ZjT 1< 2. BjT -Y; which proves 2-competitiveness.

We now prove (-feasibility of the dual solution, i.e., for every j, A; - Y; < 5-C
and D; - Y; < 1. First we prove the following lemma. Let row.(A) denote the eth
row of A.

1 (growe(A;)Y/ce _
Lemma 1. z. > iy (2 1)

PROOF. The proof is by induction. Base i = 0: Since the variables are initialized to
zero the lemma follows. Step: The update rule in Step (2b) is x, « @, - 24e.G.0/C 4

- é, 7 (24<.G.0/¢ — 1). Plugging the induction hypothesis in the update rule implies:

1

To = @ - 24 GO/C L~ (94eGy/% _
0G0)
1 1
= grovei)Yia/ee). 94eGio/% 1~ (94eGiy/c _
~ (max; e w(i, £)) () w(j,) ()
1 Y e) 1
> - gove(A)Yj/ee _oAeGay/eeyy 2 (9Ae 0/ _ |
~ (max;,c w(i, £)) ()+ (max; ¢ w(i,£)) ()
> b goweapviree o 1
~ (max;,e w(i, £)) (max; ¢ w(i,£))
The lemma follows. (|

Step (2b) in the GIPO implies that for every e,

Te < b 94e,G0)/Ce . (2Ae,(j,l)/ce —1).

w(j,)
Since (max; ¢ Ae i) < ce, 1 < (ming g Ac (5,0)), and (min; b;) > 1, it follows that
forevery j, . <2-b; +1 <3 -b;. Lemma[Jlimplies that:

1

(v Yi/ee 1)< g, <3-b; <3 bi) .
(max; ¢ w(i, £)) () < e <3-b; <3 (maxb;)

Implying that
rowe(A;) - Y; <log,(1+3- (maxw(i,?)) - (maxb;)) - ce,

2,0
as required. g

Remark 1. The assumption in Theorem [2| that max; ¢ A, (j ;) < c. means that the
requests are feasible, i.e., do not overload any resource. In our modeling, if r; is in-
feasible, then r; is rejected upfront (technically, A; = (). Infeasible requests can be
scaled to reduce the loads so that the scaled request is feasible. This means that a scaled
request is only partially served. In fact, multiple copies of the scaled request may be in-
put (see [6l] for a fractional splitting of requests). In addition, in some applications, the
oracle procedure is an approximate bi-criteria algorithm, i.e., it finds an embedding
that violates capacity constraints. In such a case, we can scale the request to obtain

feasibility.

116 G. Even et al.

If a solution Y is («, 3)-competitive, then Y/ is a - 3-competitive. Thus, we conclude
with the following corollary.

Corollary 3. The GIPO algorithm computes a solution' Y such that Y/ (3 is a fractional
O(3)-competitive solution.

Consider the case that the capacities are larger than the demands by a logarithmic factor,
namely, min. c./8 > max; ¢ Ae,(5,0) In this case, we can obtain an all-or-nothing
solution if we scale the capacities C in advance as summarized below.

Corollary 4. Assume min, c./f > max; A&(M). Run the GIPO algorithm with
scaled capacities C'/ 3. The solution'Y is an all-or-nothing O(3)-competitive solution.

3.3 A Reduction of Requests with Durations

We now add durations to each request. This means each request r; is characterized,

in addition, by a duration interval T, = [t§0), t§1)], where r; arrives in time t;o) and

ends in time tg-l). Requests appear with increasing arrival times, i.e., t;o) < t;oﬁl. For

example, the capacity constraints in virtual circuits now require that, in each time unit,
the bandwidth reserved along each edge e is at most c.. The benefit obtained by serving
request r;j is b; - |1} |, where |T;| = t;l) — tg_o). We now present a reduction to the general
framework.

Let 7(j,) denote a 0-1 square diagonal matrix of dimensionality }_,_, [A;|. The
diagonal entry corresponding to f; ¢ equals one if and only if request r; is active in time
t,ie., 7(7, t)(i,g),(m) = 1 iff ¢ € T;. The capacity constraints are now formulated by

Vi Aj-T1(4,t) - Y; < C.

