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Abstract— This paper studies the question of how to over-
come inefficiencies due to hidden actions in a rational mi-
lieu, such as a grid computing system with open clientele.
We consider the so-called principal-agent model known from
economic theory, where the members (or agents) of a distributed
system collaborate in complex ways. We adopt the perspective
of the principal and investigate auditing mechanisms that
incentivize participants to contribute more to a common project.
As conducting audits might be costly, the principal must
balance the tradeoff between low auditing costs and the level
of incentives offered to the participants to exert high effort.
We present optimal solutions for this optimization problem in
scenarios, where the project success either depends on all, on
any or on the majority of the participants succeeding in their
subtask. In the first case, we additionally find that with an
increasing principal valuation, there is exactly one transition
point where the optimal choices for achieving the maximal
principal utility switch. Compared to a combinatorial agency
without the leverage of audits, this transition occurs earlier.

I. INTRODUCTION

The Internet heralded a new computing paradigm that
allows machines all over the planet to collaborate. It soon
became the platform for many success stories such as the
World Wide Web or the emailing system which had a
deep impact on our society in general. Distributed computer
networks today are decentralized. Different parts are operated
by different stakeholders and the participating machines are
no longer under a single administrative domain but under the
control of individual users. This has led researchers to use
game-theoretic models in order to gain deeper insights into
the functioning of these systems.

Distributed computing solutions such as grid computing
or peer-to-peer technology rely on resource contributions by
the participants. However, in the absence of a corresponding
incentive mechanism, participants may not be willing to
share some of their bandwidth or CPU cycles, but prefer
to free-ride. Unfortunately, it is often hard to uncover and
penalize selfish participants, because their actions are hidden.
For instance, in a computational grid network organized
by a central server that has an open clientele, the client
machines may compute different subtasks individually and
return their results to contribute to the overall project. Some
of these computations may be redundant, others not. The
server seeks to provide incentives to the participants as to
have them perform their calculations properly. However the
server typically only evaluates the overall outcome rather
than the quality of the individual computations. This situation

constitutes a so-called principal-agent problem where the
principal seeks to influence the effort made by the agents
indirectly by promising certain benefits or payments if the
project as a whole succeeds. This problem is well-studied
in economic theory and has many applications, e.g., in
organization theory.

In this paper, we seek to complement the existing literature
by focusing on the combinatorial structure of dependencies
between the agents’ actions. In particular, we study the
question of whether and how auditing one or more agents
can improve the efficiency of an agency. Of course, audits
can be costly. In grid computing, for instance, in order to
verify the result submitted by a client, the server may have
to recompute the subtask. Or in the context of a software
company, the Java classes programmed by an employee may
be checked during a code review by the entire team. When
auditing all agents is too expensive, it can make sense to audit
only a subset of agents at random. This paper shows that
such a sampling approach can indeed reduce the principal’s
cost to implement a desired outcome.

A. Related Work

Since the influential talk by Papadimitriou at STOC 2001
[25], many economic aspects (e.g., of the Internet) have
been investigated from a computational (or algorithmic) point
of view. In addition, measurement studies (e.g., [19]) have
confirmed the presence of selfish participants in today’s dis-
tributed systems, for example in peer-to-peer networks. Most
often, selfish behavior has a negative impact on a system’s
performance. Researchers in the field of algorithmic mecha-
nism design [23] seek to come up with implementations that
improve the efficiency or social welfare in selfish milieus.
The presence of selfish participants or cheaters in grid
computing [15] is also well-known [7], [29]. Solutions based
on so-called ringers [16] or Merkle trees [7] have been inves-
tigated. The work in [21] exploits the asymmetry between the
time-consuming computation of subtasks from scratch and
the more efficient result verification. In [6], the Lottery Tree
mechanism encourages contributions (and the solicitation
of new participants) in asymmetric network-effect systems
such as BOINC [1]. One difficulty in providing cooperation
incentives to the agents or players is information asymmetry.
While algorithmic mechanism design studies how to extract
private information from the participants, the principal-agent
theory [9], [17], [18] deals with hidden actions that influence



the final outcome. It has its origins in the theory of the
firms [4], [5], [20], [24]. Researchers have identified several
practical means to improve an agency, such as investments
into corporate culture, information systems (e.g., definition of
milestones), reputation and trust solutions, incentive systems
or bureaucratic control (cf also [13], [14]). Our work studies
the possibilities of probabilistic auditing.

This paper builds upon the seminal work by Babaioff,
Feldman and Nisan [2] who coined the notion of combi-
natorial agency. The authors initiated the study of handling
combinations of agents rather than single agents, and put an
emphasis on dealing with complex dependencies between
the agents’ actions. Babaioff et al. introduced the binary
agency model as a simplification and derived very interesting
results for different classes of action dependencies—which
they call technologies. Their paper has opened a wide
range of exciting questions. In [3], the same authors study
combinatorial agency where the agents mix strategies, and it
is shown that the principal can benefit compared to situations
where merely pure Nash equilibria are considered. In [10],
Emek and Feldman provide a complexity analysis of the OR
and series-parallel technologies, and present a FPTAS for
the OR technology. In contrast to this body of work, we
investigate the effect of audits. We allow the principal to
audit a number of agents and verify their work. While audits
come at a certain cost, we show that the cooperation among
the agents can be improved.

There are interesting results on the effect of control in
social psychology [11]. It has been estimated that in the
United States, more than 20 million workers were subject
to electronic monitoring in 1993, and that companies spent
more than USD 1 billion on monitoring software in 1996.
For example, Longhaul trucking firms used the Global Posi-
tioning System (GPS) to track the truck driver’s speed, fuel
use, and route location [28]. Pitman et al. [26] find that a
physically present surveillant can reduce the motivation of
individuals; [27] comes to a similar conclusion in scenarios
with video cameras. Falk et al. [12] evaluate the cost of
distrust experimentally and find that the principal earns 31
percent less if agents are control-averse. In contrast to this
work, we assume that the agents are rational in the strict
sense that they aim at maximizing their individual revenue.
As we will see, in this context, the possibility of conducting
audits does not reduce the principal’s utility. Moreover, we
will shed light on the question of how much auditing is
optimal for the principal.

B. Model

Our model is presented in three stages. We first explain the
general principal-agent setting. Subsequently, we introduce
the binary principal-agent problem as a simplification. Fi-
nally, we describe how a principal audits agents. Throughout
this paper, we will refer to the principal as a she and to an
agent as a he.

