
Eurographics Conference on Visualization (EuroVis) 2018
J. Heer, H. Leitte, and T. Ropinski
(Guest Editors)

Volume 37 (2018), Number 3

Hypersliceplorer: Interactive visualization of shapes in multiple
dimensions

T. Torsney-Weir1, T. Möller1,2, M. Sedlmair3, and R. M. Kirby4

1Faculty of Computer Science, University of Vienna, Vienna, Austria
2Data Science @ University of Vienna, Vienna, Austria

3Computer Science & Electrical Engineering, Jacobs University, Bremen, Germany
4School of Computing, University of Utah, Salt Lake City, UT, USA

(a) Global view (b) Local view

Figure 1: The interface for browsing slices created by the Hypersliceplorer algorithm. In this case we show slices of a 4D hypersphere. Each
plot shows a pair of dimensions laid out in the same way as HyperSlice [vWvL93]. The interface has two modes: global and local view. The
global view (a) shows the results of sampling over a number of focus points. The views are linked through highlighting a slice. The local view
(b) shows a single selected slice and then the user can add additional slices by clicking the “+ FP” button. The location of each local focus
point is shown as a colored dot and the corresponding slice is also colored accordingly.

Abstract
In this paper we present Hypersliceplorer, an algorithm for generating 2D slices of multi-dimensional shapes defined by a
simplical mesh. Often, slices are generated by using a parametric form and then constraining parameters to view the slice. In
our case, we developed an algorithm to slice a simplical mesh of any number of dimensions with a two-dimensional slice. In
order to get a global appreciation of the multi-dimensional object, we show multiple slices by sampling a number of different
slicing points and projecting the slices into a single view per dimension pair. These slices are shown in an interactive viewer
which can switch between a global view (all slices) and a local view (single slice). We show how this method can be used to
study regular polytopes, differences between spaces of polynomials, and multi-objective optimization surfaces.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—Line and
curve generation

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.



T. Torsney-Weir, T. Möller, M. Sedlmair, & R. M. Kirby / Hypersliceplorer

1. Motivation

The visual analysis of multiple dimensions is one of the central
themes of visualization research. In principle there are two concep-
tual types of problems that amount to two different mental models.
(1) Often, the data set is considered to be truly discrete and pro-
jection methods, such as scatterplots and dimensionality reduction
techniques, are used for its analysis. Typical examples include busi-
ness applications, in which one is analyzing customer data. The fo-
cus of this paper is different in that (2) we are focusing on contin-
uous multi-dimensional data spaces. For computational purposes,
the data set is then merely a set of points sampled from a continu-
ous phenomenon of study. This is rather common in simulation and
engineering applications or for the study of continuous algorithmic
parameters in modeling environments, including machine learning
applications [SHB∗14]. Of course, for such scenarios, projection
based visualization might be of help as well. However, they do not
respect the mental model of the object of study [TM04].

To comprehend these continuous data spaces, we extend the Hy-
perSlice [vWvL93] method, which presents a number of slices
through data space, all connected through one point in data space
called the focus point. Slicing has a number of advantages includ-
ing undistorted views of the space and the preservation of distances.
The disadvantage is that only one focus point can be shown at a
time. Vastly different views of the object may be seen depending
on the location of the focus point. It is difficult to keep track of
ones location while navigating multiple dimensions.

In Sliceplorer [TWSM17], Torsney-Weir et al. suggest to present
1D slices instead of 2D slices in such cases. While a 1D slice car-
ries less information than a 2D slice, they could now present a
global view of the multidimensional object by over-plotting many
1D slices. This advantage was worth the loss of 2D information.
In this paper, we take the idea of more global overviews and re-
visit 2D slices for closed multi-dimensional objects, whose over-
all multi-dimensional shape is of great importance. This has been
motivated by a number of real-world application scenarios, from
comprehension of multi-dimensional polytopes (generalization of
polygons to multiple dimensions) by geometers, to applications in
computational science, to multi-dimensional Pareto-front analysis.
By showing only slices of the outlines of these polytopes we can
again create global views of these data sets through over-plotting
of many focus points.

We address the issue of selecting a focus point by sampling a
number of focus points and producing projections of 2D slices (Fig-
ure 1). This global view gives the user an overview of the shape of
the object without having to navigate manually. Since we are view-
ing just the outer hull of the object, we can draw these as a pro-
jection of a set of 2D slices. We use linked highlighting to show
all slices for a particular focus point. In addition, the user can click
on a particular slice and switch to the local view. The local view
begins by showing the particular slice the user clicked on. The user
can add additional focus points and select particular slices for com-
parison. This interaction models Shneiderman’s mantra: “overview
first, filter and zoom, details on demand” [Shn96].

