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Abstract

We present Cryptree, a cryptographic tree structure
which facilitates access control in file systems operating
on untrusted storage. Cryptree leverages the file system’s
folder hierarchy to achieve efficient and intuitive, yet sim-
ple, access control. The highlights are its ability to recur-
sively grant access to a folder and all its subfolders in con-
stant time, the dynamic inheritance of access rights which
inherently prevents scattering of access rights, and the pos-
sibility to grant someone access to a file or folder without
revealing the identities of other accessors. To reason about
and to visualize Cryptree, we introduce the notion of cryp-
tographic links. We describe the Cryptrees we have used
to enforce read and write access in our own file system.
Finally, we measure the performance of the Cryptree and
compare it to other approaches.

1 Introduction

In traditional file systems, access control is enforced by
the storage device. Access control lists are consulted in or-
der to decide whether the requests of a user should be fol-
lowed or not. Since this approach requires trusting the stor-
age device to enforce the access rights properly, it cannot be
used in systems that operate on untrusted storage, as it is of-
ten the case in distributed file systems. Instead, all content
is encrypted such that only legitimate accessors can decrypt
it. This relieves the storage device from the burden of ac-
cess control, but requires a clever key management scheme.
Although a number of such key management schemes have
already been proposed, none of them met the requirements
of our own distributed file system, Kangoo1.

The Cryptree which we will present in the following has
been implemented as part of the development of Kangoo
and has a number of favorable properties in comparison to
previous approaches. In particular, we wanted the Cryptree
to fulfill the following three important criteria:

1To be released (http://www.caleido.com/kangoo).

1. Semantics: The more users interact in a file system,
the more important it is to have useful and intuitive ac-
cess control semantics. In particular, we require our
file system to support confidentiality and dynamic in-
heritance of access rights.

2. Efficiency: The number of keys to be managed should
not grow proportionally to both, the number of files
and the number of involved users. Furthermore, the
usage of expensive asymmetric cryptography should
be minimized.

3. Simplicity: The access control scheme should be sim-
ple to understand and implement.

The Cryptree achieves these properties by leveraging the
file system’s folder hierarchy. Our tests indicate that Cryp-
tree manages keys about four times as fast as previously
proposed approaches. Especially the performance of oper-
ations that recursively affect access rights is dramatically
improved.

We first discuss the context of this paper in Section 2.
Then, in Section 3, our desired access control semantics are
specified in more detail. Section 4 introduces cryptographic
links—the building blocks of Cryptree. Section 5 specifies
the Cryptree by describing the concrete mechanisms used to
manage read and write access keys in our file system. The
performance of Cryptree is evaluated in Section 6. Finally,
in Section 7, we discuss the cryptographic links and com-
pare the Cryptree to previously proposed structures. The
paper is concluded in Section 8.

2 Context and Related Work

This section puts the Cryptree into perspective by out-
lining previous work in the area of key management on un-
trusted storage. Of particular interest are the concept of lazy
revocation which we adopt, and the idea of key regression
to which we compare cryptographic links in the discussion
section (Section 7). Section 7 also presents the advantages
of Cryptree in comparison to the key management schemes



described in the following. Note that we will skip key man-
agement schemes that are based on trusted storage (e.g.,
Kerberos [1]).

2.1 Key Management in File Systems

While early cryptographic file systems [2, 3] did not ad-
dress key management, it has already found attention in
distributed systems like OceanStore [4], PAST [5] or Far-
Site [6]. More recent systems increasingly employ efficient
access control, Cepheus [7] being the one to introduce the
idea of lazy revocation (cf Section 2.2). Some of these sys-
tems entirely focus on key management and access control
[8, 9, 10, 11, 12].

The most widespread and trivial approach to key man-
agement is to maintain a key list along with every file.
These lists contain an entry for each user who has access
rights to the corresponding files. Such an entry consists of
a key representing an access right, encrypted with the pub-
lic key of a user. This enables the user to decrypt the key
using her private key and to assert the access rights associ-
ated with it. In the rest of this paper, we will refer to this
straight-forward approach as the classic access control list
approach, or short: CACL approach.

Plutus [8] improves on this approach by introducing fi-
legroups. All files in such a group are encrypted with the
same key. Thereby, access can be granted to entire groups
of files at once by only revealing one key. In order to avoid
unnecessary overhead when access rights are revoked, Plu-
tus applies lazy revocation and introduces a new technique
called key rotation which was later refined to key regres-
sion [13], sometimes also referred to more generally as key-
updating scheme [14].