The Principal-Agent Setting: We consider a set of n (risk-
neutral) agents N = {1, . . . , n} which can be contracted and

audited by a principal. Each agent i has a set of possible
actions Ai, where each action ai ∈ Ai entails a certain cost
ci(ai) ≥ 0 to the agent. The combination of the actions
chosen by the agents yields a certain probabilistic outcome
o ∈ O according to a success function t : A1 × . . .×An →
∆(O), where ∆ is the set of probability distributions on
outcome O. This outcome is considered a monetary value (or
some other form of benefit) which accrues at the principal. In
the following, let a−i ∈ A−i denote the (n−1)-dimensional
vector of the agents’ actions excluding agent i, i.e., a−i =
(a1, ..., ai−1, ai+1, ..., an).

A crucial assumption underlying the principal-agent model
is that the principal cannot see the individual agents’ actions.
The principal motivates the agents by offering each agent
i a contract that specifies a payment pi for each possible
outcome of the whole project. Note that pi ≥ 0, i.e., agents
cannot be fined (limited liability constraint). Given these
contracts, the agents will optimize their personal utilities ui,
maximizing the expected payments pi they receive minus the
cost of the action ci(ai). Since the agents’ actions depend
on each other, we can model the situation as a game and
assume that the agents reach a Nash equilibrium.

In this paper, we adopt the point of view of the principal.
The principal seeks to design an optimal set of contracts
that maximizes her expected utility u(o), i.e., the expected
benefits minus the expected total payments

∑
i pi. The prin-

cipal thus creates a game for the agents, where the desired
behavior is a Nash equilibrium. Note that although there
might exist other Nash equilibria in the induced game, we
assume that the agents reach the equilibrium desired by the
principal. This is legitimate since any Nash equilibrium can
be implemented for free, e.g., by providing insurances to the
agents just in case the other agents would deviate from the
specific Nash equilibrium (cf [8], [22]).

The Binary Agency: In this paper, we will investigate a
simplified principal-agent model where each agent i only has
two possible actions: exert high effort (ai = 1) and exert low
effort (or shirk) (ai = 0). An agent’s cost are 0 for ai = 0
and ci for ai = 1. Moreover, the whole project can only
either succeed or fail, that is, the set of possible outcomes
O has cardinality two, and O = {success, failure}. As has
been pointed out by Babaioff et al. [2], this model already
contains the main interesting ingredients. How the agents
are organized and how the project success builds on the
combination of their contributions depends on the nature of
the project. For instance, in an assembly line setting, each
agent may be perfectly specialized and contribute exactly
one unique part to the project. In this scenario, there is no
redundancy and the project succeeds if and only if all agents
successfully provide their part. We will refer to such a project
as an AND technology. In contrast, in the OR technology,
the project succeeds if and only if at least one of the agents
successfully contributes its (sub-)task.

A technology is characterized by its success function t(a).
In this paper, we will focus on anonymous technologies:
a technology is called anonymous if the success function



t(a1, ..., an) depends only on the number—and not on a
particular subset—of agents who exert high effort. We then
write the success function as tm, where m is the number
of agents exerting high effort. Furthermore, we demand that
also the costs ci of all agents are identical, i.e., c = ci. Let
xi denote the probabilistc event of agent i succeeding in his
subtask. In particular, we will study the following technology
functions:

1) AND technology: The project is successful if all agents
succeed in their subtask, i.e., f(x) =

∧
i xi.

2) OR technology: The project is successful if at least
one agent succeeds in his subtask, i.e., f(x) =

∨
i xi.

3) MAJORITY technology: The project is successful if
a majority of the agents succeeds in their subtasks,
i.e., f(x) is 1 if at least n/2 agents succeed and 0
otherwise.

Audits: We are now ready to introduce the final component
to our model. We assume that in addition to observing the
overall outcome, the principal can audit a specific agent’s
action. Auditing agent i will reveal ai, but comes at a cost
κ.

With the possibility of audits, the principal may offer
slightly different contracts to the agents. She still offers agent
i a payment pi based on the outcome. If agent i is not audited,
he is paid pi if the project as a whole succeeds and 0 other-
wise, independent of his action. However, if he is audited and
it turns out that he has not exerted high effort, i.e., ai = 0,
the principal does not have to pay him, independent of the
project outcome. We say that the principal contracts with
agent i if pi > 0. The principal informs all agents about all
payments pi. We assume that the principal then chooses k out
of the l ≤ n contracted agents uniformly at random to audit
their contribution to the project. This yields a probability
π = k/l that agent i is audited. This audit probability is
communicated to the agents. While such a uniform audit
strategy is reasonable with anonymous technologies, it might
be better with non-anonymous technologies to inflict a more
sophisticated probability distribution with individual audit
probabilities πi.1

Let µi be 1 if agent i is audited and 0 otherwise. For
each agent, the principal stipulates a payment depending on
the project outcome, the agent’s action and µi. The payment
is hence a function pi : O × Ai × {0, 1} → R+. Agent
i’s utility depends on the expected payment pi he receives2,
which in turn is a function of the success probability under
the given technology t(a), his action ai and the probability
that he is audited, and the cost ci(ai) of the action: ui(a) =
pi(t(a), ai, µi)−ci(ai). We assume that the success function
t(a) is strictly monotone in the sense that ∀i ∈ N, ∀a−i ∈
A−i : t(1, a−i) > t(0, a−i). The principal’s valuation of a
successful project is given by a scalar v > 0. The valuation

1If, for instance, it is vital for the project that agent i succeeds whereas
agent j’s contribution is less important for the project success, the principal
might be best off by auditing agent i (πi = 1) for sure and agent j with
a low probability (πj << 1). However, we do not explore these issues in
this work.

2Note that in the following, we will simply write pi instead of E[pi].

of a project failure is 0. The principal’s utility can hence be
expressed by

u(a) = v(t(a))−
∑
i

pi(t(a), ai, µi)− k · κ.

The principal’s aim is to maximize u under the assumption
that the agents are rational in the sense that they act so as
to maximize their expected utility in turn.

Finally, let us introduce some notation. In this paper, we
will analyze two shirker models, the shirking without contri-
bution model M0 and the shirking with contribution model
M1. We will indicate the studied technology as a subscript
(AND for AND technologies, OR for OR technologies, and
MAJ for MAJORITY technologies). For example, M0

MAJ

refers to the no contribution model under a MAJORITY
technology.

