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ABSTRACT

Electing a leader is a fundamental task in distributed computations.
Many coordination problems, such as the access to a shared re-
source, and the resulting inefficiencies, can be avoided by relying
on a leader. This paper presents SELECT, a leader election proto-
col for wireless networks where nodes communicate over a shared
medium. SELECT is very robust in two respects. First, the pro-
tocol is self-stabilizing in the sense that it converges to a correct
solution from any possible initial network state (e.g., where no or
multiple nodes consider themselves a leader). This is an appealing
property, especially for dynamic networks. Second, the described
protocol is resilient against a powerful reactive jammer that blocks
a significant fraction of all communication rounds. The reactive
model is general and of interest beyond jamming (e.g., in the con-
text of co-existing networks). The paper also reports on experimen-
tal results obtained from our simulation framework which allows us
to study convergence behavior under different types of adversarial
jammers.

Categories and Subject Descriptors

C.2.5 [Computer-Communication Networks]: Local and Wide-
Area Networks—Access schemes; F.2.2 [Analysis of Algorithms
and Problem Complexity]: Nonnumerical Algorithms and Prob-
lems—Sequencing and scheduling

General Terms
Algorithms, Reliability, Theory

Keywords
Wireless Ad-hoc Networks, MAC Protocols, Jamming

1. INTRODUCTION

Leader election is a classical theme in the field of distributed al-
gorithms. Once a leader is determined, many coordination tasks
are simplified. In this paper, we consider the problem of elect-
ing a leader in a wireless network in order to coordinate access to a
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shared communication medium. This can greatly improve the over-
all throughput of the network and reduce the energy consumption
at the nodes.

We focus on a harsh environment where the wireless nodes con-
tend for a single wireless channel that is jammed by a powerful
reactive adversary blocking an arbitrary constant fraction of all
time slots. In addition, we require that the election protocol works
correctly if started from any initial network state—i.e., it is self-
stabilizing. This implies that arbitrary join and leave behavior can
be tolerated. For example, when a leader node leaves the network,
a substitute leader is elected.

Disruptions of the shared communication medium—either due to
interference of concurrent transmissions or adversarial jamming—
is one of the foremost challenges in wireless computing. Jamming
attacks are a very cumbersome problem as they are typically easy to
implement and the attacker does not need any special hardware. For
example, it has been pointed out that the widely used IEEE 802.11
medium access control (MAC) protocol already fails to handle sim-
ple, oblivious jammers [6].

Model. We consider the problem of designing a self-stabilizing
distributed protocol to elect a leader among a set V' of n simple
wireless nodes (e.g., nodes of a sensor network) that are within each
other’s transmission range and communicate over a single chan-
nel. For our formal analysis, we assume that the time proceeds in
synchronous rounds (or steps).! In each round, a node may either
transmit a message or sense the channel, but it cannot do both, and
there is no immediate feedback mechanism telling a node whether
its transmission was successful.?> A node which is sensing the chan-
nel may either (¢) sense an idle channel (in case no transmission
takes place at that round), (i) sense a busy channel (in case two or
more nodes transmit at the current round), or (i3¢) receive a packet
(in case exactly one node transmits at that round). Henceforth, we
will sometimes say that a message is successfully sent if there is
exactly one transmission at this round. Thus, if a message is suc-
cessfully sent, all nodes will successfully receive it in this round,
except for the sender itself (the sender does not know whether the
transmission was successful).

In addition to these nodes there is an adversary. We allow the
adversary to know the protocol and its entire history and to use
this knowledge in order to jam the wireless channel at will at any
round. Such an adversary is called adaptive. If in addition to that
the adversary also knows (through physical carrier sensing) the cur-

'A round may represent the time needed to send a message, e.g., a
multiple of the 50us unit in 802.11, depending on the message size.
“We believe that such a feedback mechanism is problematic in the
broadcast setting as it increases the communication load, and its
benefits are not clear either. Moreover, this assumption strengthens
our result.



rent channel state, we call it reactive. That is, a reactive adver-
sary can distinguish between the channel being currently idle (no
node transmits) or busy (either because of a successful transmis-
sion, a collision of transmissions, or too much background noise)
and can instantly make a jamming decision based on that infor-
mation. Whenever the adversary jams the channel, all nodes will
notice a busy channel. The nodes cannot distinguish between the
adversarial jamming and a collision of two or more messages that
are sent at the same time.

In order to study the degree of jamming activity needed by the
adversary to prevent successful message transmissions, we use the
notion of a (T, 1 — €)-bounded adversary. An adversary is called
(T, 1 — €)-bounded for some T' € Nand 0 < e < 1 if for any time
window of size w > T the adversary can jam at most (1 — €)w
of the time steps in that window. Moreover we assume that the
n nodes use an encryption mechanism that prevents the adversary
from inspecting their messages.

As mentioned earlier, our goal is to design a leader election pro-
tocol that is self-stabilizing despite adversarial jamming. Follow-
ing the usual notation in the self-stabilization literature, the system
state is determined by the state of all variables in the system. That
is, the protocol and any constants used by the protocol are assumed
to be immutable and not part of the system state. A system is called
self-stabilizing if and only if (1) when starting from any state, it is
guaranteed to eventually reach a legal state (convergence) and (2)
given that the system is in a legal state, it is guaranteed to stay in
a legal state (closure), provided that there are no faults or mem-
bership changes in the system. In our case, roughly speaking, the
legal state is the state in which we have exactly one leader. We will
define the set of legal states more formally when we introduce our
protocol. While our protocol is randomized and the leader elec-
tion has to be performed under adversarial jamming, our protocol
is still guaranteed to eventually elect exactly one leader from any
initial state.

