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Abstract. This paper attends to the problem of a mechanism designer seeking to
influence the outcome of a strategic game based on her creditability. The mech-
anism designer offers additional payments to the players depending on their mu-
tual choice of strategies in order to steer them to certain decisions. Of course, the
mechanism designer aims at spending as little as possible and yet implementing
her desired outcome. We present several algorithms for this optimization prob-
lem both for singleton target strategy profiles and target strategy profile regions.
Furthermore, the paper shows how a bankrupt mechanism designer can decide
efficiently whether strategy profiles can be implemented at no cost at all. Finally,
risk-averse players and dynamic games are examined.

1 Introduction

Game theory is a powerful tool for analyzing decision making in systems with au-
tonomous and rational (or selfish) participants. It is used in a wide variety of fields such
as economics, politics, biology, or computer science. A major achievement of game
theory is the insight that networks of self-interested agents often suffer from ineffi-
ciency due to effects of selfishness. Popular problems in computer science studied from
a game theoretic point of view include virus propagation [1], congestion [2], or network
creation [6], among many others.

If a game theoretic analysis reveals that a system suffers from the presence of self-
ish participants, mechanisms to encourage cooperation have to be devised. The field of
mechanism design [5,9] is also subject to active research; for example, Cole et al. [3,4]
have studied how incentive mechanisms can influence selfish behavior in a routing sys-
tem.

In many distributed systems, a mechanism designer cannot change the rules of in-
teractions. However, she may be able to influence the agents’ behavior by offering pay-
ments for certain outcomes. On this account, Monderer and Tennenholtz [10] have ini-
tiated the study of a mechanism designer whose power is to some extent based on her
monetary assets, primarily, though, on her creditability, i.e., the players trust her to pay
the promised payments. Thus, a certain subset of outcomes is implemented in a given
game if, by expecting additional non-negative payments, rational players will necessar-
ily choose one of the desired outcomes. The designer faces the following optimization
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problem: How can a desired outcome be implemented at minimal cost? Surprisingly, it
is sometimes possible to improve the performance of a given system merely by cred-
itability, i.e., without any payments at all.

This paper extends [10] in various respects. First, an algorithm for finding an exact,
incentive compatible implementation of a desired set of outcomes is given. We also
show how a bankrupt mechanism designer can decide in polynomial time if a set of
outcomes can be implemented at no costs at all, and an interesting connection to best
response graphs is established. We propose and analyze efficient heuristic algorithms
and demonstrate their performance. Furthermore, we extend our analysis for risk-averse
behavior and study dynamic games where the mechanism designer offers payments in
each round.

2 Model

Game Theory A strategic game can be described by a tuple G = (N,X,U), where
N = {1, 2, . . . , n} is the set of players and each Player i ∈ N can choose a strategy
(action) from the set Xi. The product of all the individual players’ strategies is denoted
by X := X1 ×X2 × . . .×Xn. In the following, a particular outcome x ∈ X is called
strategy profile and we refer to the set of all other players’ strategies of a given Player i
by X−i = X1 × . . .×Xi−1 ×Xi+1 × . . .×Xn. An element of Xi is denoted by xi,
and similarly, x−i ∈ X−i; hence x−i is a vector consisting of the strategy profiles of
xi. Finally, U = (U1, U2, . . . , Un) is an n-tuple of payoff functions, where Ui : X → R
determines Player i’s payoff arising from the game’s outcome. Let xi, x

′
i ∈ Xi be

two strategies available to Player i. We say that xi dominates x′i iff Ui(xi, x−i) ≥
Ui(x′i, x−i) for every x−i ∈ X−i and there exists at least one x−i for which a strict
inequality holds. xi is the dominant strategy for Player i if it dominates every other
strategy x′i ∈ Xi\{xi}. xi is a non-dominated strategy if no other strategy dominates
it. By X∗ = X∗1 × . . .×X∗n we will denote the set of non-dominated strategy profiles,
whereX∗i is the set of non-dominated strategies available to the individual Player i. The
set of best responses Bi(x−i) for Player i given the other players’ actions is defined as
Bi(x−i) := {xi|Ui(xi, x−i) = maxxj∈Xi\{xi} Ui(xj , x−i)}. A Nash equilibrium is a
strategy profile x ∈ X such that for all i ∈ N , xi ∈ Bi(x−i).

Mechanism Design by Creditability This paper acts on the classic assumption that
players are rational and always choose a non-dominated strategy. Additionally, it is
assumed that players do not cooperate. We examine the impact of payments to players
offered by a mechanism designer (an interested third party) who seeks to influence the
outcome of a game. These payments are described by a tuple of non-negative payoff
functions V = (V1, V2, . . . , Vn), where Vi : X → R+, i.e. the payments depend on
the strategy Player i selects as well as on the choices of all other players. Thereby,
we assume that the players trust the mechanism designer to finally pay the promised
amount of money, i.e., consider her trustworthy (mechanism design by creditability).
The original game G = (N,X,U) is modified to G(V ) := (N,X, [U + V ]) by these
payments, where [U + V ]i(x) = Ui(x) + Vi(x), that is, each Player i obtains the
payoff of Vi in addition to the payoffs of Ui. The players’ choice of strategies changes
accordingly: Each player now selects a non-dominated strategy in G(V ). Henceforth,
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the set of non-dominated strategy profiles of G(V ) is denoted by X∗(V ). A strategy
profile set – also called strategy profile region – O ⊆ X of G is a subset of all strategy
profiles X , i.e., a region in the payoff matrix consisting of one or multiple strategy
profiles. Similarly to Xi and X−i, we define Oi := {xi|∃x−i ∈ X−i s.t. (xi, x−i) ∈
O} and O−i := {x−i|∃xi ∈ Xi s.t. (xi, x−i) ∈ O}.

