
o’zapft is: Tap Your Network Algorithm’s Big Data!
Andreas Blenk, Patrick Kalmbach,

Wolfgang Kellerer
Technical University of Munich, Germany

Stefan Schmid
Aalborg University, Denmark

ABSTRACT
At the heart of many computer network planning, deployment, and
operational tasks lie hard algorithmic problems. Accordingly, over
the last decades, we have witnessed a continuous pursuit for ever
more accurate and faster algorithms. We propose an approach to
design network algorithms which is radically different from most
existing algorithms. Our approach is motivated by the observation
that most existing algorithms to solve a given hard computer net-
working problem overlook a simple yet very powerful optimization
opportunity in practice: many network algorithms are executed
repeatedly (e.g., for each virtual network request or in reaction to
user mobility), and hence with each execution, generate interesting
data: (problem,solution)-pairs. We make the case for leveraging the
potentially big data of an algorithm’s past executions to improve
and speed up future, similar solutions, by reducing the algorithm’s
search space. We study the applicability of machine learning to net-
work algorithm design, identify challenges and discuss limitations.
We empirically demonstrate the potential of machine learning net-
work algorithms in two case studies, namely the embedding of
virtual networks (a packing optimization problem) and k-center fa-
cility location (a covering optimization problem), using a prototype
implementation.

CCS CONCEPTS
• Networks→ Network algorithms;

KEYWORDS
Algorithms, Computer Networks, Machine Learning, Big Data

ACM Reference format:
Andreas Blenk, Patrick Kalmbach, Wolfgang Kellerer and Stefan Schmid.
2017. o’zapft is: Tap Your Network Algorithm’s Big Data!. In Proceedings of
Big-DAMA ’17, Los Angeles, CA, USA, August 21, 2017, 6 pages.
https://doi.org/10.1145/3098593.3098597

1 INTRODUCTION
The Context: Network Algorithms. Algorithms play an impor-
tant role in essentially any aspect of computer networking: from the
design of new network topologies, the deployment of network func-
tions (e.g., middleboxes), to the resource efficient operation. With

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Big-DAMA ’17, August 21, 2017, Los Angeles, CA, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5054-9/17/08. . . $15.00
https://doi.org/10.1145/3098593.3098597

the increasing virtualization and programmability of networked
systems and the resulting more flexible resource allocation, also
over time, the importance of network algorithms is likely to increase
further in the future.
The Problem: Computational Hardness. The design of such
algorithms, however, can be challenging as the underlying problems
are often computationally hard, and at the same time, need to be
solved fast. For example, traffic engineering or admission control
problems, or the problem of embedding entire virtual networks,
underly hard unsplittable network flow allocation problems; or
the problem of placing a virtual network function, can be seen as
k-center clustering and facility location problem; etc.
The Limitation: Fire-and-Forget. Researchers over the last
decades have continuously improved the approximation quality
and runtime of network algorithms, gaining deep insights into the
underlying structures. Yet, in practice, many network algorithms
today lead a fairly boring life: they are frequently invoked to solve
some problem instances which look similar to hundreds of problems
(the algorithms’ big data) solved before, but are forced to compute
each time a new solution from scratch. Our hypothesis in this paper
is that employing algorithms in a fire-and-forget manner is not
only boring, but can also be highly inefficient.
The Opportunity: Tap into Your Algorithm’s Big Data. This
paper is motivated by the observation that network algorithms
generate a wealth of big data (e.g., in form of problem instance
and solution pairs), which introduce an unexplored optimization
opportunity. We hence promote a radically different approach to
designing network algorithms, and ask: is it possible to learn an
algorithm’s behavior and even improve on the algorithm’s solu-
tions, by studying solutions generated by a given algorithm to
similar problems in the past? In particular, we propose a Machine
Learning (ML) approach, based on supervised learning, to tap into a
network algorithm’s knowledge base.
Contributions. This paper makes the case for a machine learning
approach to network algorithm design. We investigate the feasi-
bility of learning from previous solutions to similar problems to
improve and speed up the solution process in the future: e.g., by
predicting upper and lower bounds on solution values (either costs
or benefits); by facilitating an effective pruning of the search space
(e.g., of a mixed integer program); by predicting initial solutions,
facilitating an efficient local search; by optimizing the parameters of
a given algorithm; or by optimizing the selection of the to-be-used
algorithm in the first place; etc. Our optimization data is publicly
available for reproducibility at [11].

