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ABSTRACT
One of the main objectives of any cluster management system is
the maximization of cluster resource utilization (CRU). In this pa-
per, we argue that there is a dilemma underlying the challenge of
maximizing CRU, as soon as network resources enter the picture. In
contrast to local resources which can be handled in a more isolated
fashion, global network resources are namely shared, and their
allocation is intertwined with that of local resources. For effective
resource management, either applications thus have to learn more
about the infrastructure, or the resource manager has to understand
application semantics – both options violate the separation of appli-
cations from the underlying infrastructure strived for by resource
managers. This paper makes the case for a resource management
system that addresses the dilemma, and presents first ideas.

CCS CONCEPTS
• Information systems→ Computing platforms; •Networks
→ Cloud computing; In-network processing; • Computer systems
organization→ Cloud computing; • Software and its engineer-
ing → Cloud computing;
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1 INTRODUCTION
Highly virtualized compute infrastructures and datacenters promise
a high cluster resource utilization (CRU) and hence low costs, by
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multiplexing multiple applications over the shared physical infras-
tructure. Indeed, today there are several frameworks supporting a
broad variety of applications.

However, state-of-the-art resource managers (RMs) like Apache
Mesos [6] or Hadoop YARN [10] come with a major drawback:
they do not consider network resources [8]. The main difference
to node-local resources is that network resources are shared be-
tween hosts (and thus containers scheduled on them), and hence
their allocation is intertwined with that of local resources. As a
consequence, resources can not easily be dealt with in a piecemeal
fashion anymore.

This leads to a dilemma: for taking informed resource schedul-
ing decisions, either cloud applications have to learn more about
the underlying infrastructure and resource bottlenecks in order to
effectively use a set of independent resources to schedule an entire
“graph” of containers, or the RM has to understand more of the
application semantics and performance goals. Both of these speak
against a clear separation between applications on the one side, and
resource management on the other side, as it is currently achieved.

By the same token, even if the RM supports multi-dimensional
resource changes at runtime (we are only aware of one system
providing such functionality, namely Kraken [5]), it is difficult for
the application to find the right upgrade plan (an open problem
in [5]) to break down the complexity of allocation by having appli-
cations outline their requirements incrementally (e.g., by adding
containers and corresponding bandwidth requirements to previ-
ously scheduled containers one-by-one). For instance, upgrading
the computational resources may be of little help if the applica-
tion is bottlenecked by the network. With different types of re-
sources often depending on each other and having to be jointly
optimized [1, 2, 7], the application is essentially forced to resort to
a blind trial-and-error.

Figure 1 gives an example for the importance of taking into ac-
count all the resources involved in the execution of an application:
our streaming case study is based on an Apache Kafka setup, and
shows that increasing one type of resource (e.g., computation) may
not influence the performance of a streaming application which
is currently bottlenecked by another resource (e.g., network band-
width).
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Figure 1: Two-dimensional resource scaling: An Apache
Kafka broker system with a single consumer. Item input
rate (green) shows the number of items the broker receives
ready for forwarding. Processing rate (blue) gives the pro-
cessing rate across all worker. Lag (red) shows the number
of items the broker caches in consequence of slow process-
ing rate. As the input rate changes, the scaling system tries
to react with more workers and network shares. Without in-
teractive negotiation of both the RM and the application, a
scaling systemhas to guess which resourcemay improve the
performance.

An intuitive approach to maximize CRU is to simply share more
information between the application and the RM. However, this is
challenging in practice, for three reasons:

(1) It is desirable to respect the separation of the different
roles. Unnecessary dependencies between roles should be
avoided in general.

(2) Given that the underlying resource allocation problem is
inherently multi-dimensional, the naïve approach to sim-
ply expose all possible resource upgrade options becomes
combinatorial and expensive.

(3) Different resources can be very different in nature: while
computational resources are typically local in nature and
can hence be debugged and elastically changed efficiently
(e.g., by increasing the number of cores allocated to a con-
tainer), the provisioning of network resources is an inher-
ently non-local task.

This paper explores the dilemma inherent in today’s resource
management systems, and initiates the discussion of solutions to
the grand CRU challenge, by sharing slightly more information
between applications and cluster management systems, while re-
specting the independence of the two roles and ensuring scalability.
Indeed, we will argue that existing cluster scheduling systems do
not provide efficient information sharing mechanisms, and either
abstract from the actual scheduling information problem (e.g., [4]),
focus on a single resource only (e.g., [3]), or assume a single point
of scheduling (e.g., [7]). Especially in case of bandwidth hungry

applications such as scale-out databases and batch processing appli-
cations or latency sensitive applications like streaming applications,
insufficient information about the global network resources can
lead to interference, conservative and inefficient resource reserva-
tions, or scalability issues [8].