The mechanism designer’s main objective is to force the players to choose a certain
strategy profile or a set of strategy profiles. For a desired strategy profile region O, we
say that payments V implement O if ∅ ⊂ X∗(V ) ⊆ O. V is called a k-implementation
if, in addition

∑n
i=1 Vi(x) ≤ k, ∀x ∈ X∗(V ). That is, the players’ non-dominated

strategies are within the desired strategy profile, and the payments do not exceed k for
any possible outcome. Moreover, V is an exact k-implementation of O if X∗(V ) = O
and

∑n
i=1 Vi(x) ≤ k ∀x ∈ X∗(V ). The cost k(O) of implementing O is the lowest

of all non-negative numbers q for which there exists a q-implementation. If an imple-
mentation meets this lower bound, it is optimal, i.e., V is an optimal implementation
of O if V implements O and maxx∈X∗(V )

∑n
i=1 Vi(x) = k(O). The cost k∗(O) of

implementing O exactly is the smallest non-negative number q for which there exists
an exact q-implementation of O. V is an optimal exact implementation of O if it im-
plements O exactly and requires cost k∗(O). The set of all implementations of O will
be denoted by V(O), and the set of all exact implementations of O by V∗(O). Finally,
a strategy profile region O = {z} of cardinality one – consisting of only one strat-
egy profile – is called a singleton. Clearly, for singletons it holds that non-exact and
exact k-implementations are equivalent. For simplicity’s sake we often write z instead
of {z} and V (z) instead of

∑
i∈N Vi(z). Observe that only subsets of X which are in

2X1 × 2X2 × . . . × 2Xn ⊂ 2X1×X2×...×Xn can be implemented exactly. We call such
a subset of X a convex strategy profile region.1

3 Algorithms and Analysis

3.1 Exact Implementation
Algorithm and Complexity Recall that in our model each player classifies the strate-
gies available to her as either dominated or non-dominated. Thereby, each dominated
strategy xi ∈ Xi\X∗i is dominated by at least one non-dominated strategy x∗i ∈ X∗i .
In other words, a game determines for each Player i a relation MG

i from dominated
to non-dominated strategies MG

i : Xi\X∗i → X∗i , where MG
i (xi) = x∗i states that

xi ∈ Xi\X∗i is dominated by x∗i ∈ X∗i . See Fig. 1 for an example.
When implementing a strategy profile region O exactly, the mechanism designer

creates a modified game G(V ) with a new relation MV
i : Xi \ Oi → Oi such that

all strategies outside Oi map to at least one strategy in Oi. Therewith, the set of all
newly non-dominated strategies of Player i must constitute Oi. As every V ∈ V∗(O)
determines a set of relations MV := {MV

i : i ∈ N}, there must be a set MV for
every V implementing O optimally as well. If we are given such an optimal rela-
tion set MV without the corresponding optimal exact implementation, we can com-
pute a V with minimal payments and the same relation MV , i.e., given an optimal
relation we can find an optimal exact implementation. As an illustrating example, as-
sume an optimal relation set for G with MG

i (x∗i1) = oi and MG
i (x∗i2) = oi. Thus,

1 These regions define a convex area in the n-dimensional hyper-cuboid, provided that the strate-
gies are depicted such that all oi are next to each other.
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we can compute V such that oi must dominate x∗i1 and x∗i2 in G(V ), namely, the con-
dition Ui(oi, o−i) + Vi(oi, o−i) ≥ maxs∈(x∗i1,x∗i2)(Ui(s, o−i) + Vi(s, o−i)) must hold
∀o−i ∈ O−i. In an optimal implementation, Player i is not offered payments for strat-
egy profiles of the form (ōi, x−i) where ōi ∈ Xi\Oi, x−i ∈ X−i. Hence, the condi-
tion above can be simplified to Vi(oi, o−i) = max(0,maxs∈{x∗i1,x∗i2} (Ui(s, o−i))) −
Ui(oi, o−i). Let Si(oi):={s ∈ Xi\Oi|MV

i (s) = oi} be the set of strategies where
MV corresponds to an optimal exact implementation of O. Then, an implementa-
tion V with Vi(ōi, x−i) = 0, Vi(oi, ō−i) = ∞ for any Player i, and Vi(oi, o−i) =
max

{
0,maxs∈Si(oi) (Ui(s, o−i))

} − Ui(oi, o−i) is an optimal exact implementation
of O as well. Therefore, the problem of finding an optimal exact implementation V of
O corresponds to the problem of finding an optimal set of relationsMV

i : Xi\Oi → Oi.
Our algorithm ALGexact (cf. Algo-
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Fig. 1. A single player’s game’s view and its
domination relation MG.

rithm 1) exploits this fact and constructs
an implementation V for all possible re-
lation sets, checks the cost that V would
entail and returns the lowest cost found.
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hsdklfghds,gbdfjgmbhdf;gdfjgjkhngjfkd oes free and
the latter receives a three-year sentence for robbing the
bank and a one-year sentence for committing the minor
crime. If both betray the other, each of them will get
three years for the bank robbery. If both remain silent,
the police can convict them for the minor crime only
and they get one year each. There is another option,
of course, namely to confess to the bank robbery and
thus supply the police with evidence to convict both
criminals for a four-year sentence (cf. G in Fig. ??). A
short game-theoretic analysis shows that a player’s best
strategy is to testify. Thus, the prisoners will betray each
other and both get charged a three-year sentence. Now
assume that Mr. Capone gets a chance to take influence on
his employees’ decisions. Before they take their decision,
Mr. Capone calls each of them and promises that if they
both remain silent, they will receive money compensating
for one year in jail,1 and furthermore, if one remains silent
and the other betrays him, Mr. Capone will pay the former

1For this scenario, we presume that time really is money!