Related Work. Leader election is an evergreen in distributed al-
gorithms research due to its numerous applications, and there exist
many theoretical and practical results [4, 12, 18, 20, 22, 24, 28,
29]. Please refer to the following two books for a good introduc-
tion: Chapter 3 in [3] and Chapter 8 in [15]. A leader election al-
gorithm should be as flexible as possible in the sense that a correct
solution is computed independently of the initial network state. For
instance, the algorithm should be able to react to a leader departure,
or be able to cope with situations where for some reasons, multiple
nodes consider themselves leaders. So-called self-stabilizing al-
gorithms [10] with good convergence times are an active research
topic (see e.g., the works on time-adaptive self-stabilization such
as [19]), and several self-stabilizing leader election protocols are
known already, e.g., [2, 8, 16] (see also the fault-contained solu-
tions such as [13]). None of these approaches allows us to elect a
leader in a wireless network that is exposed to harsh interference or
even adaptive jamming. However, interruptions of communication
is often unavoidable in wireless systems, and we believe that elect-
ing a leader can be particularly useful in such harsh environments.

Interference (either due to collisions or jamming) on the shared
medium renders the task of electing a leader challenging; on the
other hand, once a leader is determined, throughput may be im-
proved significantly due to the coordinated medium access. It is
well-known that jamming attacks are often simple and cheap to
implement, and there exists a large body of literature on the sub-
ject [11, 14, 17, 25]. Only the closest results to ours can be dis-
cussed here, and for a broader overview on the field, we refer the
reader to the literature reviews provided in the corresponding pa-
pers.

Classic defense mechanisms operate on the physical layer [21,
23] and there exist approaches both to avoid as well as to detect
jamming. Spread spectrum and frequency hopping technologies
have been shown to be very effective to avoid jamming with widely
spread signals. These physical layer solutions are orthogonal to our
work, and can improve the robustness of the protocol presented
here further. However, the ISM frequency band used by IEEE
802.11 variants is too narrow to effectively apply spread spectrum
techniques [7].

Recent work has also studied MAC layer strategies against jam-
ming, including coding strategies (e.g., [9]), channel surfing and
spatial retreat (e.g., [1, 31]), or mechanisms to hide messages from
a jammer, evade its search, and reduce the impact of corrupted mes-
sages (e.g., [30]). Unfortunately, these methods do not help against
an adaptive jammer with full information about the history of the
protocol, like the one considered in our work.

The works closest to ours are the resilient MAC protocols stud-
ied in [5, 26, 27]. In particular, our adversarial model was in-
troduced by Awerbuch et al. [5] who present a jamming-resistant
MAC protocol that guarantees a constant throughput against an
adaptive adversary in a single-hop environment. The MAC proto-
col has been adapted for multi-hop wireless networks [26] as well
as for reactive jammers [27]; interestingly, a competitive through-
put can be obtained even in these more general scenarios, although
the nodes’ cumulative sending probability may vary within a larger
range compared to the single-hop, non-reactive scenario. Our work
complements this line of research on MAC protocols [5, 26, 27]
and focuses on a fundamental application in wireless networks:
the problem of electing a leader. To achieve this, our leader elec-
tion protocol builds upon the techniques described in [5] to adjust
medium access probabilities in a multiplicative manner to resolve
contention efficiently and recover from jammed time periods, and
introduces a scheme on top of the MAC protocol that allows the
nodes to obtain a consistent view on the application’s state and the
presence of potential leaders. (Note that we slightly adapted the
medium access protocol itself and tailored it for the leader election
problem: for instance, leaders increase their medium access proba-
bilities faster than followers in order to increase the likelihood of a
successful leader message transmission.)

A leader election protocol has already been sketched briefly
in [5]. However, this algorithm is rather preliminary and not ro-
bust. For instance, if a leader leaves the network, the other nodes
cannot realize its absence in order to, e.g., elect a substitute. In
contrast, in this paper, we propose a self-stabilizing leader election
protocol that converges to the desired state from any initial config-
uration. We believe that this is a vital property in real networks
where membership is dynamic. Moreover, in contrast to [S], we
focus on a reactive jammer model, because (1) many nodes support
carrier sensing today; (2) the reactive model is more general and
hence more difficult than the adaptive model; and finally, note that
(3) a reactive model can also make sense in scenarios without jam-
mers, e.g., in co-existing networks: many MAC protocols based on
carrier sensing activate nodes during idle time periods. It turns out
that protocols that perform well under adaptive jammers may have
a high convergence time under reactive jammers, and hence addi-
tional techniques are required. For example, by selective jamming,
a reactive adversary can find out certain (e.g., pseudo-random and
secret) communication patterns and become even more powerful in
the future. Moreover, in contrast to the protocol in [5], we syn-
chronize of the nodes’ sending probabilities (which also improves
fairness).

Our Contribution. This paper presents SELECT (“SEIf-
stabilizing Leader EleCTion”), a protocol that solves the leader



election problem in harsh environments—namely in wireless
networks under adversarial reactive jamming—and in a self-
stabilizing manner, independently of the initial network state. We
believe that self-stabilization is a crucial feature in real networks
where membership is often dynamic. Although our algorithm is
randomized, we will present a formal proof that its correctness
holds deterministically. Moreover, while our analysis is rather in-
volved, the SELECT protocol itself is simple and hence easy to im-
plement.
Concretely, in this paper we will derive the following theorem.

THEOREM 1.1. Given an arbitrary initial configuration and in
the absence of state faults, our leader election protocol reaches a
state where there is exactly one leader and n — 1 followers, despite
a reactive (T, 1 — €)-bounded jammer; for any T  and any constant
e > 0.

In SELECT, the nodes do not have to know anything about the
system for the protocol to work. The only assumption that we need
is that some fixed common parameter v used by the nodes satisfies
v = O0(1/(log T + loglogn)). AslogT and loglog n are small
for all reasonable values of T" and n, this is scalable and not a crit-
ical constraint, as it leaves room for a super-polynomial change in
n and a polynomial change in T over time.® Thus, in practice we
expect that choosing «y to be a sufficiently small constant yields a
good performance for any practical network, which is confirmed by
our simulations.