Interestingly, key management schemes for general hi-
erarchies have already been investigated in depth, e.g. [15,
16, 17, 18], the last one representing the state of the art in
this area. In contrast to our work, however, these schemes
have not been written in the context of file systems but from
a purely cryptographic point of view. Often, they do not
support granting structural write access. Their focus usu-
ally is on finding clever key generation algorithms that lead
to meaningful dependencies between the generated keys,
thereby sharing some similarities with the technique of key
regression.

2.2 Lazy Revocation

Cepheus [7] has introduced the idea of lazy revocation,
a technique which reduces the overhead of revoking ac-
cess rights at the price of slightly lowered security. It is
commonly considered a good idea to allow lazy revocation
[14, 20, 21]. In the following, this concept—which is also
adopted by Cryptree—is explained.

When someone’s read access rights for a file or folder
(or generally: item) are revoked, it is necessary to encrypt
the item with a new key in order to prevent that person from
accessing the corresponding item ever again. The policy of
lazy revocation allows to postpone this encryption until the
next change of this item. This affects security insofar as
an adversary now can continue reading the file by keeping
a copy of the encryption key. Without lazy revocation, he
would have been bound to keep the entire file.

Valid encryption keys that might still be known by
some former accessor—who is not supposed to know them
anymore—are considered to be dirty. By cleaning dirty
keys, we refer to replacing them by newly generated keys
and reencrypting the associated contents with them. In the
following, reencrypting data with a key denotes decrypting
the data with the old key and encrypting it again with the
specified key.

2.3 Key Regression

Key regression is designed to solve a particular problem
that arises when encrypting multiple files with the same key.
For instance, Plutus applies it for its filegroups.

Given a filegroup containing n files, encrypted with a
dirty key K1, let us assume we want to modify a file f from
this group. Since key K1 is dirty, it needs to be replaced by a
new key K2. Unfortunately, f is not the only file encrypted
with K1. Hence, when updating the file and reencrypting it
with K2, all other files in the filegroup must be reencrypted
with K2 as well in order to preserve the filegroup benefit of
only having one key to access all contained files.

This expensive overhead can be prevented using the key
regression technique. Key regression specifies how to gen-
erate a key K2 such that everybody knowing K2 can com-
pute K1, but not the other way round. Thus, if key regres-
sion is used to generate K2, the benefit of filegroups can
be preserved without reencrypting all files of the group: the
knowledge of key K2 cannot only be used to decrypt f , but
also to decrypt all other files by first deriving K1 from K2.
Therefore, thanks to key regression, the overhead of reen-
crypting all files of the group can be avoided.

3 Access Control Semantics

This section specifies the desired access control seman-
tics. In most file systems, access control information is
stored on a per file basis. When granting read access to a
folder and all its contents, there is a flag being set for each
of its files, plus recursively for each of its subfolders. Unfor-
tunately, however, this approach entails a number of prob-
lems and may make the system behave in ways unexpected
to the user. We argue that coupling access control to the
folder structure results in much more natural access control



semantics. In particular, the file system should adhere to the
following rules:

• Downward Inheritance of Access Rights: Explicitly
granted access to a folder implies inherited access to its
descendants. When granting Alice access to a folder
documents/ and later adding a new document to that
folder, Alice should also be able to access the newly
added one. And when moving items from documents/
into another folder, Alice should lose access to them.
This is different in most other file systems. There, the
access rights stick to the items and hence might get
scattered all over the file hierarchy.

• Upward Inheritance of Access Rights: Explicitly
granted access to a folder implies inherited access to
the names of the folder’s ancestor folders. For exam-
ple, when granting Alice recursive access to a folder
documents/ that resides in /bob/projects/, Alice should
automatically be allowed to see the names of its an-
cestor folders /bob/ and /bob/projects/. Without being
able to see the parent folders’ names, it would not be
possible for her to reconstruct the correct path of doc-
uments/. When documents/ is moved somewhere else,
Alice should still have access to it and gain the ability
to see the names of its new ancestors while losing the
ability to see the names of its old ancestors.

• Confidentiality of File and Folder Names:
When Alice grants Bob access to her folder hol-
iday/cancun with bob/, Bob should not be able
to see that there is also a folder named holi-
day/greece with charles/. Most other file system
handle this issue differently. There, being able to read
a folder name typically implies being able to read the
names of its siblings as well.