Algorithm 1 Exact k-Implementation (ALGexact)
Input: Game G, convex region O with O−i ⊂ X−i∀ i
Output: k∗(O)

1: Vi(x) := 0, Wi(x) := 0 ∀x ∈ X , i ∈ N ;
2: Vi(oi, ō−i) := ∞ ∀i ∈ N , oi ∈ Oi , ō−i ∈ X−i\O−i;
3: compute X∗;
4: return ExactK(V , n);

ExactK(V , i):
Input: payments V , current Player i
Output: k∗(O) for G(V )

1: if |X∗
i (V )\Oi| > 0 then

2: s := any strategy in X∗
i (V )\Oi; kbest := ∞;

3: for all oi ∈ Oi do
4: for all o−i ∈ O−i do
5: Wi(oi, o−i):=max(0, Ui(s, o−i)−

(Ui(oi, o−i) + Vi(oi, o−i)));
6: k := ExactK(V + W , i);
7: if k < kbest then
8: kbest := k;
9: for all o−i ∈ O−i do

10: Wi(oi, o−i) := 0;
11: return kbest;
12: if i > 1 return ExactK(V , i− 1);
13: else return maxo∈O

∑
i Vi(o);

money worth two years in prison (cf. V in Fig. 1). Thus,
Mr. Capone creates a new situation for the two criminals
where remaining silent oes free and the latter receives a
three-year sentence for robbing the bank and a one-year
sentence for committing the minor crime. If both betray
the other, each of them will get three years for the bank
robbery. If both remain silent, the police can convict them
for the minor crime only and they get one year each.
There is another option, of course, namely to confess to
the bank robbery and thus supply the police with evidence
to convict both criminals for a four-year sentence (cf. G
in Fig. ??). A short game-theoretic analysis shows that
a player’s best strategy is to testify. Thus, the prisoners
will betray each other and both get charged a three-year
sentence. Now assume that Mr. Capone gets a chance to
take influence on his employe

Algorithm 2 Exact 0-Implementation (ALGbankrupt)
Input: Game G, convex region O with O−i ⊂ X−i ∀i
Output: > if k∗(O) = 0, ⊥ otherwise

1: compute X∗;
2: for all i ∈ N do
3: for all s ∈ X∗

i \Oi do
4: dZero := ⊥;
5: for all oi ∈ Oi do
6: b := >;
7: for all o−i ∈ O−i do
8: b := b ∧ (Ui(s, o−i) ≤ Ui(oi, o−i));
9: dZero := dZero ∨ b;

10: if ¬ dZero then
11: return ⊥;
12: return >;

Theorem 1. ALGexact computes a strategy profile region’s optimal exact implementa-
tion cost in time O

(|X|2 maxi∈N (|Oi|n|X∗i \Oi|−1) + n|O|maxi∈N (|Oi|n|X∗i \Oi|)
)
.

Note that ALGexact has a large time complexity. In fact, a faster algorithm for this
problem, called Optimal Perturbation Algorithm has been presented in [10]. In a nut-
shell, this algorithm proceeds as follows: After initializing V similarly to our algorithm,
the values of the region O in the matrix V are increased slowly for every Player i, i.e.,
by all possible differences between an agent’s payoffs in the original game. The al-
gorithm terminates as soon as all strategies in X∗i \ Oi are dominated. Unfortunately,
this algorithm does not always return an optimal implementation. Sometimes, as we
show in Appendix A of the full version, the optimal perturbation algorithm increases
the values unnecessarily. In fact, we even conjecture that deciding whether an k-exact
implementation exists is NP-hard.
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Conjecture 1. Finding an optimal exact implementation of a strategy region is NP-
hard.

Bankrupt Mechanism Designers Imagine a mechanism designer who is broke. At
first sight, it seems that without any money, she will hardly be able to influence the
outcome of a game. However, this intuition ignores the power of creditability: a game
can have 0-implementable regions.

Let V be an exact implementation of O with exact costs k∗(O). It holds that if
k∗(O) = 0, V cannot contain any payments larger than 0 in O. Consequently, for an
region O to be 0-implementable exactly, any strategy s outside Oi must be dominated
within the range of O−i by a oi, or there must be one oi for which no payoff Ui(s, o−i)
is larger than Ui(oi, o−i). In the latter case, the strategy oi can still dominate s by using
a payment V (oi, x−i) with x−i ∈ X−i\O−i outside O. Note that this is only possible
under the assumption that O−i ⊂ X−i ∀i ∈ N .
ALGbankrupt (cf. Algorithm 2) describes how a bankrupt designer can decide in

polynomial time whether a certain region is 0-implementable. It proceeds by checking
for each Player i if the strategies inX∗i \Oi are dominated or “almost” dominated within
the range of O−i by at least one strategy inside Oi. If there is one strategy without such
a dominating strategy,O is not 0-implementable exactly. On the other hand, if for every
strategy s ∈ X∗i \Oi such a dominating strategy is found,O can be implemented exactly
without expenses.

Theorem 2. Given a convex strategy profile regionO whereO−i ⊂ X−i ∀i, Algorithm
ALGbankrupt decides whether O has an exact 0-implementation in time O

(
n |X|2

)
.

