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ABSTRACT
Virtual switches are a crucial component of cloud operat-

ing systems that interconnect virtual machines in a flexible

manner. They implement complex network protocol parsing

in the unified packet parser—parsing all supported packet

header fields in a single pass—and are commonly co-located

with the virtualization layer. We find that this significantly

reduces the barrier for low-budget attackers to launch high

impact attacks in the cloud. This leads us to introduce the

virtual switch attacker model for packet-parsing, in short the

vAMP attack. Using OpenStack, a cloud operating system,

and Open vSwitch, a virtual switch, we demonstrate how cur-

rent virtual switch designs cannot withstand vAMP. Thereby

giving a weak attacker full control of the cloud in a matter

of minutes.
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1 INTRODUCTION
Computer networks are becoming increasingly pro-

grammable and virtualized. A key enabler for such a par-

adigm is the virtual switch. It is a piece of software that

resides in the server’s virtualization layer (e.g., VMware’s

ESXi hypervisor or Xen’s Dom0), tasked with virtualizing the

data plane of virtual machines. Hence, virtual switches are

meant to provide network isolation among tenant’s virtual

machines [1].

Virtual switches such as Open vSwitch (OvS), Cisco Nexus

1000V, VMware vSwitch, and Microsoft VFP, bring new flex-

ibility to data centers in terms of network virtualization [1],

e.g., centralized control of all virtual switches, and layer 2

virtual private networks.

Despite their popularity, the security implications of vir-

tual switches have received little attention. In general, while

much research has focussed on control plane security, the

security of the physical and virtual data plane is often over-

looked. This is worrisome as the data plane in general, and

packet parsers in particular process attacker controlled input.

This paper is motivated by two key observations. First,

by placing virtual switches in the (edge) servers, the attack

surface has advanced one step closer to the attacker. There-

fore, associated attacker models may significantly change

compared to non-virtualized data planes. Second, unified

packet parsing—parsing all the supported protocol fields of a
packet, e.g., Ethernet, IP and TCP, in a single pass instead of

several independent passes—exacerbates the existing attack

surface of integrating, and juxtaposing complex network
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Figure 1: The total number of parsed high-level proto-
cols in two popular virtual switches from 2009-2017.

functionality with the virtual switch. In fact, the number of

parsed protocols for virtual switches appears to be growing

constantly as depicted in Fig. 1. The increasing complexity

of packet parsers lowers the bar for adversaries to attack [2]

cloud systems where virtual switches are commonly used.

These observations lead us, in this paper, to introduce a

new attacker model for virtual switches. The virtual switch

attacker model for packet-parsing, in short: the vAMP attack,
describes a low-resource attacker with a huge impact.

We demonstrate this attacker model, in a case study using

OpenStack, a popular cloud operating system, and OvS as

the virtual switch. Using an off-the-shelf fuzzer to fuzz the

unified packet parser of OvS, which is merely 2-3% of the OvS

code base, we uncovered multiple security vulnerabilities.

Exploiting just one of those vulnerabilities enabled us to

subsequently compromise the entire OpenStack setup, as

illustrated in Fig. 2. An attacker sends a crafted packet from

a virtual machine (VM) to the vulnerable packet parser of

the virtual switch. This results in taking control of the phys-

ical machine due to co-location of the virtual switch with

the hypervisor. Next, she can take control of the hypervi-

sor where the VM running the network—and in most cases

cloud—controller is hosted due to the direct communication

channel. From the controller, she can leverage the logically

centralized design to, e.g., manipulate flow rules to violate

essential network isolation.

Note that to successfully execute the above attack, it is

sufficient for the attacker to rent a VM in the cloud. Besides

increasing the attack surface which can be exploited with

low resources, as our case study demonstrates, the impact

of such an attack can be potentially much larger than usu-

ally considered in the context of (hardware/software) data

planes [3, 4].
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Figure 2: As a consequences of the vAMP attack, a
worm can propagate to all the systems by exploiting
the virtual switch’s unified packet parser.

Contributions:

• We identify the adversary facing, and increasingly

complex, unified packet parser as a new attack sur-

face introduced by virtual switches.

• We introduce a relevant attacker model for virtual

switches, namely, the virtual switch attacker model

for packet-parsing (vAMP).

• Using a case study with OpenStack and OvS, we

demonstrate that existing virtual switches cannot with-

stand the vAMP attack.