2. THE SELECT PROTOCOL

SELECT is based on the following idea. Each node v maintains
a parameter p, which describes v’s probability of accessing the
medium at a given moment of time. That is, in each round, each
node v decides to transmit a message with probability p, (e.g., in
an attempt to become a leader). (This is similar to classic random
backoff mechanisms where the next transmission time ¢ is chosen
uniformly at random from an interval of size 1/p,.) The nodes
adapt and synchronize their p,, values over time in a multiplicative
increase multiplicative decrease manner, i.e., the value is lowered
in times of high interference or increased during times where the
channel is idling. However, p, will never exceed p, for some con-
stant 0 < p < 1.

In addition, each node maintains two variables, a threshold vari-
able T, and a counter variable ¢, . T, is used to estimate the adver-
sary’s time window 7": a good estimation of 7" can help the nodes
recover from a situation where they experience high interference in
the network. In times of high interference, T, will be increased and
the sending probability p, will be decreased.

Initially, every node v sets ¢, := 1 and p,, := p. Note however
that while we provide some initial values for the variables in our
description, our protocol is self-stabilizing and works for any initial
variable values, as we will show in our proofs.

SELECT distinguishes between two node roles: follower and
leader. We use s, to indicate the role of the node: s, = 1 means
that node v is a leader, whereas s, = 0 means v is a follower. The
basic idea of our protocol is to divide time into intervals of a small
number of rounds specified by the constant parameter b > 5 (we
use the variable mc as a modulo counter); in the following, we will
refer to a sequence of rounds between two consecutive mc = 0
events as a b-interval. (Of course, it can happen that all b slots of
an interval are jammed.)

30n the other hand, note that the assumption that the nodes know
constant factor approximations of n or 7" directly would render the
problem trivial. Moreover, such an assumption is unrealistic and
non-scalable.

Our protocol is based on the concept of so-called leader slots,
special rounds—in each b-interval through which SELECT cycles—
in which leaders are obliged to send an alive message (a so-called
leader message) and in which followers keep silent. The idea is
that the followers learn that the leader has left in case of an idling
medium during a leader slot (of course, the leader slots may be
jammed!) and a new election is triggered automatically.

SELECT uses four leader slots:* ls1, lss, ls3 and [s4. Of course,
in the beginning, all nodes may have different [s values and may
disagree on which slots during the b-interval are leader slots. How-
ever, over time, the nodes synchronize their states and a consistent
view emerges. For the synchronization, five temporary variables
Is, Is}, 1s5, Is%, and 1s); are used, which store future Is values.

Depending on whether the node is of type follower or leader, the
leader slots are updated differently: At the beginning of a new b-
interval, a leader copies its Is; values to the [s; values. A follower
on the other hand copies the Is’ values “diagonally” in the sense
that s; is copied to Isj,; fori € {0,1,2,3}. As we will see, this
mechanism ensures that an elected leader covers the leader slot [s3
of each follower. (SELECT guarantees that the reactive adversary
has no knowledge about the /s3 slots at all until it is already too late
to prevent a successful election.) Another special slot besides Is3
is Is(, which is a random seed to mix the execution for increased
robustness.

In Figure 1 we give the detailed formal description of the fol-
lower and the leader protocol, respectively. Recall that our algo-
rithms can tolerate any initial values of mc, p., T, Cv, Suv, Sk, 151,
Is2, lss, lsy, 1s(, 1Y, 1s5, 1s%, 1sy. For instance, in the beginning,
all nodes v may be leaders and for all v, s, = 1. However, the fixed
parameters used by the algorithms, namely p, v, or b, are assumed
to be immutable.

Both the follower and the leader algorithm consist of three main
parts. The b-interval wise update (Lines 2 — 4) makes sure that [s
values are refreshed frequently. Lines 6 — 33 (in case of a follower)
and Lines 5 — 24 (in case of a leader) are used for medium access in
order to synchronize the nodes’ states (by a message that includes
¢v, Ty, and p, values) and give nodes the chance to become or
remain leader (by a ‘LEADER’ message). The last sections of the
algorithms are used to react to high interference (by reducing p,)
and to reset leader slots. The reason for checking whether ls3 is
undefined in Line 6 of the follower protocol is to keep the leader
slots hidden from the reactive adversary until it is already too late
to prevent a successful leader election.’

Both the follower and the leader protocol depend on the follow-
ing crucial CONDITION.

DEFINITION 2.1 (CONDITION). We define CONDITION
(Line 37 for followers, and Line 28 for leaders) as the event that at
least one ‘LEADER’ message was received during the past b - T,
steps.

The idea is that if CONDITION is fulfilled, we know that the pro-
tocol is already in a good state. Moreover, we will see that the
adversary cannot prevent CONDITION to become true for a long
time as the T, values would continue to increase.

Finally, also note that leaders increase p, faster (i.e., by larger
multiplicative factors) during idle rounds than followers. With this
mechanism, SELECT improves the likelihood that a ‘LEADER’
message gets through and hence that a unique leader is elected.

*It is an open question whether a protocol with less leader slots can
be devised.

This check would not be necessary against a non-reactive adver-
sary.