II. GENERAL OBSERVATIONS

We start our analysis with some general observations. First
of all, since the principal can always choose to audit no
agents at all, we have the following trivial fact.

Fact 2.1: The possibility of auditing can never be detri-
mental to the principal’s utility.

We now want to study the impact of audits on the prices
that need to be paid to the agents.

Theorem 2.2: If the principal decides to contract agent i,
she will offer him a payment

pi =
ci

t(1, a−i)− t(0, a−i)(1− π)
.

The principal’s utility is

u(a, v) = t(a) · (v −
∑
i

pi)− k · κ.

Agent i’s utility is

ui(1, a−1) = ci

(
t(1, a−i)

t(1, a−i)− t(0, a−i)(1− πi)
− 1
)

if he is contracted and 0 otherwise.
Proof: Given the other agents’ actions a−i, agent i will

exert high effort if and only if the contracted payment pi im-
plies that ui(1, a−i) ≥ ui(0, a−i), i.e., pi(t(1, a−i), µi, 1)−
ci(1) ≥ pi(t(0, a−i), µi, 0)− ci(0). We have pi · t(1, a−i)−
ci ≥ pi · t(0, a−i)(1 − πi) ⇔ pi ≥ ci/(t(1, a−i) −
t(0, a−i)(1−π)). Thus, the principal will only offer contracts
with pi = ci/(t(1, a−i) − t(0, a−i)(1 − πi)). Offering a
smaller or larger amount of money is wasteful as it has no
influence on the agent’s decision. The principal and agent
utilities then follow from our definitions.

Note that in anonymous technologies, an optimal payment
is pi = c/(tl−tl(1−π)) where l is the number of contracted
agents. This yields a principal utility u(v) = tl · (v − lpi)−
kκ and an agent utility ui(ai = 1) = tlc/(tl − tl−1(1 −
π)) − c if contracted and 0 otherwise. Since the payments
are identical for all contracted agents, we usually omit the
index i, i.e., p = pi. Additionally, Theorem 2.2 reveals the
fact that auditing only affects the optimal payment offered to
an agent whom the principal wants to contract with. Thus,



for the principal, auditing a non-contracted agent would not
decrease the payments needed to have this agent exert high
effort. On the contrary, it would even increase the costs for
her, because the extra audit would cost her κ.

Fact 2.3: It makes no sense to audit non-contracted
agents.
This justifies the design decision already incorporated in our
model that the principal only conducts audits among the
contracted agents. The principal may increase an agent’s
chance π of being audited by carrying out more random
audits. The higher π is, the less she has to pay agent i in
order to contract with him. However, increasing π comes at a
cost: the principal must pay the extra audits. Thus, it is often
not optimal for the principal to simply audit all contracted
agents, but rather a fraction or even no agent at all. This
depends on the magnitude of the audit cost κ.

III. SHIRKING WITHOUT CONTRIBUTION

This section studies the case where a shirker—an agent
who does not exert high effort—does not contribute anything
at all to the project. Hence, we presume that the probability
of an agent’s subtask being completed successfully is zero
if he shirks. If he exerts high effort, his subtask succeeds
with a certain probability δi < 1. We call this case as
the no contribution case and refer to it as M0. Recall
that under optimal contracts, a rational agent exerts high
effort (ai = 1) if he is contracted and he shirks (ai = 0)
otherwise. In the following, we further assume that all agents
have the same success probability, i.e., δi = δ ∀i ∈ N .
We proceed by examining the no contribution case under
different technologies.

A. AND Technology

A first observation is that in the AND technology, the
probability of project success is always zero if less than all n
agents exert high effort. Hence, it is only worthwhile for the
principal to either not contract with any agent and therewith
not to make any payments to the agents, or to contract with
all n agents. Applying Theorem 2.2, we get that the payment
which needs to be offered to an agent i if the principal wants
to contract with all agents is p ≥ c/δn, since t(0, ·) = 0.
Observe that this payment is independent of the number of
audits, k, and the audit costs κ. As conducting audits would
only cost the principal and in no way increase her utility,
auditing does not yield any benefits in the AND technology.
Moreover, note that the payments grow exponentially in the
number of agents, as the project’s success relies on each
agent contributing. We can state the following.

Theorem 3.1: The optimal utility of the principal in
M0

AND is given by

u(v) = max{δn · v − n · c, 0}.

If v > n · c/δn, it is worthwhile to contract all agents,
otherwise no agent is contracted. It is always best to carry
out no audits (k = 0).

Proof: Since auditing can only decrease the payments
needed to contract with an agent, and since p ≥ c/δn is

independent of k, it is never worthwhile to invest any money
in audits. Thus, k = 0 and hence also the total auditing cost
κ · k = 0. We only need to consider two cases: either all
agents are contracted or none. This yields a principal utility
u(v) of δn · v− n · c if all agents are contracted and 0 if no
agent is contracted. The principal always chooses the better
of the two options, and hence, the claim follows.

B. OR Technology

In the OR technology, the project already succeeds with a
probability δ if only one agent exerts effort. Each additional
contracted agent diminishes the failure probability by a factor
of (1−δ). It turns out that the analysis of the OR technology
is more difficult.

Theorem 3.2: InM0
OR, if the principal contracts l agents

and conducts k ≤ l audits, the lowest payment for which
a contracted agent exerts effort is p = c/((1 − (1 − δ)l) −
(1− (1− δ)l−1)(1− k/l)). The resulting principal utility is
u(v) = (1− (1− δ)l)(v − l · p)− k · κ.

Proof: The project’s success probability in the OR
technology is given by tl = (1 − (1 − δ)l) where l is the
number of contracted agents. Applying this success function
tl to Theorem 2.2 yields p and u.

Theorem 3.2 allows the principal to compute the optimal
number of contracted agents l and the optimal number of
audits k ≤ l. If done without any optimizations, this requires
O(n2) function evaluations. It is interesting to study how
l and k relate to each other. Assume for a moment that
l is fixed. Auditing an additional agent (k := k + 1) will
reduce the payment p needed to contract an agent, but at the
same time, it costs κ. For a given l, the optimal choice of
k follows from the equality of this additional gain and the
additional loss, i.e., when l·c

(1−(1−δ)l)−(1−(1−δ)l−1)(1−(k+1)/l)

− l·c
(1−(1−δ)l)−(1−(1−δ)l−1)(1−k/l) = κ. We omit an analytical

characterization of the optimal k but present some numerical
results. Figure 1 (left) plots the effect of different audit
costs κ on the principal’s utility u. The figure illustrates
that, as expected, for larger κ, the principal’s utility declines.
Moreover, for larger κ, in order to maximize the utility, fewer
audits are conducted. Figure 1 (right) studies the effect of
different agent costs c. For larger c, the utility is smaller, and
it is worthwhile to audit more agents. Furthermore, we see
that for many configurations of κ and c, the optimal number
of audits is not simply 0 or l, but a value in between.