Best Response Graphs Best response strategies maximize the payoff for a player given
the other players’ decisions. For now, let us restrict our analysis to games where the sets
of best response strategies consist of only one strategy for each x−i ∀i ∈ N . Given a
game G, we construct a directed best response graph GG with vertices vx for strategy
profiles x ∈ X iff x is a best response for at least one player, i.e., if ∃i ∈ N such that
xi ∈ Bi(x−i). There is a directed edge e = (vx, vy) iff ∃i ∈ N such that x−i = y−i

and {yi} = Bi(y−i). In other words, an edge from vx to vy , indicates that it is better
to play yi instead of xi for a player if for the other players’ strategies x−i = y−i.
A strategy profile region O ⊂ X has a corresponding subgraph GG,O containing the
vertices {vx|x ∈ O} and the edges which both start and end in a vertex of the subgraph.
We say GG,O has an outgoing edge e = (vx, vy) if x ∈ O and y /∈ O. Note that
outgoing edges are not in the edge set of GG,O. Clearly, it holds that if a singleton x’s
corresponding subgraph GG,{x} has no outgoing edges then x is a Nash equilibrium.
More generally, we make the following observation.

Theorem 3. Let G be a game and |Bi(x−i)| = 1 ∀i ∈ N, x−i ∈ X−i. If a convex
region O has an exact 0-implementation, then the corresponding subgraph GG,O in the
game’s best response graph has no outgoing edges.
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In order to extend best response graphs to games with multiple best responses, we
modify the edge construction as follows: In the general best response graph GG of a
game G there is a directed edge e = (vx, vy) iff ∃i ∈ N s.t. x−i = y−i, yi ∈ Bi(y−i)
and |Bi(y−i)| = 1.

Corollary 1. Theorem 3 holds for arbitrary games.

Note that Theorem 3 is a generalization of Monderer and Tennenholtz’ Corollary 1
in [10]. They discovered that for a singleton x, it holds that x has a 0-implementation if
and only if x is a Nash equilibrium. While their observation covers the special case of
singleton-regions, our theorem holds for any strategy profile region. Unfortunately, for
general regions, one direction of the equivalence holding for singletons does not hold
anymore due to the fact that 0-implementable regions O must contain a player’s best
response to any o−i but they need not contain best responses exclusively.

5
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1
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10

10
0

0
10

Fig. 2. Sample game G with best response graph GG. The Nash equilibrium in the bottom left
corner has no outgoing edges. The dotted arrows do not belong to the edge set of GG as the row
has multiple best responses.

3.2 Non-Exact Implementation

In contrast to exact implementations, where the complete set of strategy profilesO must
be non-dominated, the additional payments in non-exact implementations only have to
ensure that a subset of O is the newly non-dominated region. Obviously, it matters
which subset this is. Knowing that a subset O′ ⊆ O bears optimal costs, we could find
k(O) by computing k∗(O′). Apart from the fact that finding an optimal implementa-
tion includes solving the – believed to be NP-hard – optimal exact implementation cost
problem for at least one subregion of O, finding this subregion might also be NP-hard
since there are exponentially many possible subregions. In fact, a reduction from the
SAT problem is presented in [10]. The authors show how to construct a 2-person game
in polynomial time given a CNF formula such that the game has a 2-implementation
if and only if the formula has a satisfying assignment. However, their proof is not cor-
rect: While there indeed exists a 2-implementation for every satisfiable formula, it can
be shown that 2-implementations also exist for non-satisfiable formulas. E.g., strategy
profiles (xi, xi) ∈ O are always 1-implementable. Unfortunately, we were not able to
correct their proof. However, we conjecture the problem to be NP-hard, i.e., we assume
that no algorithm can do much better than performing a brute force computation of the
exact implementation costs (cf. Algorithm 1) of all possible subsets, unless NP = P.
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Conjecture 2. Finding an optimal implementation of a strategy region is NP-hard.

For the special case of zero cost regions, Theorem 3 implies the following result.

Corollary 2. If a strategy profile region O has zero implementation cost then the cor-
responding subgraph GG,O in the game’s best response graph contains a subgraph
GG,O′ , O

′ ⊆ O, with no outgoing edges.

Corollary 2 is useful to a bankrupt mechanism designer since searching the game’s
best response graph for subgraphs without outgoing edges helps her spot candidates
for regions which can be implemented by mere creditability. In general though, the
fact that finding optimal implementations seems computationally hard raises the ques-
tion whether there are polynomial time algorithms achieving good approximations. As
mentioned in Section 3.1, each V implementing a region O defines a domination re-
lation MV

i : Xi \ Oi → Oi. This observation leads to the idea of designing heuristic
algorithms that find a correct implementation by establishing a corresponding relation
set {M1,M2, . . . ,Mn},Mi : X∗i \Oi → Oi where each x∗i ∈ X∗i \Oi maps to at least
one oi ∈ Oi. These algorithms are guaranteed to find a correct implementation of O,
however, the corresponding implementations may not be cost-optimal.