Ethical Considerations: To avoid disrupting the normal

operation of businesses, we verified our findings on our own

infrastructure. We have disclosed our findings to the OvS

team who have integrated the fixes. Ubuntu, Redhat, Debian,

Suse, Mirantis, and other stakeholders have applied these

fixes in their stable releases. Furthermore, CVE-2016-2074

and CVE-2016-10377 were assigned to our discoveries.

2 UNIFIED PACKET PARSING: A NEW
ATTACK SURFACE

The packet parser is typically integrated into the code base

of the virtual switch. It is the first component of the virtual

switch to process network packets it receives from the phys-

ical or virtual network interface. Therefore, it can receive,

and process attacker controlled packets. The network pro-

tocols commonly parsed by virtual switches are from Layer

2 to Layer 4, i.e., from Ethernet up to TCP/UDP. Workload

increase and advancements in network virtualization are

driving virtual switches to implement middlebox functions

such as load balancing, deep packet inspection, and state-

ful firewalls [5]. This necessitates two major requirements

of virtual switches: (i) Support the parsing of more or new



protocols; (ii) maintain if not improve existing forwarding

performance.

Unified packet parsing addresses the above requirements.

All the supported header fields of a packet are extracted in a

single pass instead of multiple passes. This enables the virtual

switch and other network functions to operate on packet

metadata instead of the actual packet. Packet operations are

left to the end of the packet processing pipeline. Naturally,

this approach performs better than parsing or re-parsing

headers on a need-to basis [6].

Although this centralizes the parsing code, and has the po-

tential to ease verification [7], it is also the most likely piece

of code to contain security vulnerabilities [2]. Furthermore,

a security vulnerability here, can compromise all the depen-

dant mechanisms, and policies, e.g., firewalls and policies for

network isolation among tenants. Thus, the attack surface

of the virtual switch increases with any new protocol that is

included in parsing. Recall from Fig. 1, that the number of

supported protocols in virtual switch implementations such

as OvS, and Cisco’s Nexus 1000V are on the rise.

3 ATTACKER MODELS
Having identified the unified packet parser as potentially

increasing the attack surface for virtual switches, we now

revisit existing attackermodels to investigate whether virtual

switches are appropriately accounted for. In particular we

look at prior work starting from 2009 which is the year when

virtual switches emerged into the virtualization market [1].

Subsequently, motivated by the shortcomings of existing

attacker models, we introduce a novel attacker model: the

vAMP attack.

3.1 Prior Attacker Models for Virtual
Switches

Virtual switches intersect with several areas of network se-

curity research: Data plane, network virtualization, software

defined networking (SDN), and the cloud. Therefore, we

conducted a qualitative analysis that includes research we

identified as relevant to attacker models for virtual switches.

In the following we elaborate on that.

A general attacker model for the data plane was proposed

by Chasaki et al. [8] that involves the attacker exploiting

the packet processor of routers. Keller et al. [4] proposed

an attacker model for router virtualization that assumed the

virtualization layer in general can be compromised. Qubes

OS [9] also makes a general assumption that the networking

stack can be compromised. Similarly, Dhawan et al. [10]

assumed that the Software Defined Network (SDN) data

plane can be compromised.

Paladi et al. [11] conservatively assumed the Dolev-Yao

model for network virtualization in a multi-tenant cloud, and

Grobauer et al. [12] observed that virtual networking can be

attacked in the cloud without providing a particular attacker

model.

Jin et al. [3] accurately identified two threats faced by vir-

tual switches, namely, virtual switches are co-located with

the hypervisor, and guest VMs need to interact with the

hypervisor. However, they stopped short of providing a con-

crete threat model, and underestimated the impact of com-

promising virtual switches. Indeed at the time, cloud systems

were burgeoning. Only recently, Alhebaishi et al. [13] pro-

posed an updated approach to cloud threat modelling. The

virtual switch was identified as a component of cloud sys-

tems that needs to be protected. However, the severity, and

multitude of threats that apply to virtual switches was over-

looked.

Gonzales et al. [14], and Karmakar et al. [15] accounted

for virtual switches, and the data plane, however, their work

was motivated by strong adversaries. Similarly Yu et al. [16]

assumed a strong adversarial model, with an emphasis on

hardware switches, and the defender having sufficiently large

resources.

Therefore, what we observe is that previous work have

either provided a general attacker model for the data plane,

fallen short of providing an accurate attacker model for vir-

tual switches, underestimated the impact of a compromised

virtual switch, or assumed strong attackers. We find this

to be inadequate given the important role virtual switches

play in the cloud, network (function) virtualization, and SDN.

Hence, what is needed is an accurate, and relevant attacker

model for virtual switches, which we describe next.