• Confidentiality of Access Rights: It should be pos-
sible to grant read and write access without revealing
who else has access to the files in question.

The Cryptree is designed to efficiently satisfy these se-
mantics.

4 Cryptographic Links

In order to understand how the Cryptree is constructed,
it is essential to know the simple, yet powerful, concept of
cryptographic links. These links resemble the edges of the
graphs proposed in works like [16, 17, 18]. A cryptographic
link from a key K1 to another key K2 enables everyone
in possession of K1 to derive K2. Concatenating multiple
links allows to build cryptographic data structures. Note
that when K1 becomes dirty (cf Section 2.2), K2 becomes
dirty as well. Two types of cryptographic links are distin-
guished: symmetric links and asymmetric links.

4.1 Symmetric Link

Given two secret keys K1 and K2 and a symmetric en-
cryption algorithm (our implementation uses AES-128), we
denote the result of encrypting K2 with K1 by K1→K2,
where → is called a symmetric cryptographic link. Anyone
knowing K1 and this link can derive K2.

K2K1

Figure 1. The symmetric link K1→K2.

4.2 Asymmetric Link

Asymmetric links are basically the same as symmetric
links. Their special property is that an asymmetric link
K1 ⇀ K2 can be updated to K1 ⇀ K ′

2 without the knowl-
edge of K1, which is impossible with symmetric links. The
price for this property is a loss of performance since we
need to make use of asymmetric cryptography (our imple-
mentation uses RSA-1024).

/metro.jpg/alice /images /taipei/kangoo

K2K1

Figure 2. The asymmetric link K1⇀K2.

Given a key pair (Kpublic,Kprivate) as well as a secret
key K2, the asymmetric link is constructed by encrypting
K2 with Kpublic. The public key Kpublic is always stored
together with the link while the private key Kprivate is kept
secret. Defining K1 = Kprivate, the result is the asymmet-
ric link K1 ⇀ K2.

In order to update K1 ⇀ K2 to K1 ⇀ K ′
2 for an ar-

bitrary K ′
2, K ′

2 is encrypted with Kpublic. The result is
K1 ⇀ K ′

2.

5 The Cryptree

This is the core section of this paper. First, the Cryptree
in general is specified. Then, the two Cryptrees used for
access control in our file system are described in detail. It
follows a section about how file system operations need to
take the Cryptrees into account.

5.1 General Cryptree

A Cryptree is a cryptographic data structure consisting of
keys and cryptographic links. It is inspired by [18] and can
be seen as a directed graph with keys as vertices and cryp-
tographic links as edges. Given a Cryptree with at least two



keys K1 and K2, K2 can be derived from K1 if and only
if there is a directed path from K1 to K2. This is a conse-
quence of the nature of cryptographic links. Furthermore,
as the name indicates, Cryptrees often have a tree structure.

Due to this tree structure, Cryptrees can be used to effi-
ciently manage the keys of nested folders in cryptographic
file systems, typically by making the links of the crypto-
graphic tree publicly available. From this alone, no infor-
mation about the keys can be derived. However, it suffices
to know one single key in order to recursively derive all
descendants of that key. This is a powerful property when
designing access control in cryptographic file systems, as
access to entire subtrees can be granted with O(1) opera-
tions. It also leads to intuitive and natural access control
semantics.

The designs of two specific Cryptrees to enforce read and
write access control are described in turn.

5.2 Read Access Cryptree

In this section, we specify the Cryptree used for read ac-
cess control in our file system. We first describe the keys
used to represent folders and show how they are linked, and
then give a short description of the file keys to complete the
picture. The read access Cryptree efficiently satisfies our
desired access control semantics as specified in Section 3,
without the need for any additional constructs.

5.2.1 Folders

The central element of our read access Cryptree is intro-
duced next: the folder item with its five secret keys. This
folder item can be combined with other folder items in order
to construct a folder tree. We start with a complete specifi-
cation of the cryptographic links and keys used to represent
the folder item. Then, the benefits of a tree of such folder
items are explained by means of an illustrated example.

Each folder f has five secret keys:

• A data key DKf to encrypt all data needed to represent
the folder. This includes its name, creation date and
whatever other information the file system stores about
the folder.

• A backlink key BKf to find out information about par-
ent folders.

• A subfolder key SKf to read subfolders.

• A files key FKf to read the files this folder contains.