Our greedy algorithm ALGgreedy (cf. Algorithm 3) associates each strategy x∗i
yet to be dominated with the oi with minimal distance ∆G to x∗i , i.e., the maximum
value that has to be added to Ui(x′i, x−i) such that x′i dominates xi: ∆G(xi, x

′
i) :=

maxx−i∈X−i
max(0, Ui(xi, x−i) − Ui(x′i, x−i)). Similarly to the greedy approxima-

tion algorithm for the set cover problem [7,8] which chooses in each step the subset
covering the most elements not covered already, ALGgreedy selects a pair of (x∗i ,oi)
such that by dominating x∗i with oi, the number of strategies in X∗i \Oi that will be
dominated therewith is maximal. Thus, in each step there will be an oi assigned to
dominate x∗i which has minimal dominating cost. Additionally, ALGgreedy takes any
opportunity to dominate multiple strategies. ALGgreedy is described in detail in Al-
gorithm 3. It returns an implementation V of O; to determine V ’s cost, one needs to
compute maxx∗∈X∗(V )

∑
i∈N Vi(x∗).

Theorem 4. ALGgreedy returns an implementation of a convex strategy profile region
O ∈ X in time O

(
n|X|2 maxi∈N |X∗i \Oi|+ n|X|maxi∈N |X∗i \Oi|3

)
.

ALGred (cf. Algorithm 4) is a more sophisticated algorithm applying ALGgreedy.
Instead of terminating when the payment matrix V implements O, this algorithm con-
tinues to search for a payment matrix inducing even less cost. It uses ALGgreedy to
approximate the cost repeatedly, varying the region to be implemented. As ALGgreedy

leaves the while-loop if X∗i (V ) ⊆ Oi, it might miss out on cheap implementations
where X∗i (V ) ⊆ Qi, Qi ⊂ Oi. ALGred examines some of these subsets as well by
calling ALGgreedy for some Qi. If we manage to reduce the cost, we continue with
Oi := Qi until neither the cost can be reduced anymore nor any strategies can be
deleted from any Oi.

Theorem 5. Let Tg denote the runtime of ALGgreedy. ALGred returns an implemen-
tation of O in time O(n|O|maxi∈N |Oi|(|O|+ n+ Tg)).
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Algorithm 1 Exact k-Implementation (ALGexact)
Input: Game G, convex region O with O−i ⊂ X−i∀ i
Output: k∗(O)

1: Vi(x) := 0, Wi(x) := 0 ∀x ∈ X , i ∈ N ;
2: Vi(oi, ō−i) := ∞ ∀i ∈ N , oi ∈ Oi , ō−i ∈ X−i\O−i;
3: compute X∗;
4: return ExactK(V , n);

ExactK(V , i):
Input: payments V , current Player i
Output: k∗(O) for G(V )

1: if |X∗
i (V )\Oi| > 0 then

2: s := any strategy in X∗
i (V )\Oi; kbest := ∞;

3: for all oi ∈ Oi do
4: for all o−i ∈ O−i do
5: Wi(oi, o−i):=max(0, Ui(s, o−i)−

(Ui(oi, o−i) + Vi(oi, o−i)));
6: k := ExactK(V + W , i);
7: if k < kbest then
8: kbest := k;
9: for all o−i ∈ O−i do

10: Wi(oi, o−i) := 0;
11: return kbest;
12: if i > 1 return ExactK(V , i− 1);
13: else return maxo∈O

∑
i Vi(o);

Algorithm 2 Reduction Algorithm ALGred

Input: Game G, convex target region O
Output: Implementation V of O

1: [k, V ] := greedy(G, O);
2: ktemp := −1; ci := ⊥ ∀i; Ti := {} ∀i;
3: while (k > 0) ∧ (∃i : |Oi| > 1) ∧ (∃i : Oi * Ti) do
4: for all i ∈ N do
5: xi := arg minoi∈Oi

(maxo−i∈O−i
Ui(oi, o−i));

6: if (Oi * Ti) ∧ (¬cj∀j) ∧ (xi ∈ Ti) then
7: xi:=arg minoi∈Oi\Ti

(maxo−i∈O−i(Ui(oi, o−i)));
8: if |Oi| > 1 then
9: Oi := Oi \ {xi};

10: [ktemp, V ] := greedy(G, O);
11: if ktemp ≥ k then
12: Oi := Oi ∪ {xi}; Ti := Ti ∪ {xi}; ci := ⊥;
13: else
14: k := ktemp; Ti := {} ∀i; ci := >;
15: return V ;

Algorithm 3 Greedy Algorithm ALGgreedy

Input: Game G, convex target region O
Output: Implementation V of O

1: Vi(x) := 0;Wi(x) := 0 ∀x ∈ X , i ∈ N ;
2: compute X∗;
3: for all i ∈ N do
4: Vi(oi, ō−i) := ∞ ∀oi ∈ Oi , ō−i ∈ X−i\O−i;
5: while X∗

i (V ) * Oi do
6: cbest := 0; mbest :=null; sbest :=null;
7: for all s ∈ X∗

i (V )\Oi do
8: m := arg minoi∈Oi

(∆G(V )(s, oi));
9: for all o−i ∈ O−i do

10: Wi(m, o−i):=max(0, Ui(s, o−i)−
(Ui(m, o−i) + Vi(m, o−i)));

11: c := 0;
12: for all x ∈ X∗

i \Oi do
13: if m dominates x in G(V + W ) then
14: c + +;
15: if c > cbest then
16: cbest := c ; mbest := m ; sbest := s;
17: for all o−i ∈ O−i do
18: Vi(mbest, o−i)+=max(0, Ui(sbest, o−i)−

(Ui(mbest, o−i) + Vi(mbest, o−i)));
19: return V ;