We identify challenges of such an approach, discuss the design
space and optimization opportunities, and point out limitations.
In particular, we describe a general framework, called o’zapft is1,
and empirically show its potential in two fundamental case studies,
1Inspired by the Bavarian expression for “[the barrell] has been tapped” (cf. Fig. 1),
used to proclaim a famous festival in October.

https://doi.org/10.1145/3098593.3098597
https://doi.org/10.1145/3098593.3098597

Big-DAMA ’17, August 21, 2017, Los Angeles, CA, USA Blenk et al.

produce

Input

Problem
Instances

Optimization
Algorithm

Problem
Solution

produce

Input

Problem
Instances

Optimization
Algorithm

Problem
Solution

Machine
Learning

Solution
Information

learn from

(a) Traditional Network Algorithm

(b) o'zapft is: learn from problem solution

Figure 1: Traditional network algorithm vs. o’zapft is. The
input to both systems are Problem Instances. Traditionally,
an Optimization Algorithm provides, if possible, a problem
solution for each problem instance independently. o’zapft is
leveragesMachine Learning to learn from prior problem so-
lutions, to compute additional Solution Information (e.g., re-
duced search space, upper and lower bounds, initial feasible
solutions, good parameters, etc.) and hence to optimize the
network algorithm.

the first one representing a packing optimization problem and the
second one representing a covering optimization problem:
(1) Virtual network embeddings: The embedding of virtual nodes and
routes between them is an archetypal problem underlying many
resource allocation and traffic engineering problems in computer
networks. The common theme of these problems is that network
resource consumption should be minimized, while respecting ca-
pacity constraints. As a first step, we investigate whether machine
learning can be used to predict the embedding costs of virtual net-
works. Our results reveal that embedding costs can be predicted
well, in particular for heuristic or greedy algorithms.
(2) k-center problems (“facility location“): Clustering and facility
location problems arise in various flavors and forms in the opti-
mization of computer networks. For example, the placement of
middleboxes, virtualized network functions, CDN caches, or SDN
controllers can be modeled as variants of k-placement problems.
The common theme of these problems is that certain functionality
should be placed “close” to the nodes using it. As a first step, we
investigate whether ML can be used to predict the optimal placement
of such functionality. Our results show that ML cannot exactly pre-
dict the optimal solutions, but provides valid means to reduce the
search space to speed up optimization.
Organization. The remainder of this paper is organized as follows.
We present our vision, identify challenges and present our approach
in Section 2. We examine the virtual network embedding case study
in Section 3 and the facility location one in Section 4. We report on
related work in Section 5 and conclude in Section 6.

2 METHODOLOGY AND APPROACH
We envision history-aware network algorithms, which learn from
the outcomes of state-of-the-art one-shot algorithms, see Figure 1:
For a given network problem, the target of our system o’zapft is is
to learn from problem solutions that were obtained earlier by an
optimization algorithm, in order to improve the future execution of

new problem instances. When faced with new problem instances,
the optimization algorithm can make use of solution information
that is provided by machine learning models.

In the following, wewill focus on network problemswhich can be
expressed in terms of graphs. Graphs are used to describe physical
network topologies, but also traffic demands, routing requests and
virtual networks (e.g., VPNs, virtual clusters, etc.) can be described
in terms of graphs. In order to automatically learn solutions to
network algorithms, four challenges have to be addressed:
Common patterns (C1): A model from one set of network opti-
mization problems should be generalizable and applicable also to
other, similar networking problems: e.g., solutions from smaller
networks should be useful to predict solutions for larger networks
as well. For example, routing problems could be classified based
on requests between similar areas (e.g., subnets) of the network, or
reflect distance measures.
Compact representations (C2): It is often infeasible to store the
entire history of problem solutions (e.g., the costs and embeddings
of all past virtual networks) in a learning framework explicitly. An
efficient way to store and represent problem solutions could rely
on probabilistic vectors, e.g., capturing likelihoods of nodes visited
along a route computed by a routing algorithm.
Data skewness and bias (C3):Making good predictions for highly
biased problems (e.g., containing 1% yes-instances for which feasible
virtual network embeddings actually exist and 99% no-instances) is
trivial: simply always output no. Clearly, such solutions are useless
andmechanisms are needed which account for skewness and bias in
the data and solution space. Note that the problem arises both when
quantifying the performance and also when training the models.
Data training/test split (C4): In terms of methodology, a good
split between training and test set must be found. The training/test
set typically cannot be split by randomly taking, e.g., network node
samples from the overall data, as each node sample belongs to a
unique graph.