Algorithm 1 Leader Election: Follower
1: me:=c¢, modb
2: if mc = 0 then

3: sy == 1s(, lsg 1= 18], Isg 1= Ish, Isy :=lsh

4 Sy 1= Sh

5: end if

6: if (Is3 = undefined) or (mc # ls; and mc # lso and

mc # lsz and mc # ls4) then

7: v decides with p,, to send a follower message
8: if v sends a follower message then
9: the message contains:
10: cey = 1s, cea = 1sh, ceg i= lsh, ceq 1= 1sh,
Cnew = Cus Tnew = Ty, Prnew = Pv
11: end if
12: end if
13: if v does not send a follower message then
14: v senses the channel
15: if channel is idle then
16: if mc = ls3 then
17: s i=1
18: Py =D
19: else
20: po :=min{(1 +v)p,, p}
21: end if
22: else if v receives ‘LEADER’ then
23: s =0
24: ls3 := undefined
25: lsh := unde fined
26: else if v receives a tuple of {cc1, cca, ces, cca, Crew,
Thews Pnew} then
27: Ty :=Thew
28: Poi=(147) " Pnew
29: Cy = Cnew
30: ls( := random(0,b — 1)
31: s} == ceq, lsh == ceo, lsh = ces, Isly = ceq
32: end if
33: end if

34: ¢cpi=cp+ 1
35: if ¢, > b- T, then

36: cy =0

37: if (not CONDITION) then

38: poi=(1+7)"'py, T :=T, +1

39: lsy := wundefined, s} := undefined,
lsh := wundefined, lsy := undefined,
ls) := unde fined

40: else

41: T, := max{T, — 1,4}

42: end if

43: end if

Algorithm 2 Leader Election: Leader
I: mc:=c¢, mod b
2: if me = 0 then

3: sy = 18], lsy :=lsh, lsg :=lsh, Isy := ls)y
4: end if
5: if me = lsy or me = lsy or me = lsz or me = sy
then
6 v sends the leader message ‘LEADER’
7: else
8 v decides with p,, to send ‘LEADER’
9: if v does not send ‘LEADER’ then
10: v senses the channel
11: if channel is idle then
12: pp = min {(1 + v)?p,, p}
13: else if v receives a message then
14: poi=(1+7)""p,
15: if message is ‘LEADER’ then
16: Sy :=0,58,:=0
17: lss = wundefined, lsh :=
unde fined
18: else if message is a follower message,
i.e., a tuple of {cey, cea, ces, cea, Crews
Thews pnew} then
19: ¢y = Cnews Ty = Thew
20: s} = cey, lsh = cep, Ishy := ces,
Is) := ceq
21: end if
22: end if
23: end if
24: end if
25: ¢y i=cy+ 1
26: if ¢, > b- T, then
27: ¢y, =0
28: if (not CONDITION) then
29: poi=1+7)"tpy, Ty =T, +1
30: lsy := undefined, ls§ = undefined,
Ish := undefined, ls5 = undefined,
s}y := unde fined
31: else
32: T, = max{T, — 1,4}
33: end if
34: end if

Figure 1: Algorithm for followers (left) and leaders (right).

3. ANALYSIS

This section shows that the randomized SELECT protocol is
guaranteed to eventually reach a situation where there is exactly
one leader and n — 1 followers. We make use of the following
definitions. First, we define the system state.

DEFINITION 3.1 (STATE AND SYSTEM STATE). The state of
node v is determined by the state of the variables p,, Ty, v, Sv,
sh, me, Isp, 1s1, 1sh, 1sa, 1sh, 1s3, 1sh, 1s4 and ls)y. The state of the
system is the set of the states of all nodes.

We use the following LSy, set to describe the union of all possi-
ble leader slot values present in the system.

DEFINITION 3.2 (THE LS STATE SET). For any given sys-
tem state, let LS, = {ls1(v), ls2(v), ls3(v),ls4(v) |v is leader}
\{undefined}.

The system can be in several special states which are formalized

next: follower states, pre-leader states, and leader states. Let [b] =
{0,...,b—1}.

DEFINITION 3.3 (FOLLOWER STATE). A state S is called
a follower state, denoted by S € FOLLOWER, if all the
following conditions hold. (i) All nodes are followers (Vv €
V i sy, = 0); (ii) for every node v: ls1(v),ls2(v),ls3(v),
lsa(v) € [b] U{undefined}, Is](v), ls5(v), Is3(v), Isy(v) €
(6] U {undefined}, lsy(v) € [b]; (iii) the follower nodes can be
partitioned into two sets {v} and V \ {v}, according to their ls'
values (v is the node that successfully sent the last follower mes-
sage); for each w € V' \ {v}: ls](w) = Isp(v), Ish(w) = 1s] (v),
Iss(w) = Ish(v), Ish(w) = Ilsz(v), and lsa(w) = Is1(v),
Iss(w) = ls2(v), and lsa(w) = ls3(v), (iv) for any pair of fol-
lower nodes v, w € V with lsy(v) € [b] and ls3(v) € [b], ¢y = cw
and T, = T.

We use the concept of so-called pre-leader states, i.e., states that
result from follower states before some nodes become leaders.

DEFINITION 3.4 (PRE-LEADER STATE). A state S is called
a pre- leader state, denoted by S € PRE — LEADER, ifitis a
follower state, and at least one follower node v has s,, = 1.



While in the beginning, the leader sets may be large as each node
regards different slots during the b-interval as the “leader slots”,
over time the values synchronize and the LS sets become smaller.
This facilitates a fast leader (re-) election.

DEFINITION 3.5 (LEADER STATE). A state S is called a
leader state, denoted by S € LEADER, if all the following condi-
tions are satisfied:

(i) There is at least one leader, i.e, |{vjv € V : s,
1} > 1; (i) for every node v, ls1(v),ls2(v),ls3(v),lsa(v)
[b] U {undefined}, Isy(v),ls5(v),ls5(v),lsy(v) € [b]
{undefined}, lso(v) € [b; (i) let v be any fol-
lower and let w be any follower or leader, then ls3(v)
{ls1(w),ls2(w),ls3(w),lsa(w)} U {undefined}, sy (v)
{lso(w), Is1(w), sy (w), ls5(w)} U {undefined}; (iv) |LSL|
5; (v) for every follower w with lss(w) € [b] or lsh(w) € [b],
Ccw = ¢y and T, = T, for any leader v.

IANmms=Cml

So in a leader state, it holds that any follower’s Is3 and [s5 slots are
covered by either another follower’s Is and Is’ slots, or a leader’s
Is and [s slots (cf Condition (iii)).