3.2 The Virtual Switch Attacker Model for
Packet-Parsing (vAMP)

Given the shortcomings of the above attacker models, we

now present a new attacker model for virtual switch based

cloud network setups that use a logically centralized con-

troller. Contrary to prior work we identify the virtual switch

as a critical core component which has to be protected

against direct attacks, e.g., malformed packets. Furthermore,

our attacker is not supported by a major organization (she

is a “Lone Wolf”) nor does she have access to special net-

work vantage points. The attacker’s knowledge of computer

programming and code analysis tools is comparable to that

of an average software developer. In addition, the attacker

controls a computer that can communicate with the cloud

under attack.

The attacker’s target is a cloud infrastructure that uses

virtual switches for network virtualization. We assume that

our attacker has only limited access to the cloud. Specifi-

cally, the attacker does not have physical access to any of

the machines in the cloud. Regardless of the cloud delivery



model and whether the cloud is public or not, we assume the

attacker can either rent a single VM, or has already compro-

mised a VM in the cloud, e.g., by exploiting a web-application

vulnerability [17].

We assume that the cloud provider follows security best-

practices [18]. Hence, at least three isolated networks (phys-

ical/virtual) dedicated towards management, tenants/guests,

and external traffic exist. Furthermore, we assume that the

same software stack is used across all servers in the cloud.

We consider our attacker as successful, if the attacker

obtains full control of the cloud. This means that the attacker

can perform arbitrary computation, create/store arbitrary

data, and send/receive arbitrary data to all nodes including

the Internet.

4 TAKING CONTROL OF THE CLOUD
Based on our analysis, we conjecture that current virtual

switch implementations are not robust to adversaries from

our attacker model. Indeed it is generally known that vul-

nerabilities exist, and will occur, even in well maintained

production software. However, the point we make here is

that finding vulnerabilities can be easily accomplished by

amateurs, e.g., by fuzzing; moreover, a single vulnerability

can have a devastating impact.

For the purpose of our case study, we evaluated the virtual

switch Open vSwitch in the context of the cloud operating

system OpenStack against our attacker model. We opted for

this combination as OpenStack is one of the most prominent

cloud systems, with thousands of production deployments

in large enterprises and small companies alike. Furthermore,

according to the OpenStack Survey 2016 [19], over 60% of

OvS deployments are in production use and over one third

of 1000+ core clouds surveyed use OvS .
Attack Methodology: We conducted a structured attack

targeted at the attack surface we identified, i.e., the unified

packet parser. We expected to find vulnerabilities in the

unified packet parser code of OvS , which executes in the

ovs-vswitchd process. Hence, our next step used an off-the-

shelf coverage-guided fuzz tester, namely American Fuzzy

Lop (AFL), on OvS ’s unified packet parser code. Specifically,

for our tests we used AFL version 2.03b and source code

of OvS version 2.3.2 recompiled with AFL instrumentation.

Following common best practice for fuzzing code, all crashes

reported by the fuzzer were triaged to ascertain their root

cause.

We identified several vulnerabilities by fuzzing the unified

packet parser of OvS, these include one remote-code execu-

tion, two denial of service attacks, and one access control list

bypass. In this paper we focus on only one of the vulnerabil-

ities we found as it suffices to demonstrate the attack. The
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Figure 3: A visual representation of our ROP chain for
ovs-vswitchd to spawn a shell and redirect it to a re-
mote socket address.

vulnerability is a stack buffer overflow in the MPLS parsing

code of OvS.

The stack buffer overflow occurs when a large MPLS la-

bel stack packet is parsed beyond the defined threshold. As

predicted, this attack has its root-cause in the unified packet

parser. Indeed, we note that the specification of MPLS (see

RFC 3031 [20] and RFC 3032 [21]) does not specify how to

parse the whole label stack. Instead, it specifies that when a

packet with a label stack arrives at a forwarding component,

only the top label must be popped to be used to make a for-

warding decision. Yet, OvS parses all labels of the packet even

beyond the supported limit and beyond the pre-allocated

memory range for that stack. If OvS would handle MPLS

packets as per the specifications, it would only pop the top

label, which has a static, defined size. Thus, there would be

no opportunity for a buffer overflow.