In order to address the challenges (C1-C4) identified above,
o’zapft is builds upon (and tailors to the networking use case) a
number of existing concepts.

C1: A common method to classify graphs resp. networks (Chal-
lenge C1) is to employ graph kernels. However, kernels are expensive
to compute [7, 14]. An interesting alternative applied in o’zapft is is
to use node, edge, and graph features, e.g., based on existing network
centrality concepts [3], to efficiently classify graphs resp. networks
to represent problem-solutions pairs.

C2: We consider fixed length real valued feature vectors in-
stead of storing whole adjacency matrices for solutions, which can
potentially even outperform alternative methods such as graph
kernels [7] as it has been originally shown in [14]. For the facility
location problem, we also introduce the respective node features
per substrate node. Furthermore, we additionally use minimum,
maximum, average, and standard deviations of all graph/node fea-
tures.

C3: There exist standard techniques to overcome bias and data
skewness, e.g., misclassification cost assignment, under-sampling, or
over-sampling [18]. Misclassification costs can be assigned if the real
cost, e.g., the impact of a wrong prediction on the overall embedding
performance, is known. To not loose valid data as it is the case for

o’zapft is: Tap Your Network Algorithm’s Big Data! Big-DAMA ’17, August 21, 2017, Los Angeles, CA, USA

under-sampling, we use over-sampling of the underrepresented
instances. Note that sampling can only be applied to training data,
as, of course, the true/false values are not known for test data
beforehand.

C4: We split the overall data based on entire graphs, and hence
avoid, e.g., problems of node-based samples.

In this paper, in order to validate our hypothesis that network
algorithms can learn from similar past solutions, we will consider
the following methodology.
Regressors and Classifiers Models. For our first case study, the
virtual network embedding problem, we compare four machine
learning regressors: Linear Regression (LR), Bayesian Ridge Regressor
(BRR), Random Forest Regressor (RF), and Support Vector Regression
(SVR). The regressors predict the cost of to-be-embedded virtual
networks. For our second case study, facility location, we apply
four classifiers: Logistic Regression Classifier (LRC), Extra Trees Clas-
sifier (ETC), AdaBoost Classifier (ABC), and Support Vector Classifier
(SVC). For a given substrate network, the classifiers calculate the
probability whether a node will host a facility. For all models, we
apply a grid search on the parameters to find the best performance
on the training set.
Data Processing. The data is split into training, validation and
test data sets. A model is fitted with a parameter set on the training
data set. The best models of the different regressors are chosen with
respect to their performance on the validation data set. The best of
all models, i.e., among the different model types, is finally chosen
with respect to the performance on the test data set.
Machine Learning Metrics. To provide a more general compari-
son of models for different substrate networks and Virtual Network
Embedding (VNE) algorithms, we report on the coefficient of de-
termination metric R2, the goodness of fit of a machine learning
model, and Root Mean Squared Error (RMSE). For R2, a value of 1
indicates a precise regression approximation and negative values
(up to −∞) indicate a bad performance; 0 means that the model is
as good as predicting the average value. Moreover, to quantify the
performance of classifiers, we will often consider the F1 score: a
combination of precision and recall; both are useful when working
with skewed data.

3 CASE STUDY I: VNE COSTS
In a first case study, we analyze the potential of o’zapft is to auto-
matically learn and predict the embedding cost of a virtual network
request. The inputs to the Virtual Network Embedding (VNE) [5]
problem are virtual network requests (VNRs) consisting of nodes
and edges, i.e., requests are represented as graphs. These graphs
need to be placed on a substrate network, which is also represented
as a graph. The virtual network requires node and link resources,
while the capacities of the substrate nodes and links are limited. The
embedding cost is given by the total length of the virtual links in-
terconnecting the requested virtual nodes. While embedding costs
are a main concern in any virtual network embedding problem,
additional objectives are considered, such as min max load [17].
The problem is NP-hard in general.