Finally, it is useful to define safe and legal states.

DEFINITION 3.6 (SAFE AND LEGAL STATE). A system state
S is called safe (denoted by S € SAFE) if S € FOLLOWER or
S € LEADER, and legal (denoted by S € LEGAL) if S is safe
and there is exactly one node v with s, = 1.

Thus, according to our definitions, any legal state is also a safe
state. In the following, let S be the set of all possible system states,
SAFE C S be the set of all safe system states and LEGAL C
SAFE be the set of all legal system states.

The proof of Theorem 1.1 unfolds in a number of lemmas. An
interesting property of our randomized algorithm is that it is guar-
anteed to be correct, in the sense that deterministically exactly one
leader is elected; only the runtime is probabilistic (i.e., depends on
the random choices made by SELECT).

First, we study leader messages.

LEMMA 3.7. For any network state it holds that if a leader suc-
cessfully transmits a ‘LEADER’ message, the system will immedi-
ately enter a legal state.

PROOF. When a node (either follower or leader) receives a
‘LEADER’ message, it sets ls3 and ls5 to undefined (Lines
22 — 25 in Figure 1 left; after Lines 15 — 17 of Figure 1 right),
and considers itself a follower. Thus, in the new state, there is ex-
actly one leader (the sender of the ‘LEADER’ message) and n — 1
followers. The state is also a safe state, namely a leader state: Con-
ditions (7) and (%) are fulfilled trivially. Condition (iv) also holds
as there is only one leader that has four slots. Condition (4i%) is
fulfilled because nodes receiving a ‘LEADER’ message reset their
slots Is3 and Ish; since Is3 and s are undefined for a follower,
also Condition (v) holds. [

We next consider what happens if nodes hear a message sent by
a follower.

LEMMA 3.8. For any network state it holds that when a fol-
lower successfully transmits a message, the system is guaranteed
to enter a safe state at the beginning of the next b-interval.

PROOF. First note that if a leader message gets through before
the next b-interval, the claim holds trivially due to Lemma 3.7.

Otherwise we distinguish two cases: (A) For every node v, s,, =
0 (not pre-leader) and s, = 0 (not leader) by the end of current

b-interval. (B) There is at least one node v with either s, = 1
(pre-leader) or s, = 1 (leader) by the end of current b-interval.

In Case (A), after the follower message has been successfully
sent, there are still n followers and no leaders or pre-leaders. We
will show that the system enters the follower state at the begin-
ning of the next b-interval. Let us refer to the follower node that
sent the message by v and to any remaining node by w. When
w receives the message from v (Lines 26 — 32 in Figure 1 left),
it sets s} (w) = Isy(v), lsh(w) := Is](v), Isz(w) := ls5(v),
and s} (w) := Is5(v). The c values become the same (c,, = cy),
and T3, := T,. The new state therefore fulfills the follower state
conditions: Clearly, Conditions (z), (i%), and (év) are fulfilled im-
mediately, and Condition (7i¢) holds as well, as for all followers
w that did not send a message and follower v which sent a mes-
sage, at the beginning of the next b-interval: Is3(w) = lsh(w) =
Is1(v) = Is2(v), Iss(v) = Ilsh(v) = Isz(w) = lss(w), and
Is1(v) = ls2(w) = Isp(v) = Is](w).

For Case (B), observe that during the remainder of the b-interval
the number of pre-leader nodes with s, = 1 cannot decrease, and
hence there will be at least one leader at the beginning of the next
b-interval. We now show that the new state will indeed be a leader
state as nodes “synchronize” with the follower node that sent the
message. Without loss of generality, assume that node u is the last
follower that successfully sent a follower message in the current
b-interval. Let us refer to the other follower nodes by v1 and to
the leader nodes or the pre-leader nodes (i.e., the followers v with
s, = 1) by vo. Again, Conditions (7) and (44) are fulfilled trivially.
As for Condition (7i7), we need to consider two sub-cases:

(Case 1) No node experienced an idle channel in its [s3 slot
after the message has been successfully sent. If this is the case
and follower u is not a pre-leader, it holds that for follower
vi: lsh(v1) = lsh(v2) = Is}(u) in the current b-interval, and
lsz(v1) = lsa(v2) = lsa(u) at the beginning of the next b-
interval; on the other hand, if follower u is a pre-leader, then in
the current b-interval it holds that for follower vi: lsh(vi) =
Ish(ve) = Isi(u), and ls3(vi) = Is2(v2) = Is1(u) at the be-
ginning of the next b-interval. Hence, Condition (ii7) holds. Re-
garding the cardinality of the leader set LSy, observe that at the
beginning of the next b-interval, if u is not a pre-leader, all lead-
ers will have Is; = Isp(u),lse = Isi(u),lss = lsh(u),lssa =
Is5(u), and hence LSy, = {lsg(u), s} (u),ls5(u), ls5(u)}, there-
fore |[LSL| < 5; otherwise, if u is a pre-leader, then LSy, =
{ls6(u),1s] (u), ls5(u), 1s5(u), Is4(u)}, therefore |LSL| < 5.

(Case 2) One or more nodes experienced an idle channel in their
ls3 slots after the message has been successfully sent. In the fol-
lowing, we prove this case correct assuming that u is a follower and
not a pre-leader. If u is a pre-leader, the proof is analogous.

1. If v1 experienced the idle channel at its [s3 time slot, and be-
came a pre-leader:
Note that a node v; may experience an idle channel af-
ter receiving the message from w and hence become a pre-
leader, however Condition (#i%) is still satisfied, as it holds
that for follower u: ls5(u) = ls3(v2) = Ils3(v1) in the
current b-interval and Is3(u) = ls3(ve) = lss3(v1) at the
beginning of the next b-interval. As for the cardinality of
the leader set LSy, observe that at the beginning of the
next b-interval, all leaders will have Is1 = Isy(u),lss =
Isi(u),lss = lsh(u),lsa = ls3(u), and hence LSy =
{ls(u), 1s] (u), sy (u), ls5(u)}, therefore | LS| < 5.