C. MAJORITY Technology

To conclude our analysis of the no contribution case, we
consider the MAJORITY technology where at least half of
the agents must be successful.

Theorem 3.3: In M0
MAJ , if the principal contracts l

agents and conducts k ≤ l audits, the lowest payment for
which a contracted agent exerts effort is

p =


c

Υl
n/2−Υl−1

n/2·(1−k/l)
if l > n/2

c
Υl

n/2
if l = n/2

∞ otherwise

,



0

10

20

30

40

50

60

70

80

90

1
1.

4
1.

8
2.

2
2.

6 3
3.

4
3.

8
4.

2
4.

6 5
5.

4
5.

8
6.

2
6.

6 7
7.

4
7.

8
8.

2
8.

6 9
9.

4
9.

8

k

U
til

ity

Kappa = .5
Kappa = 1
Kappa = 2
Kappa = 4
Kappa = 6
Kappa = 8

0

10

20

30

40

50

60

70

80

1

1.
4

1.
8

2.
2

2.
6 3

3.
4

3.
8

4.
2

4.
6 5

5.
4

5.
8

6.
2

6.
6 7

7.
4

7.
8

8.
2

8.
6 9

9.
4

9.
8

k

U
til

ity

c = 1/4
c = 1/2
c = 1
c = 2

Fig. 1. Left: Principal’s utility (as a function of the number of audited agents k) for different κs: κ = .5, κ = 1, κ = 2, κ = 4, κ = 6, κ = 8. For this
experiment, we used l = 10, v = 100, c = 1, and δ = .9. Right: Principal’s utility for different agent cost c with l = 10, v = 100, κ = 8 and δ = .9.

where

Υβ
α =

β∑
j=α

(
j

n/2

)
· δj(1− δ)β−j .

This yields a principal utility of

u(v) = Υl
n/2 · (v − l · p)− k · κ,

where the payments p and Υβ
α are as given above.

Proof: The probability that the project succeeds with
exactly j ∈ {n/2, . . . , l} successful agents out of the l
contracted agents is binomially distributed. The MAJORITY
technology’s success function tl can be calculated by sum-
ming over all the possibilities of success. Hence tl is Υl

n/2

if l ≥ n/2 and 0 otherwise. Payment p and utility u then
follow from Theorem 2.2.

IV. SHIRKING WITH CONTRIBUTION

In the second part of this paper, we consider a setting
where an agent exerting low effort still contributes to the
project. We call this setting shirking with contribution case
and denote it by M1. Agents playing ai = 1 succeed
with a certain probability δ and an agent playing ai = 0
succeeds with a probability γ < δ. In the following, we
assume that the principal willing to implement the project
makes a small inalienable payment pε to each agent in
order to make him participate in the project. This payment
is independent of the agent’s decision whether to exert
high or low effort. An agent’s utility is given by ui(a) =
pi(t(a), ai, µi) − ci(ai) + pε and the principal utility is
u(a) = v(t(a))−

∑
i pi(t(a), ai, µi)−kκ−npε. The minimal

payment offered by the principal to make an agent exert
high effort can be computed similarly to Theorem 2.2. We
still assume that the agents seek to maximize their expected
utility. However, in contrast to the no contribution case, the
inalienable payments pε are subtracted from the principal’s
utility and added to the agents’ utilities.

Corollary 4.1: If the principal contracts with agent i, she
offers him an optimal payment of pi, which adds to pε:

pi =
ci

t(1, a−i)− t(0, a−i)(1− π)
.

The principal utility u and the agent utility ui are

u(a, v) = t(a) · (v −
∑
i

pi)− kκ− npε and

ui(1, a−i) =
(

t(1, a−i)
t(1, a−i)− t(0, a−i)(1− πi)

− 1
)
ci + pε

if contracted and 0 otherwise.
Note that, as agents exerting low effort can also succeed
in their subtask, the success function t(a) is different in
the shirking with contribution case. For instance, an AND
technology project may be completed successfully even if
no agent exerts high effort. Moreover, observe that also in
case of inalienable payments pε, it is never worthwhile to
audit non-contracted agents. This is due to the fact that
not contracted agents receive only the minimal payment
pε—independently of their action. Being audited does not
decrease these payments and therefore the additional audits
only entail costs.

A. Case Study: Agency With 2 Agents

In order to initiate the study of the shirking with con-
tribution case, we consider a very small project with two
agents only. This setting already raises interesting questions.
We first study the AND technology. If no agent exerts effort,
the project success probability is t0 = γ2. It is t1 = γ · δ
if one agent exerts effort and t2 = δ2 if both agents exert
effort. The principal has three possibilities. She can either
contract none (l = 0), one (l = 1), or both (l = 2) agents.
The optimal mechanism can be found by considering these
cases in turn.

Case l = 0: The principal does not contract any agent,
and hence all agents exert low effort. The principal’s utility
becomes uk,0(v) = t0v − kκ − 2pε. (Henceforth, we will
use the notation uk,l(v) to denote the principal utility when
k agents are audited and l agents contracted.) Since non-
contracted agents are never subject to auditing, k = 0 and
thus

u0,0(v) = t0 · v − 2pε.



Case l = 1: The principal contracts one agent. Both agents
are paid pε and from Corollary 4.1, we know that one agent
is paid an additional p = c/(t1−(1−π)t0) in case of success.
The principal’s utility is uk,1(v) = t1(v−p)−kκ−2pε. The
principal can either audit none (k = 0) or one (k = 1) agent.
This yields an auditing probability for the contracted agent
of π = 1 or π = 0 respectively, and hence,

u0,1(v) = t1 · (v −
c

t1 − t0
)− 2pε

u1,1(v) = t1 · v − c− κ− 2pε.