Since 7(j,t) is a diagonal 0-1 matrix, it follows that each entry in A(j,t) = A, -
7(j,t) is either zero or equals the corresponding entry in A; . Thus, the assumption
that max; ¢ A (j¢) < ce still holds. This implies that durations of requests simply
increase the number of capacity constraints; instead of A; - Y; < C, we have a set of N
constraints for every time unit. Let Aj denote the NV - (t§0) + Timax) X >_; |A;| matrix
obtained by “concatenating” A(j,1), ..., A(j, t). The new capacity constraint is simply
A;-v;<C.

Fortunately, this unbounded increase in the number of capacity constraints has lim-
ited implications. All we need is a bound on the “weight” of each column of A ;.
Consider a column (7, £) of Aj,t. The entries of this column are zeros in A(j,t') for
t' & T;. Tt follows that the weight of column (i, £) in A; , equals |T}| times the weight
of column (7, £) in A(%, tz(-o)). This implies that the competitive ratio increases to (2, 3')-
competitiveness, where 3 £ logy (1 + 3 - Tinax - (max; ¢ w(j, £)) - (max; b;)).

Theorem 5. The GIPO algorithm, when applied to the reduction of online packing with
durations, is a (2, 3')-competitive online algorithm.

Remark 2. Theorem[3 can be extended to competitiveness in time windows [13]. This
means that we can extend the competitiveness with respect to time intervals [0, t] to any
time window [t1, t2].

Competitive and Deterministic Embeddings of Virtual Networks 117

Remark 3. The reduction of requests with durations to the online packing framework
also allows requests with split intervals (i.e., a union of intervals). The duration of a
request with a split interval is the sum of the lengths of the intervals in the split interval.

Remark 4. In the application of circuit switching, when requests have durations, it is
reasonable to charge the request “per bit”. This means that b;/(d; - |T;|) should be
within the range of prices charged per bit. In fact, the framework allows for varying bit
costs as a function of the time (e.g., bandwidth is more expense during peak hours). See
also [5] for a discussion of benefit scenarios.

3.4 Approximate Oracles

The GIPO algorithm relies on a VNet embedding “oracle” which computes resource-
efficient realizations of the VNets. In general, the virtual network embedding problem
is computationally hard, and thus Step [l could be NP-hard (e.g., a min-cost Steiner
tree). Such a solution is useless in practice and hence, we extend our framework to
allow for approximation algorithms yielding efficient, approximate embeddings. Inter-
estingly, we can show that suboptimal embeddings do not yield a large increase of the
competitive ratio as long as the suboptimality is bounded.

Concretely, consider a p-approximation ratio of the embedding oracle, i.e.,
~v(4,¢) < p-argmin{~y(j,¢) : fj¢ € A;}. The GIPO algorithm with a p-approximate
oracle requires two modifications: (i) Change the condition in StepRlto v(j, ¢) < b; - p.
(ii) Change Step2dto z; < b; - p — v(4,£).

The following theorem summarizes the effect of a p-approximate oracle on the
competitiveness of the GIPO algorithm.

Theorem 6. Let 3, = logy(1 + 3 - p - (max; ¢ w(j,£)) - (max; b;)). Under the same
assumptions of Theorem 2| the GIPO algorithm is a (1 + p, 8,)-competitive online
integral packing algorithm if the oracle is p-approximate.

4 Application to VNet Service Models

In this section we show how the framework for online packing can be applied to online
VNet embeddings. Since the linear programs have exponential size, explicit represen-
tations must be avoided. We consider the three important traffic models customer-pipe,
hose and aggregate ingress, and the three main routing models multipath, single path
and tree routing. The embeddings in this section focus on edge capacity constraints; in
Section[4.1] we extend the results to router loads.