Let us first introduce our experimental methodology for the
virtual network embedding.

Analyzed VNE Process & Data.We consider five frequently used
substrate networks to evaluate virtual network embedding algo-
rithms: two synthetic topologies (two random graphs: Erdős-Rényi
(ER) and Barabási-Albert (BA)) and three real topologies (a Topol-
ogy Zoo graph, and two datacenter topologies). From the Topology
Zoo [13], we choose the KDL topology: This network consists of
734 nodes and serves as an example of a large scale ip-layer access
network deployed in Kentucky, USA. To study datacenter networks,
we consider a 6-ary Fat-tree (DC-FT) and a BCube2 with 42-port
switches (DC-BC).
Analyzed VNE Algorithms. We compare two heuristics,
Greedy [20] and GRC [8], and one cost optimal algorithm (SDP),
which is implemented as Mixed Integer Programs (MIPs) [17] in
our existing framework [4]. The objective of SDP is to minimize
the embedding cost. These algorithms are frequently studied in the
literature and hence serve as good initial representatives to demon-
strate the feasibility of o’zapft is. Since the underlying problem is
NP-hard and SDP slow in large network topologies (> 50 substrate
nodes), we prematurely interrupted computations after timeouts of
30, 60, and 90 seconds.
Strawman. For comparison, we implemented a Strawman ap-
proach (SM). SM is based on the intuition that the number of VNR
nodes and links are mostly related to the cost. As equal-sized VNR
are not always embedded similarly, we use the average among all
VNRs of the training data. To predict the embedding cost, SM takes
the number of virtual (requested) links and virtual nodes as an
input and calculates the cost based on a steadily interpolated 2D
surface, which has been fitted to the training data.
Instances. For each setup, i.e., combination of VNE algorithm and
embedding process, at least 5 runs with 2 500 Virtual Network
Requests (VNRs) each are generated. For training and testing, only
the accepted VNRs are used, as only those provide information on
the true embedding cost.

3.1 Tapping Data is Useful
We first investigate how much learning is required to make use-
ful predictions of the virtual network embedding costs. Our ex-
periments show that already after a short training period, virtual
network embedding costs can be estimated well. Fig. 2 shows box-
plots of the cost deviation over an increasing amount of training
samples for all VNE algorithms. We do not depict outliers and the
whiskers of the boxplots show the 90th percentile of the test data.
Interestingly, while the mean values are quite stable, models typi-
cally underestimate the cost of VNRs. The prediction quality of all
models increases with more training data. For Greedy, the accuracy
of the 90th percentile of the data improves from an underestimation
of 40 % to an underestimation of 20 %. GRC performed similarly and
is omitted here for space constraints.

Let us next investigate to what extent the performance depends
on the machine learning model, the substrate network and the
algorithm. To provide a more general comparison of models for
different substrate networks and VNE algorithms, we report on
the coefficient of determination metric R2, the goodness of fit of a
machine learning model, and Root Mean Squared Error (RMSE) in
Tab. 1. In our experiments, we find that the ML models can achieve
high R2 scores between 0.8 and 0.99 across all substrate network

Big-DAMA ’17, August 21, 2017, Los Angeles, CA, USA Blenk et al.

10
0

20
0

50
0

80
0 4k 8k

No. Training Samples

−0.5
−0.4
−0.3
−0.2
−0.1

0.0
0.1
0.2

C
os

tD
ev

.[
10

0
%

]

(a) Greedy

10
0

20
0

50
0

80
0 4k 8k

No. Training Samples

−2.0

−1.5

−1.0

−0.5

0.0

0.5

C
os

tD
ev

.[
10

0
%

]
(b) SDP

Figure 2: Boxplots of VNE cost prediction deviations with
RF model in percentage as a function of training samples.
Estimator model: RF. Greedy and SDP VNE algorithm. Note
the different x-axis and y-axis scales.