Case l = 2: The principal contracts two agents. Both agents
are paid an additional p = c/(t2−(1−π)t1) on success. The
principal’s utility is uk,2(v) = t2(v−2p)−kκ−2pε. Either,
we can audit none (k = 0, π = 0), one (k = 1, π = 1/2), or
both agents (k = 2, π = 1). We have

u0,2(v) = t2 · (v − 2
c

t2 − t1
)− 2pε

u1,2(v) = t2 · (v − 2
c

t2 − (1/2)t1
)− κ− 2pε

u2,2(v) = t2 · v − 2c− 2κ− 2pε.

Observe that the principal’s utility is linear in v. Fur-
thermore, the gradient is tl and hence does not depend on
c, k or κ. For given costs c and κ, there is an optimal
choice of k independent of the principal’s valuation v. For
an optimal k and given l, we can compute the relationship
between κ and c. For instance, when contracting one agent,
there is one transition point at κ = (t1/(t1 − to) − 1) · c,
i.e., auditing the contracted agent yields a higher utility
than without any audits when the costs κ do not exceed
(δ/(δ − γ) − 1) · c. Otherwise the principal is better off
by not auditing. When contracting two agents, there are two
transition points at κ = (t2/(t2−t1)−t2/(t2−(1/2)t1)) ·2c
and κ = (t2/(t2 − (1/2)t1) − 1) · 2c, where for audit costs
smaller than (δ/(δ− γ/2)− 1) · 2c, auditing two agents, for
costs over (δ/(δ − γ) − δ/(δ − γ/2)) · 2c, no agent, and
in-between, one agent yields the highest principal utility.

As an example, let c = 1, γ = 1/4 , δ = 3/4, and pε =
0. Then we have a success probability of t0 = 1/16 if no
agent exerts effort, t1 = 3/16 if one agent exerts effort and
t2 = 9/16 if both agents exert effort. Refer to Figure 2 for
an overview of the three different cases that occur in a two-
player AND technology. It illustrates the fact that the optimal
number of audits can be either one, two or none at all.

Let us briefly consider the two-player example in an
OR technology. All formulas given for the utility functions
uk,l also hold with an OR technology. The only difference
concerns the success function tl. If the principal contracts
with no agent, the project succeeds with probability t0 = 1−
(1−γ)2. For l = 1 and l = 2, we have t1 = 1−(1−γ)·(1−δ)
and t2 = 1− (1− δ)2.

If κ is slightly smaller than the cost c, there are two
transition points v∗1 and v∗2 , where the principal is best off
by contracting with no agent for a valuation v ≤ v∗1 , by
contracting with one agent and conducting one audit for
v∗1 ≤ v ≤ v∗2 and by contracting with both agents and

auditing both agents for v ≥ v∗2 . If κ is twice as large as c,
there are also two transition points v∗1 and v∗2 . The principal
is best off by contracting with no agent for a valuation
v ≤ v∗1 , by contracting with one agent and auditing none
for v∗1 ≤ v ≤ v∗2 and by contracting with both agents and
conducting one audit for v ≥ v∗2 . If κ is about a factor
twenty larger than c, there are again two transition points v∗1
and v∗2 . This time, the principal is best off by contracting
with no agent for a valuation v ≤ v∗1 , by contracting with
one agent and monitoring none for v∗1 ≤ v ≤ v∗2 and by
contracting with both agents and auditing none for v ≥ v∗2 .
This suggests that in an OR technology, there are always n
transition points v∗1 < . . . < v∗n where it is optimal for a
v ∈ (v∗l , v

∗
l+1) to contract with l agents and audit a certain

fraction k of the l contracted agents (cf Conjecture 4.10).
The two-player case already discloses some insights about

how audits can be useful to a principal. It shows that audits
facilitate a higher principal benefit in many cases. In certain
configurations, it even enables the principal to carry out a
project that otherwise would not prospect profit. We say
a project is profitable if the principal’s expected utility is
positive.

Theorem 4.2: In the AND and OR technology, there are
situations where a project is only profitable if the principal
employs audits.

Proof: In a M1
AND technology with two players, let

pε = 4, γ = 1/4, δ = 3/4, c = 1, pε = 0.1 and κ = 1.
Let the principal have a valuation v = 35. Then the optimal
number of contracts without audits is l = 2. However, this
yields a negative utility of u0,2(35) = −0.3125, whereas
auditing both agents yields a positive utility u2,2(35) =
1.6875. Creating a respective situation for OR technologies
is straightforward.

B. Anonymous Technologies

We will now generalize our results to anonymous tech-
nologies with n agents and provide the corresponding re-
sults for two anonymous technologies, namely for the AND
technology as well as for the OR technology.

Recall that in anonymous technologies, the success func-
tion only depends on the number of agents exerting high
effort and not on the particular set of agents exerting high
effort. For the AND technology for instance, we have t(a) =
tm = δmγn−m where m is the number of agents exerting
high effort. Let l be the number of agents contracted by
the principal. If the agents are rational decision makers, all
contracted agents will exert high effort and thus m = l. Our
aim is to give advice to the principal on how to choose the
number l of contracts and the number k of audits given her
valuation v and the parameters c, κ and n.

In an anonymous technology where the principal contracts
with l out of n agents and conducts k audits among the l
contracted agents uniformly at random, the minimal payment
needed to convince a rational agent not to cheat is

p =
c

tl − tl−1 · (1− k
l )

(1)



c = 1, κ = 1 c = 2, κ = 1 c = 4, κ = 1
v k, l : uk,l(v) benefit in % k, l : uk,l(v) benefit in % k, l : uk,l(v) benefit in %
1 0, 0: −0.1375 0 0% 0, 0: −0.1375 0 0% 0, 0 : −0.1375 0 0%
5 0, 0: 0.1125 0 0% 0, 0: 0.1125 0 0% 0, 0 : 0.1125 0 0%

10 0, 2: 2.425 0 0% 0, 0: 0.425 0 0% 0, 0 : 0.425 0 0%
15 0, 2: 5.2375 0 0% 1, 2: 2.4375 0.2 8.9% 0, 0 : 0.7375 0 0%
20 0, 2: 8.05 0 0% 1, 2: 5.25 0.2 4.0% 0, 0 or 2, 2: 1.05 0 0%
25 0, 2: 10.8625 0 0% 1, 2: 8.0625 0.2 2.5% 2, 2 : 3.8625 2 107.4%
50 0, 2: 24.925 0 0% 1, 2: 22.125 0.2 0.9% 2, 2 : 17.925 2 12.6%