Recall that 8 in Theorem] is the factor by which the GIPO algorithm augments
resources. Recall that 3’ is the resource augmentation if VNet requests have durations.
The following corollary states the values of 3 and (3’ when applying Theorems[2 and[3]
to the cases described below.

Corollary 7. The values of § and 3’ in Theorems [l and [are 5 = O(log(|E| -
(maxe ¢.) - (max; b;))) and B = O(log(|Tmax| - |E| - (max. c.) - (max; b;))) for
any sequence of VNet requests from the following types: (i) customer pipe model with

118 G. Even et al.

multipath routing, (ii) hose model with multipath routing, or single path routing, or tree
routing, or (iii) aggregate ingress model with multipath routing, or single path routing,
or tree routing.

Remark 5. Our framework can handle heterogeneous VNet requests, i.e., requests from
any of the customer service models and routing models included in Corollary[ll Each
time a request arrives, the corresponding oracle procedure is invoked, without disturb-
ing existing requests. This implies that the network resources can be fully shared be-
tween requests of all types.

Customer Pipe Model. In multipath routing, an embedding of a request is a multicom-
modity flow. This means that, for each request r;, the set of valid embeddings A; of
r; consists of all the multicommodity flows specified by the traffic matrix and the edge
capacities. For a multicommodity flow f € A;, the entry A, ; equals the flow f(e).
The oracle needs to compute a min-cost multicommodity flow in A;, where a cost of a
unit flow along an edge e equals x.. A min-cost multicommodity flow can be computed
by solving a linear program or by a using a PTAS [33].

Hose Model. In multipath routing, an embedding is a reservation u of capacities so that
every allowed traffic can be routed as a multicommodity flow. An entry A, , equals
the capacity u, reserved in e for the embedding of request ;. In [17], a linear pro-
gramming based polytime algorithm is presented for a min-cost reservation in the hose
model. In [16/20/22]] constant approximation ratio algorithms are presented for min-
cost reservations in the hose model. These algorithms return a tree routing whose cost
is at most a constant factor larger than the cost of an optimal single path routing. This
implies that we can employ tree routing (which is easier to manage) and compete with
single path routing (which is harder to manage but supposedly cheaper).

Aggregate Ingress Model. An embedding in the aggregate ingress model is also a reser-
vation of capacities so that every allowed traffic can be routed. In the multipath routing
model, an optimal linear programming based polytime algorithm for a min-cost em-
bedding can be obtained by a variation of the algorithm presented in [17]. A min-cost
single path routing embedding in the aggregate ingress model is always a tree. Thus,
the routing models of single paths and trees coincide. Moreover, the reservation along
every edge equals the aggregate ingress Z. This implies that a min-cost tree embedding
is simply a min-cost Steiner tree. Many constant approximation algorithms for min-cost
Steiner trees have been published [32], the best result to date is [[12].

4.1 Router Loads

So far we have focused on the load incurred over the edges, i.e., the flow (e.g., data
rate) along an edge is bounded by the edge capacity (e.g., available bandwidth). In
this section we also view the nodes of the network as resources. We model the load
incurred over the nodes by the rate of the packets that traverse a node. Thus, a request
is characterized, in addition, by the so-called packet rate.

In this setting, each node (router) v has a computational capacity c¢, that specifies
the maximum rate of packets that node v can process. The justification for modeling

Competitive and Deterministic Embeddings of Virtual Networks 119

the load over a node in this way is that a router must inspect each packet. The capacity
constraint of a node v simply states that the sum of the packet rates along edges incident
to v must be bounded by c,,.

For simplicity, we consider the aggregate ingress model with tree routing. A request
r; has an additional parameter pr; that specifies the aggregate ingress packet rate, i.e.,
pr; is an upper bound on the sum of the packet rates of all ingress traffic for request r;.

Applying our framework requires to add a row in A to each node (in addition to a
row per edge). An entry A, ,, equals pr; if the capacity reservation u assigns positive
capacity to an edge incident to v, and zero otherwise. The oracle now needs to compute a
node-weighted Steiner tree [26]. The approximation ratio for this problem is O(log k;),
where k; denotes the number of terminals in request r;.