VNE Alg. Mean Perf. Regression R2 RMSE

Greedy 1274.55

BRR 0.989 131.8
RF 0.990 127.8
LR 0.989 131.8
SVR 0.990 125.1
SM -0.860 1710.3

GRC 1571.68

BRR 0.974 249.5
RF 0.979 224.2
LR 0.974 249.9
SVR 0.983 203.3
SM -0.920 2129.3

SDP 1026.54

BRR 0.893 278.5
RF 0.907 259.7
LR 0.892 279.2
SVR 0.898 272.2
SM -0.923 1180.4

Table 1: Regressors’ performances for all VNE algorithms.
Performance given viaR2 score andRootMean Squared Error
(RMSE) for ER substrates.

types, while RF and SVR always achieve the highest values. The
Strawman (SM) approach generally shows the worst performance.
Note the lower R2 scores for SDP. The same observations hold for
RMSE values, where values are in 30% range of the mean perfor-
mance. We find that while o’zapft is can predict the performance
of heuristic algorithms well, the performance is worse for optimal
algorithms: given the high complexity of the Mixed Integer Pro-
gram solutions, this is not surprising (it is impossible to perfectly
and quickly guess an optimal solution to an NP-hard problem). Yet,
the solutions are promising, and they show the potential of the
approach (and for the design of more advanced machine learning
algorithms).

3.2 Speeding-up Computations
o’zapft is comes with interesting flexibilities to speed up our algo-
rithms further: Perhaps a small number of low-complexity features
are sufficient to obtain good approximations? First, to study which

re
q

.c
ap

.
(V

)
nu

m
.e

dg
es

(V
)

nu
m

.n
od

es
(V

)
re

q.
C

P
U

(V
)

sp
ec

t.
ra

d.
(V

)
n

um
.e

ig
.

(V
)

av
g.

pa
th

.l
en

.
(V

)
cu

r.
m

ap
.e

dg
es

(S
)

ot
he

rs

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Im
po

rt
an

ce

ER, GRC

BA, GRC

KDL, GRC

DC-BC, GRC
DC-FT, GRC

(a) GRC

re
q.

ca
p.

(V
)

nu
m

.e
dg

es
(V

)
sp

ec
t.

ra
d.

(V
)

n
um

.n
o

de
s

(V
)

av
g.

ne
ig

h
.d

eg
.

(V
)

nu
m

.e
ig

.
(V

)
re

q.
C

P
U

(V
)

av
g.

pa
th

.l
en

.
(V

)
ot

h
er

s

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Im
po

rt
an

ce

ER,SDP-30

ER,SDP-60

ER,SDP-90

(b) SDP

Figure 3: Feature importance ofRFmodels. VNR features are
indicated via (V), substrate ones via (S). All remaining impor-
tances are accumulated in “others". For GRC, the results are
shown for different substrate types. For SDP, the results are
shown for the timeouts of 30/60/90 seconds.

features are actually important for the solution learning, let us fo-
cus on the Random Forest (RF) model, which allows to investigate
feature importance. Fig. 3 shows that the most important feature
is the requested link capacity. For GRC, we report on different
substrate network types. For the BCube topology, the number of
edges and the number of nodes have a significant influence. For
SDP, we report on the feature importance for all timeout settings
of 30/60/90 seconds. Here, we cannot note a significant difference
between the different timeout settings. Compared to the GRC, the
feature importance is more distributed across all features. This is to
be expected as for optimal algorithms, the search space and hence
the variation of solutions, is larger.

So we may ask: is it even sufficient to focus on linear-time graph
features to obtain accurate cost predictions? To find out, we trained
our regressors with features that have complexity O(n), O(n +m)

and O(n · logn) (see [14]). As Fig. 4 shows for the R2 score of LR,
interestingly, for Greedy (Fig. 4(a)), even the low complex features
provide high R2 scores. In case of GRC, however, the BA substrate
prediction is negatively affected by the features choice and the
simple models cannot compensate for some of the high complexity
features.

4 CASE STUDY II: FACILITY LOCATION
We now consider a second archetypal network optimization prob-
lem: facility location. The input to this problem is a network con-
sisting of nodes and edges, a set of demands (in our case all network
nodes) which need to be connected to k to-be-allocated facilities.
Where in the network to place k facilities and how to connect the
demand to them? We will study the minimum k-center problem
variant, which is NP-hard in general. We analyze whether machine
learning can predict for a substrate node whether it will host a fa-
cility. For this, we compare the results of existing facility location
algorithms and our machine learning variants when solving the
facility location problem.

o’zapft is: Tap Your Network Algorithm’s Big Data! Big-DAMA ’17, August 21, 2017, Los Angeles, CA, USA

B
A E
R

D
C

-B
C

D
C

-F
T

K
D

L

Substrates

0.0

0.2

0.4

0.6

0.8

1.0

R
2

All Features
Low Complex

(a) Greedy
B

A E
R

D
C

-B
C

D
C

-F
T

K
D

L

Substrates

0.0

0.2

0.4

0.6

0.8

1.0

R
2

All Features
Low Complex

(b) GRC

Figure 4: Comparison of R2 of LRmodel for All Features ver-
sus Low Complex for all substrate networks for Greedy and
GRC embedding algorithms.