2 THE GRAND CLUSTER RESOURCE
UTILIZATION CHALLENGE

As the resource requirements of cloud applications are usually not
limited to computational resources only, but, e.g., also include the
network or the memory, an efficient cluster scheduling mechanism
needs to account for these resources accordingly. Indeed, resources
which are not explicitly modeled or accounted for, can lead to
interferences and hence an unpredictable performance.

Indeed, cloud-based applications, including batch processing,
streaming, and scale-out databases, generate a significant amount
of network traffic and a considerable fraction of their runtime
performance is due to network activity.

Ideally, in order to meet performance goals, a cluster scheduler
needs the following information:

(1) Cluster Information
(a) Node-local resources: Resources such as CPU, memory,

ports, etc., and their usage.
(b) Network resources: In particular, network topology in-

cluding capacity, current usage, and allocation, mid-
dleboxes, etc.

(2) Application Information
(a) Performance goals: Objectives of each tenant’s appli-

cation components.
(b) Resources:Node-local resource usage and requirements

of tenant’s application components, performance of
each tenant’s application components, communica-
tion behavior of tenant’s application components.

To be aware of this information during runtime is even more im-
portant due to the dynamic nature of both resource usage and
requirements.

Naturally, the corresponding knowledge is partitioned between
the RM and the application framework (AF). The former has the
view on the topology from a cluster perspective across all tenants,
including each tenant’s allocation profile with timing aspects. The
latter is aware of each task’s performance and how each task inter-
acts with each other (internal and external) component. This intro-
duces a dilemma for cluster resource scheduling: without knowl-
edge of both role’s information, scheduling decisions are likely to
be suboptimal.

2.1 Design Space
To see the underlying design challenges, we first briefly review ex-
isting RM architectures. These coarsely fall into three categories [9]:
monolithic, two-level, and shared state. Figure 2 shows all three ar-
chitectures while focusing on the interaction between AFs, nodes
(task executors), and the scheduler(s).

Monolithic scheduling (as used e.g. in YARN and Bazaar [7]) uses
a global cluster state: A monolithic RM consists of a central
component, the scheduler, which holds all responsibilities. This
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scheduler acts as the mediator between system components like
node managers, which manage each node’s processes. While
simple and allowing to schedule all components from a logically
centralized perspective, this architecture comes with the main
drawback that it does not scale (as all requests and scheduling
decisions have to pass the central scheduler). A second short-
coming is that all AFs use the same interfaces of the central
scheduler, which makes multipath designs for different types of
AFs even more complex. The scalability problem becomes worse
in the presence of network resources.
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Figure 2: Overview on system components of all three sched-
uler architectures.

Two-level scheduling (as used e.g. in Mesos) separates the schedul-
ing into two phases: a (central) allocator packs spare resources
into a bundle and offers these resources to one of the requesting
schedulers. This scheduler may apply AF specific scheduling
decisions and decides how to proceed with the received offer.
When the scheduler returns its decision, the allocator is able
to repack the remaining resources into a new resource bundle.
This design overcomes the limitation of the monolithic approach
by supporting AF specific schedulers and by distributing the
scheduling load. The drawback of the two-level architecture is

its pessimistic concurrency model: Resource offering requires to
lock resources until the scheduler replies. First, the allocator has
to decide when to pack which of the spare resources as a bundle.
If such bundles are too small, none of the waiting schedulers may
use these resources, or fragmentation may occur [6]. Second, the
questions which of the requesting schedulers should receive an
offer next should ideally not only be based on, e.g., canonical
max-min fairness policies like dominant resource fairness (DRF),
but on already allocated resources of an application (and its as-
sociated scheduler). This issue becomes more severe for network
resources like bandwidth, which has a cluster-spanning effect,
as we will see in the following section.

Shared state allocation tries to combine the advantages of the previ-
ously mentioned approaches, and to support application specific
schedulers without blocking (but conflicts): All schedulers use
their own shadow copy of the cluster state (i.e., offering overlap-
ping resources). For coordination purposes of the actual alloca-
tions, the schedulers use a transaction like system: A scheduler
does its scheduling decisions on the basis of its current state.
When allocating resources, it commits its scheduling decision
and checks with the global cluster state. Due to the shared nature,
the private cluster state of the scheduler might be out of sync
or another scheduler may have already claimed the preferred
resources in the meantime. Thus, transactional approaches are
employed: conflict resolution strategies like incremental commits
or all-or-nothing are employed [9]. This distributed approach
features similar benefits as the two-level design, it comes at the
price of potentially introducing collisions and overheads for syn-
chronizing private cluster state: A typical tradeoff of a shared
state system is the state update frequency and ratio of scheduling
collisions.