The following corollary summarizes the values of p and (3, when applying
Theorem[Blto router loads. One can extend also Theorem[3in a similar fashion.

Corollary 8. In the aggregate ingress model with tree routing, p = O(log max; k;)
and B, = O(log(p - (|E| - (maxe ce) + |V| - (max, ¢y)) - (max; b;))).

5 Discussion

This paper presented a unified algorithm for online embeddings of VNets: virtual net-
works whose endpoints are given and which need to provide certain quality-of-service
guarantees in the sense that enough resources are allocated for the VNet such the spec-
ified traffic models are supported. The algorithm handles VNets requests in several im-
portant models (namely, the customer-pipe, hose, and aggregate-ingress models), and
each request may allow multipath/single-path/tree-routing. Since the problem we ad-
dress is a generalization of online circuit switching [3], it follows that the lower bounds
apply to our case as well. Namely, the competitive ratio of any online algorithm is
2(log(n - Timax)), where n denotes the number of nodes and T},.x is the maximal
duration.

We believe that our approach can be extended to less specified VNets where, e.g.,
only a subset of endpoints is given and the placement of the remaining virtual nodes
is subject to optimization (or can even be migrated [3]). A mathematical program (an
“oracle”) for such a scenario can be found in [30].

References

1. Ahlswede, R., Cai, N., Li, S., Yeung, R.: Network information flow. IEEE Transactions on
Information Theory 46(4), 1204—1216 (2000)

2. Andersen, D.: Theoretical approaches to node assignment (2009),
http://www.cs.cmu.edu/dga/papers/andersenassignabstract.html

3. Arora, D., Bienkowski, M., Feldmann, A., Schaffrath, G., Schmid, S.: Online strategies for
intra and inter provider service migration in virtual networks. In: Proc. Principles, Systems
and Applications of IP Telecommunications, IPTComm (2011)

4. Awerbuch, B., Azar, Y.: Competitive multicast routing. Wirel. Netw. 1 (1995)

5. Awerbuch, B., Azar, Y., Plotkin, S.: Throughput-competitive on-line routing. In: Proc. IEEE
FOCS (1993)

http://www.cs.cmu.edu/dga/papers/andersenassignabstract.html

120

6.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

G. Even et al.

Azar, Y., Zachut, R.: Packet Routing and Information Gathering in Lines, Rings and Trees.
In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 484-495. Springer,
Heidelberg (2005)

. Bansal, N., Lee, K.-W., Nagarajan, V., Zafer, M.: Minimum congestion mapping in a cloud.

In: Proc. ACM PODC, pp. 267-276 (2011)

. Borodin, A., El-Yaniv, R.: Online computation and competitive analysis. Cambridge Univer-

sity Press, New York (1998)

. Buchbinder, N., Naor, J.S.: Improved bounds for online routing and packing via a primal-dual

approach. In: Proc. IEEE FOCS (2006)

Buchbinder, N., Naor, J.S.: The design of competitive online algorithms via a primal-dual
approach. Foundations and Trends in Theoretical Computer Science 3(2-3), 99-263 (2009)
Buchbinder, N., Naor, J.S.: Online primal-dual algorithms for covering and packing. Math.
Oper. Res. 34(2), 270-286 (2009)

Byrka, J., Grandoni, F., Rothvof, T., Sanita, L.: An improved LP-based approximation for
Steiner tree. In: Proc. ACM STOC, pp. 583-592 (2010)

Chekuri, C., Shepherd, F.B., Oriolo, G., Scutelld, M.G.: Hardness of robust network design.
Netw. 50(1), 50-54 (2007)

Chowdhury, N.M., Boutaba, R.: A survey of network virtualization. Computer Networks
(2009)

Duffield, N., Goyal, P., Greenberg, A., Mishra, P., Ramakrishnan, K., van der Merive, J.: A
flexible model for resource management in virtual private networks. In: Proc. SIGCOMM.
ACM (1999)