Algorithm 4 Reduction Algorithm ALGred

Input: Game G, convex target region O
Output: Implementation V of O

1: [k, V ] := greedy(G, O);
2: ktemp := −1; ci := ⊥ ∀i; Ti := {} ∀i;
3: while (k > 0) ∧ (∃i : |Oi| > 1) ∧ (∃i : Oi * Ti) do
4: for all i ∈ N do
5: xi := arg minoi∈Oi (maxo−i∈O−i Ui(oi, o−i));
6: if (Oi * Ti) ∧ (¬cj∀j) ∧ (xi ∈ Ti) then
7: xi:=arg minoi∈Oi\Ti

(maxo−i∈O−i(Ui(oi, o−i)));
8: if |Oi| > 1 then
9: Oi := Oi \ {xi};

10: [ktemp, V ] := greedy(G, O);
11: if ktemp ≥ k then
12: Oi := Oi ∪ {xi}; Ti := Ti ∪ {xi}; ci := ⊥;
13: else
14: k := ktemp; Ti := {} ∀i; ci := >;
15: return V ;

An alternative heuristic algorithm for computing a region O’s implementation cost
retrieves the region’s cheapest singleton, i.e., mino∈O k(o), where a singleton’s imple-
mentation cost is k(o) = mino∈O

∑
i∈N maxxi∈Xi

(Ui(xi, o−i)− Ui(oi, o−i)) [10].
The best singleton heuristic algorithm performs quite well for randomly generated
games as our simulations reveal (cf. Section 4), but it can result in an arbitrarily large
k in the worst case: Fig. 3 depicts a game where each singleton o in the region O con-
sisting of the four bottom left profiles has cost k(o) = 11 whereas V implements O at
cost 2.
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4 Simulation

All our algorithms return correct implementations of the desired strategy profile sets and
– apart from the recursive algorithm ALGexact for the optimal exact implementation –
run in polynomial time. In order to study the quality of the resulting implementations,
we performed several simulations comparing the implementation costs computed by
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run in polynomial time. In order to study the quality of the resulting implementations,
we performed several simulations comparing the implementation costs computed by
the different algorithms. We have focused on two-person games using random game
tables where both players have payoffs chosen uniformly at random from the interval
[0,max], for some constant max.

We can modify an implementation V of O, which yields a subset of O, without
changing any entry Vi(o), o ∈ O, such that the resulting V implements O exactly.

Theorem 6. If O−i ⊂ X−i ∀i ∈ N , it holds that k∗(O) ≤ maxo∈O V (o) for an
implementation V of O.

Theorem 6 enables us to use ALGgreedy for an exact cost approximation by simply
computing maxo∈O V (o) instead of maxx∈X∗(V ) V (x).

Non-Exact Implementation We observe that implementing the best singleton often
yields low costs. In other words, especially when large sets have to be implemented, our
greedy algorithms tend to implement too many strategy profiles and consequently incur
unnecessarily high costs. On average, the singleton algorithm performed much better
than the other two, withALGgreedy being the worst of the candidates. We presume that
theALGred might improve relatively to the best singleton heuristic algorithm for larger
player sets.

11 11

# Strategie kExact  kGreedy  kReduce
4 9.51 9.51 12.06
5 21.44 21.94 32.73
6 33.41 34.74 51.6
7 43.79 46.2 67.3
8 55.01 58.8 85.17
9 66.68 72.34 102.97

10 77.84 85.44 120.7
11 90.27 99.93 139.19
12 114.94 156.64
13 129.24 175.42
14 145.38 195.49
15 161.43 215.65
16 178.19 236.23
17 194.68 257.19
18 211.26 278.35
19 228.54 299.81
20 245.93 321.24
21 263.46 342.93
22 280.52 364.97
23 298.82 387.49
24 316.74 409.69
25 335.47 432.74
26 353.52 455.8
27 372.69 479
28 391.85 502.84
29 411.17 526.56
30 430.42 550.7
31 449.27 574.72
32 468.94 599.15
33 488.21 623.76
34 508.15 648.73
35 527.87 673.68
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Fig. 4. The average implementation cost k of sets O over 100 random games where |Oi| = bn/3c
(left: Non-exact, right: exact). The utility values are chosen uniformly at random from [0, 20]. For
different intervals we obtain approximately the same result when normalizing k with the maximal
possible value.

Exact Implementation Due to the large runtime of ALGexact, we were only able to
compute k for a small number of strategies. However, for these cases, our simulations
reveals that ALGgreedy often finds implementations which are close to optimal and is
better than the perturbation algorithm. For different payoff value intervals [0,max], we
observe a faster increase in k than in the non-exact implementation case. This suggests
that implementing a smaller region entails lower costs for random games on average.
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Finally, we tested different options to choose the next strategy inALGgreedy (Line 8)
and ALGred (Lines 5 and 7). However, none of the alternatives we tested performed
better than the ones described in Section 3.

In conclusion, our simulations have shown that for the case of non-exact implemen-
tations, there are interesting differences between the algorithms proposed in Section 3.
In particular, the additional reductions by ALGred are beneficial. For the case of exact
implementations, our modified greedy algorithm yields good results. As a final remark
we want to mention that, although ALGgreedy and ALGred may find cheap implemen-
tations in the average case, there are examples where the approximation ratio of these
algorithms is large.

5 Variations

Mechanism design by creditability offers many interesting extensions. In this section,
two alternative models of rationality are introduced. If we assume that players do not
just select any non-dominated strategy, but have other parameters influencing their de-
cision process, our model has to be adjusted. In many (real world) games, players typ-
ically do not know which strategies the other players will choose. In this case, a player
cannot do better than assume the other players to select a strategy at random. If a player
wants to maximize her gain, she will take the average payoff of strategies into account.
This kind of decision making is analyzed in the subsequent section. Afterwards, risk-
averse players are examined. Finally, we take a brief look at the dynamics of repeated
games with an interested third party offering payments in each round.