• An optional clearance key CKf that can be revealed
to other users in order to grant access to f and its de-
scendants.
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Figure 3. An instance of a read access Cryp-
tree as described in Section 5.2. The dotted
parts represent optional keys and links. The
links that start or end nowhere indicate ar-
bitrary numbers of connections to elements
not shown in the figure, namely links to ad-
ditional child folders and files. The incom-
ing dotted links pointing to the clearance
keys denoted with CK represent read access
rights.

Instead of storing the keys themselves, five cryptographic
links are stored along with each folder f :

BKf→DKf BKf→BKp(f) SKf→BKf

SKp(f)→SKf SKf→FKf

where p(f) denotes the parent folder of f . Optionally, there
might be a sixth, asymmetric link: CKf ⇀ SKf . Figure 3
illustrates these links in an example with three nested fold-
ers.

Due to the way the involved keys are linked, it suffices
to know the subfolder key SKholiday of the folder holiday/
in order to derive all the keys necessary to not only decrypt
the folder itself, but also to completely decrypt all its de-
scendants as well as the metadata of its ancestors. Note that
in spite of being able to read the names of holiday/ ’s par-
ent images/, no information about the other children of im-
ages/ can be decrypted since there is no directed path from
SKholiday to SKimages.

Unlike in the case of the write access Cryptree dis-
cussed in the subsequent section, the asymmetric nature of
CKf ⇀ SKf is not strictly needed: It could be avoided
by linking together the two trees (WSKf → CKf ). How-
ever, it facilitates cleaning the key structure and improves
simplicity since the two trees can be kept independent from
each other.
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Figure 4. The write access Cryptree as de-
scribed in Section 5.3.

5.2.2 Files

Every folder may contain one or more files. Each file f
is encrypted with its own data key DKf which can be re-
trieved using the link FKp(f)→DKf which is stored along
with the file. Again, p(f) denotes the parent folder of f . In
case we want to be able to grant read access to individual
files, we need to add a backlink key BKf and a clearance
key CKf , and link them as shown in Figure 3.

5.3 Write Access Cryptree

In systems operating on untrusted storage, write access
control is usually done by creating a sign/verify key pair
for every file and folder. The signature key is used to sign
all changes of these items, and the verification key is used
to verify the legitimacy of changes. While the verification
key is distributed to all readers, the signature key is only
revealed to writers of a file or folder. The verification key
is also made available to the server such that it can deny
unauthorized write operations. As [19] points out, this is
not necessary for purely log-structured file systems. In this
case, the server does not have to verify write operations.

The verification key can be made publicly available and
can be stored in plain text. The signature key however must
only be revealed to authorized writers. To do so, we can
again leverage the Cryptree structure. Figure 4 illustrates
the keys involved in Kangoo’s write access Cryptree. These
keys are:

• A verification key Kverify stored in plain text along
with the folder.

• A signature key Ksign which can be used to sign a
write operation.

• A write subfolder key WSK which allows gaining
write access to subfolders. It has the same role as the
subfolder key SK in read access control.

• An optional write clearance key WCK which is re-
vealed to grant someone write access. It has the same
role as the clearance key CK in read access control.

As before, access can simply be granted by revealing the
clearance key. The main difference to read access control
is that dirty keys must be cleaned immediately since lazy
revocation is not applicable for write access.

Note that the asymmetric nature of WCK ⇀ WSK al-
lows us to guarantee confidentiality of access rights. If it
was not asymmetric, writers would need to know WCK
when cleaning WSK. Then, WCK would get dirty when-
ever a writer loses access to it as a result of a move opera-
tion. Hence, WCK has to be cleaned again by the writers,
which requires knowledge of all incoming links to WCK.
Eventually, if the writers do not know each other, an asym-
metric link is unavoidable.

5.4 Operations

We now show how the different file system operations
are performed. We assume that granting and revoking ac-
cess is always done by someone with full access rights to
all involved items. Currently, we do not support the delega-
tion of administration rights.

When reasoning about the efficiency of operations, we
assume the folder hierarchy to resemble a random binary
tree and therefore to have a depth of O(log n), where n de-
notes the total number of files.

5.4.1 Cleaning

Before executing any operation, it must be ensured that all
involved items are clean. Most keys are cleaned lazily, so
we will have to check them for dirtiness when doing an op-
eration as described in the following. An exception are sub-
folder keys and clearance keys: Both are always kept clean,
as explained later in this section.