2. If u experienced the idle channel at its [s3 time slot, and be-
came a pre-leader:
If node u experienced an idle channel after successfully



sending the message, u became a pre-leader, and we have
for a follower v1, Is5(v1) = Is5(v2) = Is’ (u) in the current
b-interval and Is3(v1) = ls2(v2) = Is1(u) at the beginning
of the next b-interval. Hence, Condition (i) is satisfied.
As for |LSL|, observe that at the beginning of the next b-
interval, for a leader vo, Is1 = Isy(u),ls2 = Is](u),lss =
Ish(u),lsa = Is5(u), while for the remaining leader u, it
holds that Is1 = s} (u),ls2 = Is5(u),lss = Iss(u),lss =
Is}(u). Hence, also in this case, we have that |LSL| < 5.

Finally, Condition (v) is true for both of the sub-cases, because
the ¢, and T, values are “synchronized” when the follower mes-
sage is received (Lines 27 and 29 in Figure 1 left; Line 19 in Fig-
ure 1 right). [

An important property of SELECT is that once it is in a safe state,
it will remain so in future (given that there are no external changes).
Similar properties can be derived for other states, as we will see.

LEMMA 3.9. Once the system is in a safe state, it will remain
in a safe state in the future.

PROOF. We study what can happen in one round, and show that
in each case, the safety properties are maintained. In a round, (A)
either a ‘LEADER’ message is successfully sent, (B) a follower
message is successfully sent, (C) there are collisions or the channel
is jammed, or (D) there is an idle channel.

In Case (A), the claim directly follows from Lemma 3.7 and from
the fact that safe states are a super set of the legal states (SAFE D
LEGAL). In Case (B), the claim follows from Lemma 3.8 and by
the fact that the system is in the safe state already.

In Case (C), if the channel is blocked, follower nodes (even those
which sent a message in this round) do not change their state except
for the synchronized rounds in Lines 35 — 43, and similarly for
the leaders in Lines 26 — 34. Our protocols guarantee that the
leaders have the same ¢, and T, values as the followers when [s3
and [s4 are valid, and since the leaders experience the same number
of successful transmissions and idle time steps as the followers do
(single-hop network), the claim follows.

If there is an idle channel (Case (D)), all nodes v for which
Iss(v) = mec will set s, = 1 in the current b-interval, while
other values remain the same. It is clear that from this point on
until the end of the current b-interval, the claim holds. More-
over, as we show next, the claim is still true at the beginning
of next b-interval. If ls3(v) is undefined, then the claim holds
trivially, as no states will change in this case. If ls3(v) = mec
for any node v and the nodes experience an idle channel, there
is no leader since, if there was a leader, according to Condi-
tion (#73) of the leader state definition (Definition 3.5), a fol-
lower’s [s3 slot would always be covered by a leader slot of a
leader, which yields the contradiction. Hence, the current safe
state must be a pre-leader state. Let v denote the followers that
have s, = 0 (i.e., they are not pre-leaders); let u denote the fol-
lowers with s;, = 1 (pre-leaders). In the current b-interval, we
have Is5(v) € {lsg(u),ls(u),lsh(u),ls5(u)} U {undefined},
which is true according to Condition (4i3) of the follower state def-
inition (Definition 3.3). Then, at the beginning of next b-interval,
u will become a leader, and hence we have ls3(v) = ls5(v),
Is1(u) = s (u), Is2(u) = Is5(u), and Is3(u) = Is5(u). This
implies that Is3(v) € {lso(u),ls1(u), ls2(u), lss(u)}, which sat-
isfies Condition (#47) of the leader state Definition 3.5. Condi-
tions (¢) and (4¢) are clearly satisfied. Condition (iv) holds simply
because we have shown (in Lemma 3.8, Case (B)), when there is
an idle time step, |LSr| < 5. Condition (v) is true because we
always synchronize the ¢, and T, values. []

LEMMA 3.10. Once a system is in a leader state, it will remain
in a leader state in the future.

PROOF. Lemma 3.9 tells us that the system will never leave a
safe state. Therefore, it remains to prove that there will always be
at least one node v with s, = 1. This clearly holds as the only way
a leader can become a follower again is by receiving a ‘LEADER’
message (see Lines 15 — 17), which of course implies that another
leader is still active and remains to be a leader. Also, since we
are in a leader state, Condition (v) holds and it further implies that
leaders will never invalidate their I s slots before the followers. This
guarantees that the protocol will never get out of a leader state. [

LEMMA 3.11. Once a system is in a legal state, it will remain
in a legal state in the future.

PROOF. By Lemma 3.9, we know that our system will never
leave a safe state again, and hence, we only need to prove that
there will always be exactly one node v with s, = 1. This
is true because in the safe state, a follower node w can never
become a leader, as its lss(w) slot is covered by the leader
v Iss(w) € {ls1(v),ls2(v),ls3(v),lsa(v)} and Ish(w) €
{lso(v), 151 (v),ls5(v),ls5(v)} (Condition (7iz) of leader state).
Since a follower will never send a ‘LEADER’ message, v will re-
main a leader forever, which proves the claim. []

Regarding convergence, note that the system quickly enters a
safe state, deterministically.

LEMMA 3.12. Ifor any initial system state with T = maxy, 1y,
it takes at most b - 'T" rounds until the system is in a safe state.

PROOF. We distinguish three cases: if a leader message gets
through sometimes in these rounds, then the claim holds by
Lemma 3.7; if a follower message gets through, then the claim
holds by Lemma 3.8. If within max,, T’,b rounds neither a follower
message nor a leader message gets through, all nodes will have to
reset their s slots (since CONDITION in Line 37 (Figure 1 left)
resp. Line 28 (Figure 1 right) is not met). This however constitutes
the safe state (all conditions fulfilled trivially), which is maintained
according to Lemma 3.9. []

Armed with these results, we can prove convergence.