Facility Location Algorithms. We use three baseline algorithms
in our study: an optimal Mixed Integer Programming algorithm
(MIP), a greedy algorithm (Greedy), and a random sampling algo-
rithm (Random). Greedy solves the facility location by iteratively
taking the next nodewhichmaximizes the reduction of the objective
function.
Machine Learning-based Algorithms. Given a substrate graph,
the training data of the ML-based algorithms is given by the op-
timal (MIP) solutions. But instead of taking the 0/1 results of our
classifiers directly, we use the provided probability of every node to
host a facility: the ML algorithms rank the nodes based on the given
probabilities. The probability ranking of the nodes is used for two
types of ML-based facility location algorithms, an exact algorithm
and preselection-based algorithms. The target of the preselection-
based algorithms is to reduce the search space. The exact algorithm
(o’zapft is-Exact) uses exactly the k nodes with the highest prob-
ability ranking. A preselection-based algorithm (o’zapft is-MIPX)
uses a ratio (either 0.25 or 0.5) parameter to determine the number
of nodes to select among all substrate nodes. For instance, for a net-
work of 40 substrate nodes and a ratio of 0.25, o’zapft is −MIP0.25
selects the ten nodes with the highest probabilities. Then for o’zapft
is-MIPX, the MIP is executed on the preselected subset of nodes to
find the best solution.

4.1 Exact is Hard, But Still Useful
Learning optimal placements is a challenging goal, as shown for the
latency values in Fig. 5. All results show that MIP achieves the best
performance as expected, and Random the worst; however, o’zapft
is-Exact already comes next to Random among all scenarios. This
means that the facility locations cannot be exactly learned and more
research is required. Nevertheless, as we will see in the following,
o’zapft is can be attractive for supporting exact algorithms.

Fig. 5 illustrates that o’zapft is-MIP0.5 performs as good as the
MIP for a small number of facilities (1-4) and as good as or better
than Greedy, while only scanning half of the substrate nodes. This
holds for most substrate, facility number, and objective combina-
tions. This also holds for o’zapft is−MIP0.25 except for 10 facilities.
The reason is that for 10 facilities, o’zapft is −MIP0.25 works like

1

2

L
at

en
cy

MIP
Rnd.

Gdy.
o‘zapft is-MIP0.5

o‘zapft is-MIP0.25
o‘zapft is-Exact

1 2 4 10
Number of Facilities

0

25

50

L
at

en
cy

Figure 5: Boxplots comparing the k-center performance of
MIP, Rnd., Gdy., o’zapft is algorithms. Upper plot: BA. Lower
plot: Topology Zoo (TZ).

o’zapft is-Exact. While this only affects o’zapft is − MIP0.25 for
BA topologies (upper subplot), the lower subplot shows that also
o’zapft is − MIP0.5′s performance is worse for 10 facilities. The
reason is that the Topology Zoo dataset contains more topolo-
gies with less then 40 nodes. For these topologies, even a ratio of
0.5 selects always only 10 nodes. Thus, the algorithms work like
o’zapft is − Exact , which was in general not able to keep pace with
Greedy in such cases.

4.2 Faster Placements
Again, we find that graph and complex node features are not im-
portant when predicting facility locations for random networks:
Fig. 6 compares the F1 score of the true data for three feature set-
tings: low complexity (LC), node (NF), and node+graph features
(GF). The results demonstrate the need to differentiate among topol-
ogy types and sources. While the F1 score for random networks is
less affected, the Topology Zoo results show a clearer gap between
low complexity features and more advanced graph/node features,
where, e.g., betweenness centrality and eigenvector centrality are
added.