If a file f we would like to change is dirty, we must
reencrypt its contents with a new key DK ′

f . If the file
key FKp(f) of its parent is also dirty, we have to replace
FKp(f) as well and update all the links FKp(f) is involved
in. If FKp(f) is already clean, it suffices to update the link
FKp(f)→DKf . In addition, if someone is granted read ac-
cess to this individual file, there will be a backlink key. In
that case, the backlink key is also cleaned and the involved
links are updated.

If a folder f we would like to change is dirty, there is
slightly more work to do than in case of files. Besides re-
placing f ’s data key and reencrypting the metadata as be-
fore, we also have to check the backlink structure. If the



backlink key is dirty, it has to be replaced. So do all the
dirty backlink keys of its descendants. In the worst case,
we will end up replacing O(n) backlink keys, where n is
the number of files. Fortunately, there is no operation that
leaves more than O(log n) backlink keys dirty (cf Section
5.4.4). Therefore, the average number of backlink keys be-
coming dirty must be in O(log n). Since we cannot clean
more items than there are dirty ones, the amortized average
cost of cleaning is also in O(log n).

Subfolder keys are always kept clean. The two opera-
tions during which they might get dirty (revoke read access
and move) clean them immediately. The reason to do so is
that we want to ensure that writers with limited write ac-
cess rights will always be able to clean everything when
performing an operation.

To give an example of how this would go wrong if
subfolder keys were not cleared immediately, consider the
nested folders images/2047/moon/. Say Bob has read access
to 2047/ and Claire has read and write access to moon/. If
we revoked Bob’s access without cleaning any keys and if
subsequently, Claire wanted to add some file to the folder
moon/, it would be necessary to clean up a number of keys
in order to prevent Bob from being able to access the new
file. One of the keys to be cleaned would be the subfolder
key of 2047/ which Claire must not know and therefore can-
not clean. To prevent Claire from getting into this kind of
trouble, we keep subfolder keys clean.

Clearance keys are also be kept clean. These keys are
only changed by the administrator to grant and revoke ac-
cess. Since they cannot get dirty during structural changes,
writers do not need to know about them.

5.4.2 Granting Read Access

Before granting someone read access to a file or folder f ,
it must be ensured that f has a clearance key CKf . If not,
such a key is generated and the necessary links described in
Section 5.2 are established. Subsequently, the key CKf is
revealed to the new accessor, thereby providing access to f .
In our file system, keys are revealed using additional items
we do not describe in this paper, but it could generally also
be performed with any other suitable key exchange scheme.

5.4.3 Granting Write Access

Granting write access is done by revealing the writer’s clear-
ance key WC in the same way as when granting read ac-
cess.

5.4.4 Revoking Read Access

Revoking access is more complex than granting access.
When access to a folder f is revoked, all its descendants
must be marked dirty. Revoking read access requires the

clearance key CKf to be cleaned and the new version re-
vealed to the remaining accessors. Furthermore, all sub-
folder keys of the descendants are cleaned immediately for
the reasons mentioned in Section 5.4.1. Together with the
subfolder keys, the backlink keys of the descendants are
cleaned as well. This is acceptable since these elements
are touched anyway and it enables us to guarantee that no
operation leaves more than O(log n) backlink keys dirty.

Revoking read access is—besides revoking write
access—one of the most expensive operations in the Cryp-
tree approach.

5.4.5 Revoking Write Access

Revoking write access cannot be done lazily. We need to
replace the clearance key WCK and all O(n) involved
write keys and write verification key pairs immediately. The
asymmetric cryptography involved in generating these key
pairs makes revoking write access the most expensive oper-
ation. Fortunately, it does not happen too often.

5.4.6 Moving Folders

The move operation is the most complex operation in Cryp-
tree. When moving a subtree to a new parent, the whole
subtree must be marked dirty. This is necessary since there
might be users losing access to the subtree as a result of
the move operation. By moving the subtree, they are no
longer allowed to read the old ancestors. This privilege was
granted using backlink keys so we need to mark them dirty
as well. Therefore, we do not only need to mark the moved
subtree itself as dirty, but also the old ancestors of the sub-
tree. As in the revoke read access operation, the subfolder
keys and backlink keys of the moved subtree are cleaned
immediately.

5.4.7 Other operations

We skip the other operations like deleting, renaming, creat-
ing or otherwise changing a file or folder as they are straight
forward to implement.