LEMMA 3.13. Forany safe state, SELECT will eventually reach
a legal state.

PROOF. We divide the proof in two phases: the phase where the
protocol transitions to the leader state from the follower state, and
the phase where it transitions to the legal state from the leader state.

1. Follower state to leader state

If CONDITION is fulfilled, we know that a ‘LEADER’ mes-
sage got through and the system is in a legal state (and
hence also in a leader state). As long as CONDITION is
not fulﬁ}led, T, is increasing for each node v. So even-
tually, 7 = max, T, > 2T/b. We can also provide a
lower bound on the cumulative probability p. W.l.o.g. sup-
pose that T" > (3/€) log, , ., n (a smaller T will only make
the jammer less flexible and weaker). Suppose that p is at
most €/4 throughout some 7-interval I. Then it follows
from the standard Chernoff bounds that there are at most
€T'/3 busy steps in I with high probability.® If this is true,
then no matter how the adversary jams during I, at least

8<“With high probability”, or short “w.h.p.’, means a probability of
at least 1 — 1/n° for any constant ¢ > 0.



(1 —¢€/3)T — (1 —€)T = 2€¢T'/3 non-jammed steps will
be idle, which implies that the cumulative probability at the
end of I will be by a factor of at least (1 4+ 7)7/% > n®
higher than at the beginning of I. Using this insight, it fol-
lows that eventually a T-interval is reached with p > €/4.
Once such a T-interval has been reached, it is easy to show
that p will not get below 1/n? any more w.h.p. so that for ev-
ery T-interval afterwards there is a time point ¢ withp > ¢/4
w.h.p. So infinitely often the following event can take place
with some lower-bounded, positive probability:

Consider two consecutive T-intervals /1 and I starting at
a time when ¢, = 0 for every node v. Suppose that I;
just consists of busy steps and [> just consists of idle time
steps. Then the adversary has to leave €I busy time steps
in /1 non-jammed and €7’ idle time steps in /2 non-jammed.
For I, there is a positive probability in this case that ex-
actly 3 messages from different nodes are successfully sent
in 3 different b-intervals. In this case, all but one follower
respect the leader slots (as their /s3-value is defined) while
the follower that sent the last successful message may still
send out messages at all time steps (as its [s3-value is still
undefined, see Line 6 of the follower protocol). Thus, it is
indeed possible that all time steps in I; are busy. Up to that
point, the adversary has not learned anything about the leader
slots. In I, there is also a positive probability that none of
the followers transmits a message throughout /2 so that all
time steps are idle. As the adversary does not know which of
them is a leader slot and has to leave €7' non-jammed, there
is a positive probability that [s3 is non-jammed, and some of
the followers become pre-leaders and then leaders.

Thus, the expected time to get from a follower to a leader
state is finite.

2. Leader state to legal state

If there is only one leader in the leader state, the system is
already in a legal state by definition. If there is more than
one leader, then we distinguish between the following cases.
If CONDITION is fulfilled, we know that a ‘LEADER’ mes-
sage got through and the system is in a legal state. Other-
wise, the leaders will invalidate all of their [s slots once their
¢, values are reset to 0. At this point there is a positive prob-
ability that for the next 7" steps a ‘LEADER’ message is suc-
cessfully sent. As the adversary has to leave €7 time steps
non-jammed, at least one ‘LEADER’ message will be suc-
cessfully transmitted within these 7" steps so that the system
reaches a legal state.

Analogous to the followers in the previous case, one can
lower bound the cumulative probability of the leaders (in
fact, the leaders will eventually reach a time point with a cu-
mulative probability of Q2(e) as they increase their probabili-
ties in case of an idle channel more aggressively than the fol-
lowers) so that the chance above of successfully transmitting
a ‘LEADER’ message repeats itself infinitely often with a
lower-bounded positive probability. Thus, the expected time
to get from a leader to a legal state is finite as well.

From these cases, the lemma follows. []

4. EXPERIMENTS

We conducted several simulations to study the behavior of SE-
LECT under different types of jammers and interference.

4.1 Performance under Jamming

For our formal analysis, we introduced the notion of a (7', 1 —¢)-
bounded adversary for some 7' € N and 0 < € < 1 which denotes
that for any time window of size w > T the adversary can jam at
most (1 — €)w of the time steps in that window. While our protocol
is provably robust to any adversary meeting these constraints, for
our simulations, we will need to focus on specific instantiations.
For example, we will consider an adversary that reactively jams all
non-idle time periods only (as long as the budget is not used up), in
order not to waste energy jamming idling periods.

We consider jammers of different powers, one that can block
the channel 90% of the entire time, one that blocks 70% of the
time, and a “weak” one that blocks 50% of the time (i.e., € €
{0.1,0.3,0.5}, resp.). We set ' = 100 and consider a b-interval
(see Figure 1) with parameter b = 15 (smaller b values are possi-
ble as well). Experiments are repeated 50 times for each individual
setting, and average values are recorded correspondingly. We run
each experiment until one and only one leader is elected.

We conducted experiments with different types of reactive jam-
mers: jammers AD Vg which interrupt transmissions at random,
jammers A D Vusy which only jam busy periods where one or more
nodes transmit, and jammers A D Vg, which jam the channel when-
ever it is idle. Concretely, for ADViuy and ADVige we assume
that the adversary will jam each busy resp. idle time period until
the “jamming budget” is used up for this T-period. For ADVang
we set the jamming probability per round equal to (1 —€). ADVige
may appear less challenging to the deal with. However, note that
an adversary may be able to lead a protocol to suboptimal states by
jamming idle time periods. Moreover, this scenario also describes
interference from co-existing networks where nodes are activated
in quiet times. Hence, this adversary constitutes an interesting case
that should not be neglected in the analysis.