Our major contribution is an algorithm called Hypersliceplorer
for computing the intersection of a 2D slice with a simplical mesh
in any dimension (see Section 3 and Figure 2). The issue is that

a 2D plane does not have a well-defined normal in spaces higher
than three. Therefore, we cannot use the typical point-normal form
of a plane in order to compute the intersection of the plane with
the simplex. Instead, we treat the plane as a point with two free
parameters representing the plane. Then, we show how this repre-
sentation allows us to compute how a multi-dimensional simplex
intersects a 2D plane. This approach lets us compute slices of a
multi-dimensional object without a parametric form of the surface.
We also demonstrate the results of this algorithm with an interactive
interface we developed.

We evaluate our algorithm and interface in two ways represent-
ing their recommended evaluation methods according to the nested
model [Mun09]. For the overall technique and interactive viewer,
we demonstrate the effectiveness of our technique by presenting
three case studies. For the underlying algorithm we present an anal-
ysis of the running time.

In summary, our contributions are:

• an algorithm for computing 2D slices of multi-dimensional poly-
topes defined by a simplical mesh,

• an interactive viewer combining both global and local views of
slices,

• three case studies demonstrating the technique,
• and an analysis of the running time of the slicing algorithm.

2. Related work

The study of two- and three-dimensional shapes has been exten-
sively studied by the computer-aided design community [Far96].
Multi-objective optimization and multi-dimensional objects are
two areas where it is important to study shapes in over three dimen-
sions. We discuss these areas below. Topological techniques are
based on viewing critical points of manifolds [CLB11, GBPW10]
or how contours merge and split [CSA03]. We do not discuss them
further. Manifold analysis is very different than visualizing shapes.

The need to understand multi-dimensional polytopes is appar-
ent to geometers [Zie12]. However, there are a number of cases
in computational science where the understanding of the size and
the shape of a sub-section of the parameter space is of impor-
tance [BSM∗13,SHB∗14]. One of these cases is highlighted in Sec-
tion 5.2. Another use case is the study of multi-dimensional Pareto
fronts (Section 5.3).

2.1. Multi-objective optimization

In multi-objective optimization we have several scalar values that
we wish to optimize. The set of optimal points is known as the
Pareto front. If each objective measure is continuous then we have
a continuous hull in one orthant. We want to use this hull to an-
alyze the trade-offs between objective measures. Interactive deci-
sion maps [LBK04] show a 3D Pareto front as a series of 2D slices.
Any objectives past three must be constrained to a value however.
The Prosection matrix took this a step further and shows, for each
input configuration, how many of the multiple objectives are satis-
fied [TS98]. Objective functions are difficult to sample since we of-
ten do not have control over the sampling of the range of a function.
To generate this hull one often samples the objective functions and

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.



T. Torsney-Weir, T. Möller, M. Sedlmair, & R. M. Kirby / Hypersliceplorer

then computes the Pareto points using an algorithm such as NSGA-
II [DPAM02] or the skyline algorithm [BKS01]. We can then gen-
erate the hull using multi-dimensional marching cubes [BWC00],
the quickhull algorithm [BDH96], or alpha shapes [EKS83]. These
can then be viewed in Hypersliceplorer as we do in Section 5.3.

An alternative is to treat the samples as a fixed set and then visu-
alize the relationship between possible combinations of objectives.
Typically this is done by examining the weight space through inter-
action. LineUp [GLG∗13] uses a ranked list approach and shows
the user how rankings will change as the user changes the relative
weighting for each objective. WeightLifter [PSTW∗16] extends
this by also showing the stability of rankings. The user can un-
derstand how much a particular objective is affected by its weight-
ing. This can help speed interactive exploration. Finally, the joint
contour net [CD14] can be used to compute how often two objec-
tives hold particular values simultaneously. In our case, the mental
model is a continuous one. Thus it makes more sense to show a
continuous Pareto front.

2.2. Multi-dimensional objects

Three-dimensional polytopes usually result from either the re-
construction of 3D point clouds (see Dey [Dey06]) or from iso-
surfacing techniques (see Wenger [Wen13]). There are extensions
to iso-surfacing techniques in multiple dimensions [BWC00], but
in more than three dimensions we must distort the space somehow
to visualize the object.