Fig. 2. Example of the benefits of auditing for the principal in the AND technology with two players, depending on her project valuation v where κ = 1,
γ = 1/4 , δ = 3/4, and pε = 0.1. In the first case (c = 1, k = 1), there is one transition between v = 5 and v = 10 where the principal’s optimal
choice switches from k = 0, l = 0 to k = 0, l = 2. However, for this case, auditing never brings any benefits. In the second case (c = 2, k = 1), there
is also one transition between v = 10 and v = 15 where the principal’s optimal choice switches from k = 0, l = 0 to k = 1, l = 2. Here, auditing one
of the two contracted agents results in a benefit of 0.2 for a valuation of 15 or larger. In the third case (c = 4, k = 1), there is one transition at v = 20.
If the principal’s valuation of the project is lower than 20, her optimal choice is k = 0, l = 0, if it is higher, k = 2, l = 2 is best. In this case, auditing
both contracted agents brings a benefit of 2 for a valuation of 15 or larger. As the absolute value of the audit benefit is constant for a certain k and l, the
gain from auditing decreases in terms of percentage with v. Notice also that for a low valuation v = 1 the principal’s utility is negative. This is because
the basic payments pε made to all agents exceed the benefits from the project and hence the principal will not carry out the project.

and the principal’s utility is

uk,l(v) = tl · (v − lp)− kκ− npε. (2)

A first thing to notice is that uk,l is a linear function of
v. Secondly, the gradient of uk,l(v) is independent of k. It
depends only on n and the number of contracted agents l.

Theorem 4.3: In any anonymous technology under M1,
if the principal contracts with l agents, it is optimal for her
to audit k∗ agents, where

k∗(l) =


l for κ ≤ tl−1

tl
c

0 for κ ≥ tltl−1

(tl−tl−1)2
c

(1 +
√

tl
tl−1

c
κ −

tl
tl−1

)l otherwise.

Proof: The first and second derivative of uk,l(v) with
respect to k are

d

dx
uk,l(v) =

tltl−1cl
2

(tll − tl−1l + tl−1k)2
− κ

and

d2

dx2
uk,l(v) = −

tlt
2
l−1cl

2

(tll − tl−1l + tl−1k)3
< 0.

Since the second derivative is always negative, uk,l(v) has
exactly one extremum, namely a maximum at the root of
d
dku

k,l(v). Hence computing the root allows us to express
the value of k which maximizes the principal’s utility as a
function k∗ of l, in particular, k∗(l) = (1+

√
tl
tl−1

c
κ−

tl
tl−1

)l.
As k can only take values in (0, l), we must restrict the term
inside parentheses to values in (0, 1). If the term is larger
than 1, the optimal feasible value for k is l. If it is negative,
the optimal feasible value is 0. This gives the first two cases
in the definition of k∗.

Theorem 4.3 immediately implies the following corollary.
Corollary 4.4: Audits never pay off in anonymous tech-

nologies if the audit costs κ are greater or equal to
(tltl−1)/((tl − tl−1)2) times the cost c that incur when an
individual agent exerts high effort.

C. AND Technology

In the AND technology, from Equation (1) it follows that
the principal pays pi = c/(δlγn−l− δl−1γn−l+1 · (1− k/l))
in order to contract with an agent i. The resulting expected
principal utility is uk,l(v) = δlγn−lv− l2c/(lδ− lγ+ kγ)−
kκ− npε.

We observe that the gradient of uk,l is independent of
k and, since γ < δ, the gradient is maximal for l = n,
namely δn, and minimal for l = 0, γn. Hence, we know that
for a valuation v large enough, the principal will contract
with all agents. We also see that u0,0(v) = γnv − npε is
the best choice for a v small enough, as the costs of npε are
inevitable for any choice of l and k. Of course, if γnv < npε,
the principal’s utility is negative. In that case, she would
not carry out the entire project at all. Interestingly, it never
pays off to contract with only a fraction of the agents. The
principal utility is maximized if she either contracts with
nobody and obviously conducts no audits or if she contracts
with all agents and chooses an optimal number of audits.

Theorem 4.5: InM1
AND, there exists a value v∗ such that

for any value v ≤ v∗ it is optimal for the principal to contract
with no agent (and thus audit no agent) and for any value
v ≥ v∗ it is optimal to contract with all n agents and audit
k∗ agents at random, where k∗ is given by

k∗ =


n for κ ≤ γ

δ c

0 for κ ≥ δγ
(δ−γ)2 c

(1 +
√

δc
γκ −

δ
γ )n otherwise

and v∗ is v∗ = 1
δn−γn

(
δcn2

δn−γn+γk∗(n) + κ · k∗(n)
)

.
In order to prove Theorem 4.5, we will first apply the insight
gained in Theorem 4.3 to the AND technology, namely that
for any number of contracted agents l, there is an optimal
audit number k∗(l) in Lemma 4.6. Second, we show that at
the intersection point of u0,0 and uk

∗(n),n, no other choice of
l yields a higher principal utility even with the corresponding
optimal k∗(l) in Lemma 4.7. Finally, we show that this is



sufficient. The following lemma is an immediate implication
of Theorem 4.3.

Lemma 4.6: If the principal contracts with l agents in
M1

AND, it is optimal for her to conduct k∗ audits given
by

k∗(l) =


l for κ ≤ γ

δ c

0 for κ ≥ δγ
(δ−γ)2 c

(1 +
√

δc
γκ −

δ
γ )l otherwise.

Lemma 4.7: At the intersection point v̄ of u0,0(v) and
uk
∗(n),n(v) in M1

AND, no other choice of l and k yields
a higher principal utility, i.e., if u0,0(v̄) = uk

∗(n),n(v̄) then
∀ l, k : u0,0(v̄) = uk

∗(n),n(v̄) ≥ uk,l(v̄).
Proof: Computing the intersection point v̄

of u0,0(v) and uk
∗(n),n(v) gives v̄ = 1

δn−γn ·(
δcn2

δn−γn+γk∗(n) + κ · k∗(n)
)

. As shown in Lemma
4.6, for each choice of l, there is an optimal choice
of k, namely k∗(l). Thus it suffices to show that
u0,0(v̄) ≥ uk

∗(l),l holds for any feasible l, since
∀ k, l, v : uk

∗(l),l(v) ≥ uk,l(v). u0,0(v̄) ≥ uk
∗(l),l

⇔ 1
γn−lδl−γn ·

(
δcl2

δl−γl+γk∗(l) + κ · k∗(l)
)
≥ 1

δn−γn

·
(

δcn2

δn−γn+γk∗(n) + κ · k∗(n)
)
. Let α = (1 +

√
δc
γκ −

δ
γ ).