5.1 Average Payoff Model

As a player may choose any non-dominated strategy, it is reasonable to compute the
payoff which each of her strategy will yield on average. Thus, assuming no knowledge
on the payoffs of the other players, each strategy xi has an average payoff of pi(xi) :=

1
|X−i|

∑
x−i∈X−i

Ui(xi, x−i) for Player i. Player i will then select the strategy s ∈ Xi

with the largest pi(s), i.e., s = arg maxs∈Xi
pi(s). If multiple strategies have the same

average payoff, she plays one of them uniformly at random. For such average strategy
games, we say that xi dominates x′i iff pi(xi) > pi(x′i). Note that with this modified
meaning of domination, the region of non-dominated strategies, X∗, differs as well.

The average payoff model has interesting properties, e.g., singleton profiles can be
implemented for free.

Theorem 7. If players maximize their average payoff, singleton strategy profiles are
always 0-implementable if there are at least two players with at least two strategies.

Theorem 7 implies that entire strategy profile regions O are 0-implementable as
well: we just have to implement any singleton inside O.

Corollary 3. In average strategy games where every player has at least two strategies,
every strategy profile region can be implemented for free.

Exact implementations can be implemented at no costs as well.

Theorem 8. In average strategy games where O−i ⊂ X−i ∀i ∈ N , each strategy
profile region has an exact 0-implementation.
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5.2 Risk-Averse Players

Instead of striving for a high payoff on average, the players might be cautious or
risk-averse. To account for such behavior, we adapt our model by assuming that the
players seek to minimize the risk on missing out on benefits. In order to achieve this
objective, they select strategies where the minimum gain is not less than any other
strategy’s minimum gain. If there is more than one strategy with this property, the
risk-averse player can choose a strategy among these, where the average of the ben-
efits is maximal. More formally, let mini := maxxi∈Xi(minx−i∈X−i(Ui(xi, x−i)))
and ∅X f(x) := 1

|X| ·
∑

x∈X f(x). Then Player i selects a strategy m satisfying
m = arg maxm∈M (∅X−i

Ui(m,x−i)), where M = {xi|∀x−i Ui(xi, x−i) = mini}.
Theorem 9. For risk-averse players the implementation cost of a singleton z ∈ X is
k(z) =

∑n
i=1 max(0,mini − Ui(z))

For strategy profile regions, the situation with risk-averse players differs from the
standard model considerably.

Theorem 10. For risk-averse players the implementation cost for a strategy profile re-
gion O ⊂ X is k(O) = mino∈O

∑n
i=1 max(0,mini − Ui(o)).

In Section 3, we conjectured the prob-

Theorem 6.5:The problem of computingk for risk-
averse agents is inP.
PROOF. For the non-exact case this theorem follows
directly from Theorem 6.4. In order to prove Theorem
6.5 for exact implementations, we demonstrate how to
computeVi(o) such thatV implements the entire regionO
optimally. For a Playeri and a set of strategiesYi ⊆ Xi,
we defineτ(Yi):=maxxi∈Yi

(∅X−i
((U + V )i(xi, x−i))) to

be the maximum of the average benefits over all
strategies. For each strategy of a Playeri, we define
δ(xi):=max(τ(Oi), τ(X∗

i )) − ∅X−i
((U + V )i(xi, x−i))),

for xi ∈ Xi, to be the difference of the averages.
Algorithm 5 constructsV if the target regionO and X∗
are disjoint. Analogously to the proofs above we can deal
with each Playeri individually. It computes for all cases
how much the interested party has to offer at least for
strategy profiles inO and setsVi(xi, x−i) to infinity for all
xi ∈ Oi, x−i ∈ X−i \O−i (Line 4). Then, for each Player
i, strategiesOi have to reach the minimum payoff of
strategies inX∗

i . This suffices for an exact implementation
if Oi ⊂ Xi, i.e. if there exists at least one strategyxi /∈ Oi.
Otherwise, we determine whether it costs more to exceed
the minimum constraint or the average constraint for all
Oi if Oi covers whole columns and adjustVi accordingly.
Thus the algorithm ensures that only strategies inO are
chosen while all strategies inO are selected.

Algorithm 5 Risk-averse Players: Exact Implementation
Input: GameG, target regionO, Oi ∩X∗

i = ∅ ∀i ∈ N
Output: V

1: computeX∗;
2: Vi(z) = 0 for all i ∈ N, z ∈ X;
3: for all i ∈ N do
4: Vi(xi, x−i):=∞ ∀xi ∈ Oi, x−i ∈ X−i \O−i;
5: Vi(xi, x−i) := max(0,mini − Ui(xi, x−i)) ∀xi ∈ Oi,

x−i ∈ X−i;
6: if O−i = X−i then
7: if τ(Oi) > τ(X∗

i ) then
8: if |Xi|+ ε|Oi| > |Xi|+

∑
oi

δ(oi) then
9: Vi(oi, x−i):=Vi(oi, x−i) + δ(oi) ∀oi, x−i;

10: else
11: Vi(oi, x−i):=Vi(oi, x−i) + ε ∀oi, x−i;
12: else
13: if ε|Oi| >

∑
oi

[ε + δ(oi)] then
14: Vi(oi, x−i):=Vi(oi, x−i) + ε + δ(oi) ∀oi, x−i;
15: else
16: Vi(oi, x−i):=Vi(oi, x−i) + ε ∀oi, x−i;
17: return V ;

The algorithm can be extended easily to work for
instances whereX∗

i ⊂ Oi. As the extension is straight-
forward and does not provide any new insights, we omit
it. The runtime of the algorithm can be determined to be
O(n|X|), thus we can computek∗(O) = maxo∈O V (o) in
polynomial time.2

C. Round-based Mechanisms

The previous sections dealt with a static model. Now,
we extend our analysis to dynamic, round-based games,
where the designer offers payments to the players after
each round in order to make them change strategies. This
opens many questions: For example, imagine a concrete
game such as anetwork creation game[7] where all
players are stuck in a costly Nash equilibrium. The goal
of a mechanism designer could then be to guide the
players into another, better Nash equilibrium. Many such
extensions are reasonable; due to space constraints, we
present only one model.