6 Performance Evaluation

This section compares the processing time spent on
cryptographic operations in different key management ap-
proaches. First, the methodology and setup of our tests are
explained, then the results are presented and discussed.

6.1 Methodology

6.1.1 Evaluated Systems

We consider four encryption approaches in file systems:
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Figure 5. A folder tree before and after a move
operation, Alice having read access to folder
b, Bob to c and Claire to e. Dirty items are
filled gray. Folder c is being moved from its
current parent b to e. Hereby, the whole sub-
tree starting with c gets dirty because Alice
loses access to it. Folder b becomes dirty be-
cause Bob loses access to it. Folder a does
not becomes dirty since it still is an ances-
tor of c. Note that this operation can be per-
formed without the need of being aware of
the existence of any of the involved users and
without explicitly resetting access rights as it
is necessary in other systems.

• CACL: The CACL approach as described in Section
2.1.

• Lazy CACL: The CACL approach enhanced by allow-
ing lazy revocation.

• Cryptree: The Cryptree as presented in this paper.

• Encrypt-on-wire: This term refers to file systems stor-
ing their data in plain text on the server and encrypting
the data for transmission (e.g. AFS, NFS). In encrypt-
on-wire systems, the user is typically authenticated at
the beginning of a session and a secure connection is
established. Every piece of data transmitted over this
connection is automatically encrypted on the sender’s
side and decrypted on the receiver’s side. Although
this approach is not feasible when operating on un-
trusted storage, it is still interesting to compare it to
the other approaches.

6.1.2 Simulation

In order to make the different approaches directly compa-
rable, we created toy implementations for each of them in
Java. These toy implementations contain all the relevant
characteristics regarding cryptography of the respective file
systems. We let these systems execute the same set of oper-
ations on a given set of files and measure the time spent in
cryptographic functions.

We took the execution times of all relevant cryptographic
library functions in advance. Then, during the actual test,
we accumulated these previously measured values instead
of measuring the real time spent in the function. This leads
to an increased scalability since we do not need to perform
the actual calculations anymore. Furthermore, the results
are fairer since undesired external influences (e.g., garbage
collection cycles) that do not affect our benchmark are elim-
inated. Observing that subsequently accessed files often re-
side in the same folder, we assume that in half of the cases,
the parent of an accessed item can be read from a cache and
does not need to be decrypted again. Furthermore, for sim-
plicity, we ignore the cost of authentication for the encrypt-
on-wire approach: It is only necessary once at the begin-
ning of a session; afterwards, an arbitrary number of op-
eration can be executed without authenticating again. For
encrypt-on-wire systems which frequently connect and dis-
connect, the performance might be significantly worse than
measured in our evaluation. Finally, we allow CACL and
the Cryptree to postpone the generation of write sign/verify
keys until they are needed, assuming that the owner’s au-
thentication key pair is used instead as long as nobody but
the owner has write access to the corresponding files.

6.1.3 Test Case

We have performed tests with the set of files of one of the
authors of this paper. The files are roughly what we would
expect by a user of Kangoo. One third of the files are docu-
ments, one third images, and one third media files; there are
no system files. Concretely, our test case comprises approx-
imately 2,600 folders and 29,700 files with a total size of 76
GB and an average size of 2.5 MB. The average file resides
at a depth of 6, and the maximum depth in the tree is 16.
Moreover, we have considered one million operations with
ten possible types, each type having its own likelihood: ac-
cess (60%), create (20%), delete (10%), move (4%), modify
(2%), copy (2%), recursively granting read access (0.6%),
recursively revoking read access (0.2%), recursively grant-
ing write (0.06%) access, and recursively revoking write ac-
cess (0.02%).

These parameters represent the expected usage pattern of
the file system Cryptree is designed for. Of course, however,
these numbers are somehow arbitrary, and we will provide a
more general discussion of the Cryptree’s performance later
in this section.

The tests were all run on a Windows PC with a 3.6
GHz Pentium IV processor and 2 GB RAM, of which the
Java Virtual Machine (HotSpot 1.5) is allowed to allocate
64 MB. For asymmetric cryptography, RSA-1024 is used,
while for symmetric cryptography, we are applying AES-
128. Both algorithms are provided by Sun’s own imple-
mentation of the Java Cryptography Extension (JCE).
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6.2 Results

In our first simulation, we simply count the number of
touched items. With touching an item we mean access-
ing or modifying the content (or metadata) of a file or
folder. While performing the one million operations, CACL
touched 3.0 million items, lazy CACL touched 2.9 million
items, and the Cryptree touched 2.1 million items. While
for most operations, the touch count is similar in all ap-
proaches, the Cryptree is significantly better for operations
that affect entire branches of the folder tree.