Then we have k∗(l) = αl.

δcl
δ−γ+γα + καl
δcn

δ−γ+γα + καn
≥ γn−lδl − γn

δn − γn

l

n
≥ γn−lδl − γn

δn − γn

l

(
δ

γ

)n
+ n ≥ n

(
δ

γ

)l
+ l (3)

In order to see that inequality (3) holds, let us look at the
difference function

f(l) = l

(
δ

γ

)n
+ n− n

(
δ

γ

)l
− l.

Observe that f has two roots at l = 0 and l = n. The second
derivative of f is

d2

dx2
f(l) = −n

(
δ

γ

)l(
ln
δ

γ

)2

.

Since δ > γ and 0 ≤ l ≤ n, the second derivative of f
is strictly negative for n > 0. Thus, the first derivative is
strictly descending and consequently, the gradient of f is
strictly greater at v = 0 than at v = n. As f(0) = 0 and
f(n) = 0, it must hold that f(l) > 0 for any l in (0, n), and
the claim follows.

Equipped with Lemma 4.7, we are finally ready to con-
clude the proof of Theorem 4.5.

Proof: Note that the transition point indicated in
Theorem 4.5, v∗, is exactly the intersection point of u0,0(v)
and uk

∗(n),n(v). We conclude by showing that no choice of
k and l yields a higher utility than u0,0(v) for a v < v∗ and
uk
∗(n),n(v) for a v > v∗.

Recall that uk,l(v) is linear and that for a sufficiently
small v, choosing l = k = 0 is optimal, i.e., u0,0(v) =
maxl,k uk,l(v), and for a sufficiently large v, choosing l = n
and k = k∗(n) is optimal, i.e., uk

∗(n),n(v) = maxl,k uk,l(v).
This is because the gradient of uk,l(v) is maximal for l = n
and minimal for l = 0. We now show that no choice of
k and l yields a higher utility than u0,0(v) for a v < v∗

and uk
∗(n),n(v) for a v > v∗. Assume for the sake of

contradiction that there is a k′, a l′ > 0 and a v′ < v∗

such that uk
′,l′(v′) ≥ u0,0(v′). As uk

′,l′(v) is linear and its
gradient is larger than the gradient of u0,0(v), it holds that
uk
′,l′(v∗) > u0,0(v∗). This is a contradiction to Lemma 4.7.

Assume for the sake of contradiction that there is a k′, a l′ <
n and a v′ > v∗ such that uk

′,l′(v′) ≥ uk
∗(n),n(v′). As the

gradient of uk
′,l′(v) is lower than the gradient of uk

∗(n),n(v),
it holds that uk

′,l′(v∗) > uk
∗(n),n(v∗). Contradiction.

Knowing the number of agents to contract and the number
of audits, we are finally interested in the question of how
much the principal can actually benefit from employing
audits.

Theorem 4.8: With an AND technology, the benefit of
auditing is uk

∗(n),n(v) − max{u0,0(v), u0,n(v)} for v >
v∗ and 0 otherwise where v∗ is the intersection point of
uk
∗(n),n(v) and u0,0(v).

Proof: From Theorem 4.5, we know that for a v ≤ v∗,
the optimal k and l is k = l = 0. In this case, the principal
does not conduct any audits and hence does not profit from
the possibility of employing audits. Babaioff et al. have
shown in [2] that without audits, it is optimal for the principal
to either contract with no agent or with all agents (in an AND
technology). With audits, choosing k = k∗(n) and l = n is
optimal for a v > v∗ (Theorem 4.5). By subtracting the
optimal gain without audits, max{u0,0(v), u0,n(v)}, from
the utility achieved with this optimal choice, we get the
auditing surplus.
Refer to Figure 3 for a plot of the benefit from auditing
compared to the absolute revenue in a technology with
two agents. Once v grows larger than the transition point,
the benefit increases and reaches a maximum level at the
transition point without audits. Obviously, the benefit surplus
compared to the absolute revenue in % then decreases with
growing valuation.

D. OR Technology

The success function of the anonymous OR technology is
tm = 1 − (1 − γ)n−m(1 − δ)m, where m is the number of
agents exerting high effort. Applying Theorem 4.3 to the OR
technology gives the following result.

Lemma 4.9: In M1
OR with n agents, it holds that if the

principal contracts with l agents, it is optimal for her to audit
k∗ agents given by

k∗(l) =


l for κ ≤ φ−1

l c

0 for κ ≥ φl

(φl−1)2 c

(1 +
√
φl

c
κ − φl)l otherwise

where φl = 1−(1−δ)l(1−γ)n−l

1−(1−δ)l−1(1−γ)n−l+1 .
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Fig. 3. Benefit from audits with growing v inM1
AND (left) and inM1

OR (right) with two agents where c = 1, κ = .8, pε = .1, γ = 1/4, δ = 3/4.

Proof: Since the OR technology is anonymous, the for-
mula for k∗ follows directly from Theorem 4.3 by plugging
in the OR technology success function tl = 1−(1−γ)n−l(1−
δ)l.
We presume that the OR technology has n transition points
on the value of v, where it is optimal for the principal to
increase the number of contracts by one with increasing v
and to audit k∗ agents. Unfortunately, we did not succeed in
proving this property completely. However, we can provide
a proof under the assumption that the following conjecture
holds.

Conjecture 4.10: Let v∗l be the transition point where
choosing k = k∗(l − 1), l = l − 1 yields the same principal
utility as k = k∗(l), l = l. With OR technologies, it holds
for all l ∈ {1, . . . , n− 1} that v∗l is smaller than v∗l+1.

A proof may be similar to the one of Lemma 4.7: Compute
v∗l and v∗l+1 by solving uk

∗(l),l(v∗l ) = uk
∗(l−1),l−1(v∗l ) for v∗l

and uk
∗(l+1),l+1(v∗l+1) = uk

∗(l),l(v∗l+1) for v∗l+1 respectively.
Then define the difference function f(l) = v∗l+1 − v∗l and
show that it is always positive for all l ∈ {1, . . . , n− 1}.