We conclude that preselection based on ML does not diminish
the performance of optimal algorithms: an interesting angle to
improve network algorithms’ efficiencies.

5 RELATEDWORK
Obviously, we are not the first to observe the potential of machine
learning in the context of networked and distributed systems opti-
mization. To just name a few examples, Jim Gao [6] showed that a
neural network framework can learn from actual operations data to
model plant performance and help improving energy consumption
in the context of Google data centers.

Big-DAMA ’17, August 21, 2017, Los Angeles, CA, USA Blenk et al.

1 2 3 4 5 6 7 8 9 10
Number of Facilities

0.0

0.5

1.0

F1
Sc

or
e

NF
NF+GF

LC

(a) Barabási-Albert

1 2 3 4 5 6 7 8 9 10
Number of Facilities

0.0

0.5

1.0

F1
Sc

or
e

NF+GF
NF

LC

(b) Topology Zoo

Figure 6: F1 score comparison for different feature complex-
ities: NF, GF, and LC.

Another emerging application domain for artificial intelligence
is the optimization of networking protocols. Many Internet proto-
cols come with several properties and parameters which have not
necessarily been optimized rigorously when they were designed,
but which offer potential for improvement. To just name one exam-
ple, Winstein and Balakrishnan [19] have proposed an interesting
computer-driven approach to design congestion control protocols
as they are used by TCP. The automatic optimization of “protocol
knobs” may also be interesting for approaches like Active Queue
Management [1], which are in principle attractive but still not
widely used today, as their configuration is too complex.

Just recently, the concept of deep reinforcement learning
has been applied to resource management of cloud network re-
sources [16]. The proposed system learns to manage resources
from experience. In a wider sense, Bello et al. [2] propose Neural
Combinatorial Optimization (NCO), a framework that relies on
reinforcement learning and neural networks to solve combinatorial
optimization problems, as demonstrated for the Traveling Salesman
Problem (TSP). In contrast to our approach, these concepts do not
rely on labeled data, i.e., operate in an unsupervised fashion.

The potential of learning methods has been demonstrated in
many many domains already, beyond distributed systems and net-
works. A particularly interesting example is the parameterization of
Mixed Integer Programming (MIP) solvers, such as CPLEX, GUROBI,
and LPSOLVE [9, 10], or the design of branching strategies [12].

Liu et al. [15] propose that data mining can be used to preprocess
the search space of high-dimensional problems, hence speeding
up the solution of combinatorial optimization and continuous opti-
mization problems.

While our recent work demonstrated the application of our idea
to a specific problem [4], we proposed in this paper a generalization
of our framework. Thus, we showcased two further use cases; one
where we predict the actual placement; and another one where we
predict metrics in a multi-objective problem.

6 CONCLUSION
We have shown that a supervised learning approach may be able
to predict solutions of network optimization algorithms. Clearly,
our approach so far is simple, and we believe that our paper opens
many interesting directions for future research. For example, we
believe that machine learning optimal solutions, e.g., generated by
Mixed Integer Programs, can be interesting in several scenarios
and still offers many optimization opportunities. We focused on

standard machine learning approaches so far, and it will be inter-
esting to consider more sophisticated approaches, e.g., based on
neural networks or using reinforcement learning. At the same time,
it will be interesting to better understand the limitations of such
approaches.

ACKNOWLEDGMENT
This work is part of a project that has received funding from the
European Research Council (ERC) under the European Unions
Horizon 2020 research and innovation program (grant agreement
No 647158 - FlexNets) as well as from Aalborg University’s project
PreLytics.

REFERENCES
[1] Sanjeewa Athuraliya, Steven H Low, Victor H Li, and Qinghe Yin. 2001. REM:

Active queue management. IEEE Network 15, 3 (2001), 48–53.
[2] Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Bengio.

2017. Neural Combinatorial Optimization with Reinforcement Learning. In ICLR
Workshop (2017). https://openreview.net/pdf?id=Bk9mxlSFx

[3] Michele Berlingerio, Danai Koutra, Tina Eliassi-Rad, and Christos Faloutsos.
2012. NetSimile: A Scalable Approach to Size-Independent Network Similarity.
CoRR abs/1209.2684 (2012).