2.2 Limitations
The discussion so far mainly revolved around node-local (compute)
resources, and none of the three RM architectures satisfies our
requirements on information sharing when accounting for more
global network resources. In the following, we omit the monolithic
scheduler, based on the drawbacks mentioned so far.

Allocator

Scheduler A Scheduler B

+ +

offer offer

??

(a) Two-level

Scheduler B

Scheduler A

sync state

local	resourcesnetwork	resource

local	resourcesnetwork	resource

?

(b) Shared state

Figure 3: Available state of two-level and shared state RM if
considering node-local and network resources.

Figure 3 shows the available information each scheduler has.
The two-level architecture (Figure 3(a)) expands the pessimistic
concurrency if network resources are considered: An offer has to
guarantee by definition exclusive access when it’s received by a
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scheduler. For considering network resources between compute
nodes of an offer, the offer should also contain network shares
across them. However, this leads to cluster-spanning locks as each
link connects more than two nodes. Furthermore, the allocator has
to consider the network topology in addition to all other constraints
for determining which scheduler gets which shares.

If the shared state architecture (Figure 3(b)) considers network re-
sources, the shared state covers also these. By increasing the amount
of information the shared state holds, collision ratio will rise further.
To counteract, one could increase the frequency for updating the
cluster state before scheduling. If the frequency is too low (or the
information is stale when scheduling is performed), the scheduler
may take wrong decisions due to outdated information, leading
to more scheduling collisions. At the same time, by increasing the
synchronization rate, the amount of state to transfer increases, es-
pecially when considering network updates. Schwarzkopf et al. [9]
investigate different conflict modes: Commits can be treated as in-
cremental or all-or-nothing if conflicts arise. The conflict detection
may use a heuristic that declines if a resource was updated in the
meantime, or accepts everything that fits to the current state. For
the following evaluation, we use an incremental transaction mode
which tries to commit as many allocations as possible.

3 ACCOUNTING FOR THE NETWORK
In order to highlight the CRU dilemma when accounting for global
network resources, we provide a first analysis and simulation study.
We will see that while the two level architecture comes with the
drawback of to pessimistic offers, shared state allocation leads to
many conflicts. Finally we argue that a combination of the two
architectures may offer a path toward tackling the CRU dilemma.

3.1 Inefficiencies due to Conflicts
Shared state allocation has two performance metrics: conflict ratio
of scheduling attempts and the amount of information that needs
to be shared for synchronizing the state. In our evaluation, we
focus on the former and use the Omega simulator [9]. In order to
consider network allocations, we modified the simulator as follows:
Each job gets an additional resource unit of required bandwidth.
This bandwidth specifies for each of its tasks the bandwidth that is
required to communicate to all other tasks of this job. We use the
virtual cluster (VC) [1] embedding for this purpose. Each task of
each job has a bidirectional link of capacity b to a logical switch.

Our setup uses a small fat-tree topology of 6000 compute nodes
without bandwidth over-subscription. To the best of our knowledge,
there is currently no publicly available trace that provides band-
width demands of applications. Hence we use a synthetic workload
with on average 200 tasks per job and a VC bandwidth demand of
each task.

Figure 4 shows the conflict ratio, scheduler business (busy time
vs. idle time), and average resource usage. Before consideringOmega
with network awareness (blue), we run the simulation with only
node-local resource scheduling (red). Each experiment varies the
time required for doing the scheduling of a job (tjob ). The numbers
show that our setup of two Omega schedulers is able to handle the
scheduling load.
When Omega considers network resources (blue), average network
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Figure 4: Shared state scheduler (Omega) simulation with
only node-local resources (red) and a modification to con-
sider virtual cluster network allocations (blue). Perfor-
mance as a function of scheduling time of a job (tjob ) in sec-
onds. All experiments use a Fat-Tree like topology with two
schedulers running concurrently.

usage (Figure 4(c)) of each server’s edge bandwidth is below 60%.
Compared to the no-network setup, the conflict ratio increases
significantly. Even for the lowest tjob the conflict fraction is near
20% and shows higher numbers of up to 60% conflicts when job
scheduling time comes to 10s .