We did not succeed in the last step of the proof ana-
lytically, because the maths are not as advantageous as in
the AND technology. The reason for this is mainly that in
the AND technology, the term tl/tl−1 dissolves to δ/γ and
thus it is independent of l and n. In the OR technology,
however, this term still depends on l and n. We conducted
simulations of the difference function f(l) for a variety of
configurations and could not find a counter-example to our
conjecture. Another fact that supports our conjecture is that
an anonymous OR technology has n transitions in the purely-
hidden-actions case as well as in the observable-actions
case [2]. Since the case with audits could be interpreted as
a combination of these two cases, it seems likely that there
are also n transitions in this case.

Lemma 4.11: Let k∗(l) be the function defined in
Lemma 4.9. If Conjecture 4.10 holds then for any OR
technology with n agents, there exist n transition points
v∗1 , v

∗
2 , . . . , v

∗
n where for a valuation v ∈ (v∗l−1, v

∗
l ), it is

optimal for the principal to contract with l agents and audit
k∗(l) agents out of the l contracted agents. For a valuation
v ≤ v∗1 , choosing k = l = 0 and for a v ≥ v∗n, choosing
k = k∗(n), l = n is optimal.

Proof: If Conjecture 4.10 holds, the intersection point
of a utility function uk

∗(l),l with uk
∗(l−1),l−1 is reached

with a smaller valuation v than the intersection point with

uk
∗(l+1),l+1. Moreover, v∗1 < v∗2 < . . . < v∗n. Since the

utility functions are linear in v and the gradient of any
uk,l+1(v) is larger than the gradient of any uk,l(v), the
utility uk

∗(l),l(v) is higher than uk
∗(l+1),l+1(v) in the interval

(v∗l , v
∗
l + 1). Similarly, we see that uk

∗(l−1),l−1(v) is lower
than uk

∗(l),l(v) in (v∗l , v
∗
l + 1). Applying this argument

recursively for all l ∈ {l + 2, l + 3 . . . , n} and all l ∈
{1, . . . , l − 2}, we get that the largest possible utility lies
in the interval (v∗l , v

∗
l + 1), uk

∗(l),l(v). Furthermore, for a
sufficiently small valuation, choosing k = 0, l = 0 yields
the highest utility since the principal pays only the minimal
payments pε and still has a chance of success. (If the minimal
payments pε exceed the principal’s valuation, her utility is
negative, but still as large as possible.) Thus, if the principal’s
valuation is in the interval (0, v∗1), choosing k = l = 0 yields
the best utility possible, in any interval (v∗l , v

∗
l + 1) where

l ∈ {1, . . . , n− 1}, choosing k = k∗(l), l = l is best and in
(v∗n,∞), k = k∗(n), l = n is best.

We have provided guidelines for the principal on how to
maximize her revenue in an OR technology. For a particular
project, where the parameters n, δ, γ, κ, c and pε are known,
she could e.g., compute l∗ = arg maxl uk

∗(l),l and then
contract with l∗ agents and audit k∗(l∗) out of the contracted
agents. Additionally, we would like to know how much she
can actually benefit from employing audits.

Corollary 4.12: Let v∗l denote the intersection point of
uk
∗(l),l(v) and uk

∗(l−1),l−1(v). If Conjecture 4.10 holds, the
benefit of audits in an OR technology, is 0 if v ≤ v∗1 , it
is uk

∗(l),l(v) − maxl∈{0,...,n} u0,l(v) if v ∈ v∗l , v
∗
l+1 and

uk
∗(n),n(v)−maxl∈{0,...,n} u0,l(v) if v ≥ v∗n.

Figure 3 shows the benefit from auditing compared to the
absolute revenue with two agents. One can nicely observe
the two transition points where with growing valuation, the
benefit first increases and then decreases again until the next
transition point is reached.

E. MAJORITY Technology

In the contribution case, the MAJORITY technology is
quite complex as there is also a chance of success if less
than half of the agents exert high effort. To complete our
analysis on the effects of allowing the principal to employ
audits, we provide the principal with the optimal payments
and her resulting utility given that she contracts with l agents.

Theorem 4.13: In M1
MAJ , if the principal

contracts l agents and conducts k ≤ l audits,



the optimal payment to contract with an agent is
p = 1/(

∑n
j=n/2

∑
max{0,l−n+j}≤r≤l Ψr,j−r − (1 −

k
l ) ·
∑n
j=n/2

∑
max{0,l−1−n+j}≤r≤l−1 Ψr,j−r) · c where

Ψr,s =
(
l

r

)
· δr(1− δ)l−r ·

(
n− l
s

)
· γs(1− γ)n−l−s.

This yields a principal utility of

u(v) =

 n∑
j=n/2

∑
max{0,l−n+j}≤r≤l

Ψr,j−r

·(v−l ·p)−kκ,
where the payments p and Ψr,s are as given above.

Proof: Ψr,s represents the probability that exactly
r contracted agents and exactly s non-contracted agents
succeed. The MAJORITY technology’s success function tl
can be calculated by summing over all the possibilities of
success, i.e., the probabilities of the project succeeding with
exactly j ∈ {n/2, . . . , l} successful agents, which in turn
are composed of all feasible combinations of r and s such
that r + s = j. Payment p and utility u then follow from
Theorem 2.2.

V. CONCLUSION

Many open distributed systems have to deal with the
problem of hidden actions, i.e., actions or contributions of
(often anonymous) participants that are not observed directly.
If one can, however, reveal certain participants’ actions by
conducting audits, the coordinator may improve the cooper-
ation and therewith the efficiency of such systems. The cost
of auditing and the efficiency gain constitute an optimization
problem. In both a model where shirkers contribute and
a model where they do not contribute, there are general
solutions on how to optimally choose the number of audits,
the number of contracts and the payments to the participants
in a combinatorial principal-agent setting with AND, OR, or
MAJORITY technologies. It turns out that with increasing
principal valuation, a system with the additional leverage
of audits often exhibits similar transitions as in settings
without audits in terms of the optimal choices for achieving
the maximal principal utility. However, with audits, these
transitions occur earlier than without audits. Sometimes,
employing audits makes a project profitable which could
otherwise not be carried out.

It would be interesting to test our results “in the wild”—
our paper has studied anonymous technologies in theory
only and using a simplified model. Another natural extension
would be to study audits with non-anonymous forms of
interaction. In such technologies, the question of which set
of agents to audit arises. Furthermore, we ask: Can we
devise general algorithms to solve the principal’s optimiza-
tion problem for arbitrary technologies? And what is the
computational complexity?
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