[4] Andreas Blenk, Patrick Kalmbach, Patrick Van Der Smagt, and Wolfgang Kellerer.
2016. Boost Online Virtual Network Embedding : Using Neural Networks for
Admission Control. In Proc. IFIP/IEEE CNSM.

[5] Andreas Fischer, Juan Felipe Botero, Michael Till Beck, Hermann de Meer, and
Xavier Hesselbach. 2013. Virtual Network Embedding: A Survey. IEEE Commu-
nications Surveys & Tutorials 15, 4 (Jan. 2013), 1888–1906.

[6] Jim Gao. 2014. Machine learning applications for data center optimization. Google
White Paper (2014).

[7] Thomas Gärtner, Peter Flach, and Stefan Wrobel. 2003. On graph kernels: Hard-
ness results and efficient alternatives. In Learning Theory and Kernel Machines.
Springer, 129–143.

[8] Long Gong, Yonggang Wen, Zuqing Zhu, and Tony Lee. 2014. Toward profit-
seeking virtual network embedding algorithm via global resource capacity. In
Proc. IEEE INFOCOM. 1–9.

[9] Frank Hutter. 2014. Machine Learning for Optimization: Automated Parameter
Tuning and Beyond. (2014).

[10] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. 2010. Automated
configuration of mixed integer programming solvers. In Proc. CPAIOR. Springer,
186–202.

[11] Patrick Kalmbach, Johannes Zerwas, Michael Manhart, Andreas Blenk, Stefan
Schmid, and Wolfgang Kellerer. 2017. Data on "o’zapft is: Tap Your Network
Algorithm’s Big Data!". (2017). https://doi.org/10.14459/2017md1361589

[12] Elias Boutros Khalil, Pierre Le Bodic, Le Song, George L Nemhauser, and Bistra N
Dilkina. 2016. Learning to Branch in Mixed Integer Programming.. In Proc. AAAI.
724–731.

[13] Simon Knight, Hung X. Nguyen, Nickolas Falkner, Rhys Bowden, and Matthew
Roughan. 2011. The Internet Topology Zoo. IEEE J. on Sel. Areas in Communica-
tions 29, 9 (2011).

[14] Geng Li, Murat Semerci, Bülent Yener, and Mohammed J Zaki. 2012. Effective
graph classification based on topological and label attributes. Statistical Analysis
and Data Mining 5, 4 (Aug. 2012), 265–283.

[15] Ruoqian Liu, Ankit Agrawal, Wei-keng Liao, and Alok Choudhary. 2014. Search
space preprocessing in solving complex optimization problems. In Proc. IEEE Big
Data. IEEE, 1–5.

[16] Hongzi Mao, Mohammad Alizadeh, Ishai Menache, and Srikanth Kandula. 2016.
Resource Management with Deep Reinforcement Learning. In Proc. 15th ACM
Hotnets. ACM, New York, NY, USA, 50–56.

[17] Marcio Melo, Susana Sargento, Ulrich Killat, Andreas Timm-Giel, and Jorge
Carapinha. 2013. Optimal Virtual Network Embedding: Node-Link Formulation.
IEEE Trans. Network and Service Management 10, 4 (Dec. 2013), 356–368.

[18] Maria Carolina Monard and Gustavo E A P A Batista. 2002. Learning with skewed
class distributions. Advances in Logic, Artificial Intelligence and Robotics (2002),
173 – 180.

[19] Keith Winstein and Hari Balakrishnan. 2013. TCP Ex Machina: Computer-
generated Congestion Control. In Proc. ACM SIGCOMM (SIGCOMM ’13). ACM,
New York, NY, USA, 123–134.

[20] Minlan Yu, Yung Yi, Jennifer Rexford, and Mung Chiang. 2008. Rethinking
Virtual Network Embedding: Substrate Support for Path Splitting and Migration.
SIGCOMM Comput. Commun. Rev. 38, 2 (Mar. 2008), 17–29.

https://openreview.net/pdf?id=Bk9mxlSFx
https://doi.org/10.14459/2017md1361589

	Abstract
	1 Introduction
	2 Methodology and Approach
	3 Case Study I: VNE Costs
	3.1 Tapping Data is Useful
	3.2 Speeding-up Computations

	4 Case Study II: Facility Location
	4.1 Exact is Hard, But Still Useful
	4.2 Faster Placements

	5 Related Work
	6 Conclusion
	References