This experiment serves only as a first investigation on the issue
of network resources and the shared state architecture. In particular,
it is optimistic and we expect to see more conflicts when having
more than two schedulers running on a cluster.

3.2 Resource Locking Inefficiencies
Two-level architectures entail a resource hoarding issue when con-
sidering network for task allocations. As discussed earlier, an offer
gives a dedicated bundle of resources to a scheduler. The allocator
blocks these resources during scheduling time. When including the
network in resource offers, available bandwidth shares on links
between affected machines need to be included in the specific offer.
Due to the fact that links connect multiple machines, offers with
network shares affect not only the machines that are in the specific
offer. Additionally, there is an issue when tasks will unlock their
resources, as the following example demonstrates.

We will illustrate this using an example. Figure 5 shows a simpli-
fied topology with corresponding machines. This example focuses
on a single job that runs tasks connected with VC allocations. The
VC allocation defines the required bandwidth for an edge as fol-
lows [1]: Each edge that divides the tasks of a job (with bandwidth
b) into two sets S1 and S2, requires reservations ofmin( |S1 |, |S2 |)∗b.
Consider a job j , and an offero that does not contain the full network
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topology currently used by the running tasks of j . The correspond-
ing scheduler s is processing o to find allocations for new tasks of
j. In the meantime (3rd phase) a task of j finishes and frees some
resources that affect network links l outside of o. Another sched-
uler may claim those freed link resources l . If now (4th phase) s
commits its placement p based on o, we see that j was modified in
the meantime, so we have to recalculate the bandwidth demands
of j. Based on the new placed tasks in p, we may need previously
freed resources l . However, the link resources l may be locked in
the meantime. Consequently, s cannot use the resources of offer o
as expected - the allocator has to decline this offer or at least parts
of it that cause conflicts.

(3, 2, 3)

(3, 2, 3) (2, 2, 2) (1, 0, 0)

(3, 2, 2) (0, 0, 1)

(0, 0, 1)

(3, 2, 3) (3, 2, 3)

Core

Aggregation

Edge

Servers

Figure 5: Resource offer conflict: This example shows 4
phases of a job’s tasks placement. 1st: 6 tasks distributed on
3 racks (black and green nodes). Each affected edge shows
the required bandwidth shares as first attribute. 2nd: The
scheduler receives an offer containing both local and net-
work resources (blue) for spawning new tasks. The schedul-
ing decides to start another task on the red node. 3rd: In the
meantime, the green task finishes and frees some resources,
as given by the green bandwidth shares on the edges. 4th:
The scheduler responses to the blue offer with its red task,
which in turn, affects resources (edges) outside of the offer
as shown by red bandwidth shares on the edges.

This behavior goes against with the idea of pessimistic resource
offers. Normally, a single allocation that is based on an offer should
not lead to conflicts. A possible modification to resolve this issue
could be as follows: Referring to the previous example, 3rd phase,
instead of freeing network resources, the allocator blocks the link
resources as long as this job is running. Hence, when a task of j
finishes, local resources are freed, but not its network resources: a
job claims the network resources until all tasks are finished. Only
when a job finishes, all related resources (including network) are
freed. Then, network resources can be reassigned to a different
job. As a consequence, each job does aggressive network resource
hoarding. However, this collides with a key property of the two-
level architecture: When a task finishes, the allocator receives the
tokens for the affected resources. Then, the allocator decides which
of the schedulers receive the resources as an offer.

One could think of another solution: Instead of hoarding the
network resources as long as a job is running, a job hoards them
only as long as some scheduling of this job is running (i.e., during
“scheduling-mode”). However, this is impossible because the alloca-
tor offers resources to a scheduler and not to a specific job. Hence,

from the perspective of an allocator, all running jobs of a scheduler
are in “scheduling-mode” as long as the scheduler has some offers,
i.e., all the time.

3.3 Towards a Better Tradeoff
None of the three investigated architectures fulfills the require-
ments to tackle the CRU dilemma. As soon as the scheduler accom-
modates node-local and network resources, all three architectures
unveil a weakness due to their architectural design: The monolithic
lacks ability to scale, the two-level becomes too pessimistic, and
the shared state sees too many conflicts. Our first analysis reveals
that two-level and shared state architecture are two extremes: the
former has small disjoint information shares, whereas the latter
focuses on conflict resolution if every scheduler has write access on
all information. Neither design is suitable if combining node-local
and network resource as required for the CRU dilemma.

We hence advocate a system that combines all three architectures
by softening the hard constraints of each.
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