In our second simulation, we focus on the cost of key
management. Its results are shown in Figure 6. In our
test environment, the Cryptree approach could handle about
four times as many operations as the CACL approaches.
The Cryptree achieves its good performance due to its lower
touch count and the use of symmetric cryptography, while
the CACL approach needs to perform expensive asymmet-
ric cryptographic operations.

The third simulation shows how the performance gains
of the Cryptree compare to the total costs of cryptogra-
phy (Figure 7). A large share of these costs are inevitable,
namely the costs of encrypting and decrypting all data dur-
ing the communication with the server. Ignoring authentica-
tion, the costs of the encrypt-on-wire approach are exactly
twice as high as this lower bound because not only the client
but also the server encrypts and decrypts all data. The gain
of the Cryptree relative to lazy CACL remains the same as
before in absolute terms.

Of course, all these results depend on the chosen file and
operation set. Generally, the encrypt-on-wire approach is
less favorable when frequently accessing large files, and ap-
proaches with lazy revocation benefit from frequent revoke
operations. Besides these observations, the results do not
differ significantly when varying the test cases.

Apart from granting access, all operations are faster
with the Cryptree approach than with the CACL approach.
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Figure 7. The average processing time spent
on cryptography per operation with different
approaches.

Granting read or write access, however, might take longer
with Cryptree if the affected folder does not have enough
descendants (around 35 for granting read access in our
configuration) to amortize the expensive generation of the
clearance key that is necessary when granting access to a
folder for the first time.

6.3 Findings

As expected, key management with the Cryptree is more
efficient than with CACL based approaches. The Cryptree
achieves this by leveraging the folder tree structure which
allows the use of symmetric cryptography while the CACL
approach depends on asymmetric cryptography. Addition-
ally, the number of touched items is significantly reduced
with the Cryptree.

Of course, in many cases, the user will not directly feel
the performance gains of the Cryptree, since on a fast ma-
chine, it is in the order of a couple of milliseconds. How-
ever, this is different for operations that affect whole trees
of folders, for example moving a folder or granting access
to it. For instance, recursively granting read access to a
folder with 500 descendants takes 5 seconds with CACL,
but only around 0.01 seconds with the Cryptree (or 0.4 sec-
onds if the clearance key has not yet been generated for that
folder). This difference is even more dramatic when taking
network latency into account. While the costs of this op-
eration remains constant for the Cryptree, CACL needs to
touch every single descendant, which can result in an arbi-
trarily bad performance.

Alternatively to RSA, elliptic curve cryptography could
also be used. As a consequence, key pair generation (as for
example required when creating a clearance key) would be
much cheaper. Besides that, the cost of creating signatures
would decrease and the cost of verifying signatures slightly



increase (when comparing RSA-1024 to ECDSA-163 [22]).
With increasing key sizes, RSA loses attractiveness com-
pared to elliptic curve cryptography.

In distributed systems, the actual time spent in crypto-
graphic functions might not be relevant to the user, since it
is often dwarfed by the latency of the network. Here, the
number of touched items is much more important. Since
this number is significantly lower for the Cryptree than
for CACL, Cryptree performs much better in distributed
file systems than CACL—even if the cryptographic perfor-
mance gains are of minor importance.

In contrast to the encrypt-on-wire approach, CACL and
Cryptree have the advantage of performing most crypto-
graphic operations on the client side. This decreases the
processing power requirements of the storage device much.

7 Discussion

We have introduced a novel approach to key manage-
ment for file systems on untrusted storage. This section first
demonstrates the power of cryptographic links in compari-
son with key regression. Then, the Cryptree is compared to
previously proposed structures.

Symmetric Links vs. Key Regression

Despite their simplicity, symmetric links can be very pow-
erful. As an example, we show how such links can make the
much more complex technique of key regression obsolete.

The Plutus file system [8] reduces the number of keys a
user needs to manage by grouping files and encrypting all
files in this group with the same key K1. A problem arises
when K1 is dirty and a file f changes. In that case, f is
bound to get reencrypted with a new key K2. And with it,
all other files in the file group are reencrypted as well. This
is a large overhead which can be avoided. Plutus proposes
key regression to do so, as described in detail in Section 2.3.