The next step was to convert the vulnerability into an

exploit that gives us a shell on the remote system. We crafted

the exploit by creating a ROP [22] attack hidden in an MPLS

packet. By now, ROP attacks are well documented and can

be created by an attacker who has explored the literature on



implementing ROP attacks. Therefore, we focus on one of

the challenges we faced in creating the exploit. As per RFC

3032, MPLS label processing terminates if the S bit is set to 1.
Therefore, to obtain a successful ROP chain, i.e., to prevent

early termination of our exploit, we had to select appropriate

gadgets by customizing Ropgadget [23] and modifying the

shell command string accordingly. Figure 3 describes the

stack layout of ovs-vswitchd right after the buffer overflow,

overlaid with our ROP chain.

With a successful ROP chain, the next step was to create a

worm. We need multiple steps to propagate the worm. These

are visualized in Figure 2. In Step 1, the worm originates

from an attacker-controlled (guest) VM within the cloud and

compromises the host operating system (OS) of the server

via the vulnerable packet processor of the virtual switch.

Once she controls the server, she patches ovs-vswitchd on

the compromised host, as otherwise the worm packet cannot

be propagated. Instead the packet would trigger the vulnera-

bility in OvS yet again.

With the server under her control the remote attacker,

in Step 2, propagates the worm to the hypervisor running

the controller VM and compromises it via the same vulner-

ability. The centralized architecture of OpenStack requires

the controller to be reachable from all servers via the man-

agement network and/or guest network. By gaining access

to one server we gain access to these networks and, thus,

to the controller. Indeed, the co-location of the data plane

and the controller, provides the necessary connectivity for

the worm to propagate from any of the servers to the con-

troller. Network isolation using VLANs and/or tunnels (GRE,

VXLAN, etc.) does not affect the worm once the server is

compromised. We note there, that the ROP chain had to be

slightly modified by including “NOP”s to accommodate for

the increased packet size due to the use of VLAN tags and

VXLAN encapsulation.

With the controller’s server also under the control of the

remote attacker, the worm can now taint the remaining un-

compromised server(s) (Step 3). Thus, finally, after Step 3, all

servers are under the control of the remote attacker. We auto-

mated the above steps using a shell script. Our worm exploit

could also have been created by an attacker with average

programming skills who has some experience with this kind

of technique. This is in accordance with our attacker model,

which does not require an uncommonly skilled attacker.

Attack Evaluation: Rather than evaluating the attack in

the wild we chose to create a test setup in a lab environment.

More specifically, we used the Mirantis 8.0 distribution that

ships OpenStack “Liberty” with OvS version 2.3.2. The test

setup consisted of a server (the fuel master node) that can

configure and deploy other OpenStack nodes (servers) includ-

ing the OpenStack controller, compute, storage and network.

Due to limited resources, we created one controller and one

compute node with multiple VMs in addition to the fuel mas-

ter node using the default Mirantis 8.0 configuration. Virtual

switching was handled by OvS.

The attacker was given control of one of the VMs on the

compute server and could deploy the worm from there. It

took less than 20 seconds until the worm compromised the

controller. This means that the attacker has root shell (ovs-

vswitchd runs as root) access to the compute node as well as

the controller. This includes 3 seconds of download time for

patching ovs-vswitchd (OvS user-space daemon), the shell

script, and the exploit payload. Moreover, we added 12 sec-

onds of sleep time for restarting the patched ovs-vswitchd on

the compute node so that attack packets could be forwarded.

Next, we added 60 seconds of sleep time to ensure that

the network services on the compromised controller were

restored. Since all compute nodes are accessible from the

controller, we could compromise them in parallel. This takes

less time than compromising the controller, i.e., less than

20 seconds. Hence, we conclude that the compromise of

a standard cloud setup can be performed in less than two

minutes.

Attack Result: Our evaluation demonstrates how easily an

amateur attacker can compromise the virtual switch, and

subsequently take control of the entire cloud in a matter of

minutes. This can have serious consequences, e.g., amateur

attackers can exploit virtual switches to launch ransomware

attacks in the cloud. This is a result of complex packet parsing

in the unified packet parser, co-locating the virtual switch

with the virtualization layer, and incorrect attacker models.

5 CONCLUDING REMARKS
While this paper has focussed on virtual switches, the virtual-

ization trend, and hence the relevance of our attacker model

is more general. In particular, additional network function-

ality, e.g., middleboxes, is migrated from hardware equip-

ment to commodity servers [5, 6], not only in the cloud

but also other infrastructure providers, e.g., Internet Service

Providers [24]. Furthermore, as we move towards realizing

SDN 2.0 [25], network virtualization and higher layer proto-

cols (Layer 4-7) will play pivotal roles. Hence, it is imperative

for data plane elements to be more robust to attacks, espe-

cially in vulnerable code segments such as the unified packet

parser.
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