In a dynamic game, we regard a strategy profile as
a state in which the participants find themselves. In a
network context, eachx ∈ X could represent one par-
ticular network topology. We presume to find the game
in an initial starting statesT=0 ∈ X and that, in state
sT=t, each Playeri only sees the states she can reach by
changing her strategy given the other players remain with
their chosen strategies. Thus Playeri sees only strategy
profiles in XT=t

visible,i = Xi × {sT=t
−i } in round t. In every

round t, the mechanism designer offers the players a
payment matrixV T=t (in addition to the game’s static
payoff matrix U ). Then all players switch to their best
visible strategy (which is any best responseBi(sT=t

−i )), and
the game’s state changes tosT=t+1. Before the next round
starts, the mechanism designer disburses the payments
V T=t(sT=t+1) offered for the newly reached state. The
same procedure is repeated until the mechanism designer
decides to stop the game.

We prove that a mechanism designer can guide the
players to any strategy profile at zero costs in two rounds.

Theorem 6.6:Starting in an arbitrary strategy profile, a
dynamic mechanism can be designed to lead the players
to any strategy profile without any expenses in at most
two rounds if|Xi| ≥ 3 ∀i ∈ N .
In order to simplify the proof we begin with a helper
lemma. Let XT=t

visible denote thevisible strategy profile
region in round t, i.e., XT=t

visible =
⋃n

i=1 XT=t
visible,i.

Lemma 6.1:The third party can lead the players of a
dynamic game to any strategy profile outside the visible
strategy profile region without any expenses in one round.
PROOF. Let s ∈ X be the starting strategy profile ande
the desired end strategy profile in the non-visible region
of s. The designer can implemente in just one round by
offering each Playeri an infinite amountVi(x) for the
strategy profilex = (ei, s−i) and zero for any other. Thus
each player will switch toei. SinceVi((ei, s−i)) are the
only positive payments offered and since allx = (ei, s−i)
are visible ande is non-visible froms which impliese 6=
x, hencee is implemented at no cost.2

PROOF OFTHEOREM6.6. Consider an arbitrary starting
strategy profiles and a desired strategy profilee. If e is
not visible froms, e is implementable at no cost in one

lem of computing k(O) to be NP-complete
for both general and exact implementations.
This is not the case for risk-averse players, as
the following theorem states.

Theorem 11. ALGrisk computes k(O)
in time O

(
n|X|2), thus the problem

of computing k for risk-averse agents
is in P.

5.3 Round-based Mechanisms

The previous sections dealt with static models only. Now, we extend our analysis to
dynamic, round-based games, where the designer offers payments to the players after
each round in order to make them change strategies. This opens many questions: For
example, imagine a concrete game such as a network creation game [6] where all play-
ers are stuck in a costly Nash equilibrium. The goal of a mechanism designer could then
be to guide the players into another, better Nash equilibrium. Many such extensions are
reasonable; due to space constraints, only one model is presented in more detail.

In a dynamic game, we regard a strategy profile as a state in which the participants
find themselves. In a network context, each x ∈ X could represent one particular net-
work topology. We presume to find the game in an initial starting state sT=0 ∈ X
and that, in state sT=t, each Player i only sees the states she can reach by changing
her strategy given the other players remain with their chosen strategies. Thus Player i
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sees only strategy profiles in XT=t
visible,i = Xi × {sT=t

−i } in round t. In every round t,
the mechanism designer offers the players a payment matrix V T=t (in addition to the
game’s static payoff matrix U ). Then all players switch to their best visible strategy
(which is any best response Bi(sT=t

−i )), and the game’s state changes to sT=t+1. Before
the next round starts, the mechanism designer disburses the payments V T=t(sT=t+1)
offered for the newly reached state. The same procedure is repeated until the mecha-
nism designer decides to stop the game. We prove that a mechanism designer can guide
the players to any strategy profile at zero costs in two rounds.

Theorem 12. Starting in an arbitrary strategy profile, a dynamic mechanism can be
designed to lead the players to any strategy profile without any expenses in at most two
rounds if |Xi| ≥ 3 ∀i ∈ N .

6 Conclusion

Rendering distributed systems robust to non-cooperative behavior has become an im-
portant research topic. This paper has studied the fundamental question: Which out-
comes can be implemented by promising players money while the eventual payments
are bounded? We have presented algorithms for various objectives yielding implemen-
tations of low cost. Furthermore, it has been shown that a greedy algorithm performs
well for random games. Finally, this paper has initiated the study of risk-averse players
and round-based games.
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9. E. Maskin and T. Sjöström. Handbook of Social Choice Theory and Welfare (Implementation
Theory), volume 1. North-Holland, Amsterdam, 2002.

10. D. Monderer and M. Tennenholtz. k-Implementation. In Proc. 4th ACM Conference on
Electronic Commerce (EC), pages 19–28, 2003.