This problem can also be solved using symmetric links.
In contrast to the key regression solution, an arbitrary new
key K2 is generated. Then, f is reencrypted with it and the
symmetric link K2→K1 is created. This link is stored along
with the metadata of the filegroup. Thanks to this link, it is
not necessary to reencrypt the other files either. One key K2

still suffices to access all files in the group since K1 can be
derived easily if needed using the link.

Let us now compare the two solutions. The advantage of
key regression is that no link needs to be stored. This, how-
ever, is a minor issue considering that a symmetric link only
occupies 16 bytes on disk (with AES-128). The disadvan-
tage of key regression is that it requires more complex al-
gorithms and comes with some limitations. Key regression
schemes either make use of expensive asymmetric cryptog-
raphy, or they allow only a limited number of key updates.

A further, maybe more severe limitation, is that key regres-
sion, unlike cryptographic links, does not allow the use of
an arbitrary K2. This makes it hard, if not impossible, to
move a file to a new filegroup without reencrypting it. As
a conclusion, we recommend using simple cryptographic
links instead of key regression for most applications.

Cryptree vs. CACL-Approach

The advantages of the Cryptree are now compared to the
CACL-approach mentioned in Section 2.

The CACL-approach simply stores a list of access keys
along with each file, each entry of this list being encrypted
with the public key of a user. The major advantages of this
scheme are its simplicity and its compatibility to conven-
tional file systems whose access semantics are based on ac-
cess control lists. The major drawbacks of CACL in com-
parison to the Cryptree are its excessive use of asymmetric
cryptography, its large number of involved keys and the in-
herent semantical deficits mentioned in Section 3.

In scenarios with not too many users and in which com-
patibility with existing access control schemes is important,
the CACL approach is definitely the one to choose. How-
ever, in scenarios with many users, or when performance
and useful semantics are crucial, it seems that Cryptree
should be preferred.

Cryptree vs. Elaborate Cryptography

Finally, we compare the Cryptree to the key management
scheme presented in [18]. In [18], directed graphs simi-
lar to the Cryptree are constructed. The highlights of these
graphs in comparison to the Cryptree are that they allow
more efficient (by a constant factor) derivation of keys since
only hash functions are used (no encryption). Furthermore,
shortcut edges are introduced into the graph which allows
to derive keys that are n levels further down a hierarchy by
only traversing O(1) edges.

However, [18] does not consider the possibility of grant-
ing write access. With its current design, structural changes
can only be performed by someone who has full access to
the whole graph. In contrast, the Cryptree supports gran-
ular granting of write access and overcomes the associated
challenges by introducing asymmetric links. Furthermore,
[18] does not honor lazy revocation and only discusses a
minimal set of operations.

In conclusion, we would definitely recommend consider-
ing the graph introduced in [18] when looking for a general
solution to key management in hierarchies, as it is widely
applicable and offers slightly better performance than the
Cryptree. The advantage of the Cryptree, however, lies in
its simplicity and its focus on access control in file systems.

The Cryptree allows for granular write access, honors
lazy revocation, and has proved to be useful in a concrete
file system.



8 Conclusions

To the best of our knowledge, the Cryptree is the first
cryptographic data structure that combines the latest re-
search in the area of general cryptographic key hierarchies
and in the area of access control in file systems. The result is
a key management scheme that is more efficient than those
proposed in the context of file systems. In contrast to previ-
ous solutions coming from a cryptographic context, it does
not require any profound knowledge of cryptography and is
much easier to apply as it comes with a detailed description
about how the Cryptree approach affects file system oper-
ations and takes into account vital concepts such as write
access or lazy revocation.

The strengths of the Cryptree are its simplicity, its effi-
ciency and the intuitive access control semantics. Its sim-
plicity and the notion of cryptographic links make the Cryp-
tree very flexible and easily adaptable for various scenarios.
Its efficiency is unprecedented in the context of file systems
and the inherent access control semantics lead to a more in-
tuitive file sharing than in conventional file systems.

In future work, additional techniques are investigated to
further improve the efficiency of the Cryptree, in partic-
ular the shortcuts or the usage of hash functions for key
derivation as discussed in [18]. Furthermore, the proposed
Cryptrees could be extended to manage not only the keys of
folder hierarchies, but also to manage those of user hierar-
chies.
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