Eisenbrand, F., Grandoni, F.: An improved approximation algorithm for virtual private net-
work design. In: Proc. ACM SODA (2005)

Erlebach, T., Ruegg, M.: Optimal bandwidth reservation in hose-model VPNs with multi-
path routing. In: Proc. IEEE INFOCOM, pp. 2275-2282 (2004)

Fan, J., Ammar, M.H.: Dynamic topology configuration in service overlay networks: A study
of reconfiguration policies. In: Proc. IEEE INFOCOM (2006)

Fingerhut, J.A., Suri, S., Turner, J.S.: Designing least-cost nonblocking broadband networks.
J. Algorithms 24(2), 287-309 (1997)

Grandoni, F., RothvoB, T.: Network Design Via Core Detouring for Problems without a Core.
In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.)
ICALP 2010. LNCS, vol. 6198, pp. 490-502. Springer, Heidelberg (2010)

Grewal, K., Budhiraja, S.: Performance evaluation of on-line hose model VPN provisioning
algorithm. Advances in Computer Vision and Information Technology (2008)

Gupta, A., Kumar, A., Roughgarden, T.: Simpler and better approximation algorithms for
network design. In: Proc. ACM STOC, pp. 365-372 (2003)

Italiano, G., Leonardi, S., Oriolo, G.: Design of trees in the hose model: the balanced case.
Operations Research Letters 34(6), 601-606 (2006)

Jain, K.: A factor 2 approximation algorithm for the generalized Steiner network problem.
Combinatorica 21(1), 39-60 (2001)

Juttner, A., Szabo, ., Szentesi, A.: On bandwidth efficiency of the hose resource management
model in virtual private networks. In: Proc. IEEE INFOCOM (2003)

Klein, P.,, Ravi, R.: A nearly best-possible approximation algorithm for node-weighted
Steiner trees. J. Algorithms 19(1), 104-115 (1995)

Kodialam, M., Lakshman, T., Sengupta, S.: Online multicast routing with bandwidth guaran-
tees: a new approach using multicast network flow. [IEEE/ACM Transactions on Networking
(TON) 11(4), 676-686 (2003)

28.

29.

30.

31.

32.

33.

34.

Competitive and Deterministic Embeddings of Virtual Networks 121

Kumar, A., Rastogi, R., Silberschatz, A., Yener, B.: Algorithms for provisioning virtual
private networks in the hose model. IEEE/ACM Trans. Netw. 10(4) (2002)

Liu, Y., Sun, Y., Chen, M.: MTRA: An on-line hose-model VPN provisioning algorithm.
Telecommunication Systems 31(4), 379-398 (2006)

Schaffrath, G., Schmid, S., Feldmann, A.: Generalized and resource-efficient VNet embed-
dings with migrations. In: ArXiv Technical Report 1012.4066 (2010)

Schaffrath, G., Werle, C., Papadimitriou, P., Feldmann, A., Bless, R., Greenhalgh, A.,
Wundsam, A., Kind, M., Maennel, O., Mathy, L.: Network virtualization architecture: Pro-
posal and initial prototype. In: Proc. ACM VISA, pp. 63-72. ACM (2009)

Vazirani, V.V.: Recent results on approximating the Steiner tree problem and its generaliza-
tions. Theor. Comput. Sci. 235(1), 205-216 (2000)

Young, N.: Sequential and parallel algorithms for mixed packing and covering. In: Proc. 42nd
IEEE FOCS (2001)

Zhu, Y., Ammar, M.H.: Algorithms for assigning substrate network resources to virtual
network components. In: Proc. [IEEE INFOCOM (2006)

	Competitive and Deterministic Embeddingsof Virtual Networks
	Introduction
	VNet Specification and Service Models
	Previous Work
	Our Contribution

	Problem Definition and Main Result
	A Framework for Online Embeddings
	LP Formulation
	Generic Algorithm
	A Reduction of Requests with Durations
	Approximate Oracles

	Application to VNet Service Models
	Router Loads

	Discussion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