Recall from Lemma 3.12 that from any initial state, the safe state
is reached quickly, and hence, we are mainly interested in the con-
vergence time from the safe state to the legal state. Figure 2 (left)
plots the corresponding convergence times. At first sight the run-
time may appear to be rather high. For example, under an adver-
sary ADViuna that jams 90% of the entire time, it takes a few thou-
sand time steps. However, note that this result implies that during
the merely a few hundred non-jammed time steps, the five hundred
nodes are able to successfully coordinate the medium access among
themselves—without being able to distinguish between time peri-
ods with collisions and time periods that are jammed!— and use
the computed access probabilities to elect a leader. We believe
that when taking this into account, and although we do not have
any lower bounds, the convergence time is very good and probably
cannot be improved much with alternative schemes.

Figure 2 (middle and right) presents the corresponding conver-
gence times for the reactive jammers AD Vi, and ADVige. As
expected, jamming the busy channel yields higher convergence
times, also when comparing these results to our experiments with
ADVang. In contrast, interestingly, for ADVige, the runtime is
fairly independent of the adversarial power: a reactive jammer
blocking idle channels gives similar results as ADViyna. Clearly,
among the scenarios we investigated, the most effective strategy
for the adversary is to reactively jam the busy time periods as long
as the total number of jammed time steps does not exceed (1—¢)-T".

Figure 3 complements Figure 2 by studying the execution times
in smaller networks.

Our protocol aims to quickly reach a cumulative sending proba-
bility around a small constant, such that on expectation, roughly
one node will try to transmit a message in a non-jammed step.
Thus, given the constant probability of having a successful trans-
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mission, a follower messages will get through soon, the nodes syn-
chronize, and the [s slots are defined as well. Since the leaders’
sending probabilities reach higher values more quickly than the
sending probabilities of the followers (according to Line 12 of Fig-
ure 1 right), a leader message gets through soon, yielding a legal
state. We consider two initial states, a “well-initialized one” where
all nodes have the maximum access probability p (in simulation we
set p = 1/24), where there is no leader in the network, and where
the Is and Is’ slots are all invalidated (according to Definition 3.3,
this implies that we are in the follower state); and one with “ar-
bitrary initialization” where the roles and variables are chosen at
random (each node is either follower or leader, p, is chosen uni-
formly at random between O and 1, and the /s values uniformly at
random between 0 and b — 1). Our experiments show that both sce-
narios yield similar results, which indicates that the convergence
time of self-stabilization if fairly independent of the initial state.
Figure 4 (left) shows a typical trace of the cumulative probabili-
ties over time when the protocol is well initialized, i.e., the protocol
starts from the follower state. Initially, all nodes are followers, and
we will denote the cumulative sending probability of the followers
by pr, and the cumulative sending probability of the leaders by pr..
At beginning, pr > 500 - p > 10 while p;, = 0. As time goes
on, pr decreases quickly until it falls in an interval of small con-

stant range (i.e., pr < 10), and multiple successful transmissions
happen which synchronize the nodes’ s and Is’ values. Next, mul-
tiple leaders are elected because many followers sense an idle time
step in their /s3 slot. That is why p; emerges at the same point
in time as pr decreases dramatically to a value between 0 and 1.
Then, the nodes continue to adjust their transmission probabilities
depending on the channel state, until the first leader message gets
through and all the other leaders become followers; this yields the
quick decrease of pr, and increase of pr accordingly. One and only
one leader is elected after this point. Subsequently, both pr and pr,
remain within a small constant range. Figure 4 (right) shows the cu-
mulative probabilities when the protocol starts from an “arbitrary”
state (pv, 1%, leaders and follower roles, etc. chosen at random). In
the beginning, there are both followers and leaders in the network.
It can be seen that SELECT converges fast, similarly to the well-
initialized case. After the legal state is reached, both pr and pr
also remain in a small constant range.

4.2 Co-existing Networks

Our leader election protocol is robust to arbitrary (but bounded
with respect to time) interruptions of the availability of the medium,
and it is convenient to regard these interruptions as caused by a
malicious adversary. However, there are many other forms of in-
terference to which our protocol is resilient and under which the
few available time slots can be exploited effectively. In the follow-
ing, we briefly report on one more source of interference, namely
co-existing protocol instances. Concretely, we remove the jammer
from the network and we compare the performance of our leader
election protocol when run alone to situations where additional net-
works (of the same size) are concurrently trying to elect a leader
and interfere with the other protocol instances accordingly.

Figure 5 (left) plots the averaged runtime until successful leader
election for one, two, three and four co-existing networks, as a
function of the corresponding sub-network sizes (i.e., four co-
existing networks imply a four times larger total number of nodes).
Our results indicate that each additional interfering network in-
creases the runtime by a factor corresponding to the additional
nodes. The convergence time among the co-existing networks ex-
hibits a high fairness, as can be seen in Figure 5 (right): in all
networks, a leader is elected almost at the same time.

5. CONCLUSION

This paper has introduced the first self-stabilizing leader elec-
tion protocol, SELECT, for wireless networks operating in harsh
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environments, e.g., environments with hard-to-predict interference
from co-existing networks or environments subject to (both adap-
tive and reactive) adversarial jamming. Although the nodes are not
able to distinguish between collisions due to external interference
or jamming and concurrent transmissions of other nodes in the net-
work, they are able to coordinate access to the medium in the few
and arbitrary time periods without external interference, and sub-
sequently elect a leader in a robust manner. Although our protocol
is randomized, it yields deterministic guarantees. There are several
important open directions for future research. For example, the
formal study of convergence times under different adversaries is an
open problem. Another open problem is the generalization of our
algorithms to multi-hop networks where leaders need to be elected
in different regions (e.g., in order to construct a sparse backbone).
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