For the visualization of 4D polytopes, there are a number of tech-
niques for moving from four to three dimensions. The Schlegel dia-
gram [Som29] is one such method based on projection. One picks a
face of the figure, usually the largest, which is a three-dimensional
object. Then, all other faces are “packed” inside this face in such a
way that we can show the connections between faces. The Schlegel
diagram works well for regular polytopes where we have some pre-
vious intuition about the faces. However, for an arbitrary simplical
mesh, any face is a simplex which we need to project into. All
Schlegel diagrams of a simplical mesh look like a simplex with
a number of other simplices inside them. It can be difficult to re-
cover what the original object looks like because the cross section
is lost. An alternative approach is to treat the fourth dimension as
time and then produce an animation of the evolution of the shape in
three dimensions. In this case each frame of the animation is a 3D
slice of the object. Rather than first projecting from 4D to 3D and
then rendering the projection, Hanson and Cross [HC93] propose
a method to first render the object in 4D and then view the three-
dimensional projection. This allows them to show unique lighting
effects from the 4D surfaces. As with all projection methods, if the
user is unaware of the details of the method it can be difficult to
build a mental model of the shape under study.

Hasse diagrams [BT88] are based on showing the connectivity
between vertices of an object. These can be seen as network dia-
grams where the vertices of the figure are the nodes in the graph
and the edges of the graph are the edges in the figure. These have a
number of layout issues. For visual understanding, humans prefer
a 2D planar graph [KDMW16]. Good layouts of the Hasse dia-
gram must balance human aesthetic needs like few edge crossings

with the geometric interpretation. There are automatic layout algo-
rithms, such as the one by Battista et al. [BT88], but these do not
work in all cases.

For more than four dimensions, projection methods no longer
work as well. On the other hand, techniques based on slicing the
space can be extended to any number of dimensions. The tech-
niques to perform this so far, such as HyperSlice [vWvL93], Hy-
perMoVal [PBK10], and Sliceplorer [TWSM17], require the multi-
dimensional object to be specified as a manifold (i.e. a function).
Then, for a given focus point, we can constrain all but one or two
parameters. This gives us a one- or two-dimensional function which
we can draw as a function plot. The function plot can be drawn us-
ing a heatmap, contour plot, or line function plot. In our case we
have a simplical mesh for which we cannot compute the slice by
constraining all but a few parameters to a value. We need a new way
to compute the slice of a simplex in multiple dimensions which can-
not be done by constraining parameters. Further, HyperSlice can
only show the slices around a single focus point at a time. Hyper-
sliceplorer can show slices for multiple focus points at once.

Sliceplorer addressed the focus point issue by sampling over a
number of focus points and projecting them down. Exploded view
diagrams [KLMA10] offer a hybrid method between a 3D volume
visualization and slicing. However, they are limited to 3D objects.
The global view of Hypersliceplorer is inspired by the idea of ex-
amining cross sections. We also have a local view which permits
the user to look at a small number of self-selected slices. We have
developed a method to produce slices based on a simplical mesh
which is very useful given a discretized surface (see Figure 2).

3. Algorithm

Our main contribution is an algorithm that computes 2D axis-
aligned slices of a multi-dimensional polytope in the form of a
simplical hull. This hull can be generated from a point cloud or
it can be pre-computed. In any case, a simplical hull is a set of
(d− 1)-dimensional simplices in a d-dimensional space. We com-
pute the intersection of a two-dimensional plane with this set of
(d−1)-dimensional simplices (see Figure 2a). The algorithm pro-
duces a single slice for a single pair of dimensions and focus point
selection. To produce the multi-dimensional view we repeat this
algorithm for each focus point and dimension pair.

One way to compute the intersection of a plane with a simplex
is to check, for each pair of points, if they are on opposite sides
of the plane using the point-normal form of the plane. However, in
more than three dimensions a 2D plane does not have a well-defined
concept of a “side.” The analogy to this is the normal of a line in
three-dimensions. Therefore, we cannot use the point-normal form
to define the 2D axis-aligned plane that represents the slice.

Our solution to this problem relies on two key observations. We
can represent the axis-aligned plane as a point with two free param-
eters and then see if this point lies on the boundary of the simplex
using barycentric coordinates. If the plane intersects the simplex
then it must intersect the simplex at its boundaries. Therefore, it is
sufficient to set each barycentric coordinate to 0 in turn to compute
where, if any, is the line of intersection between the plane and sim-

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.



T. Torsney-Weir, T. Möller, M. Sedlmair, & R. M. Kirby / Hypersliceplorer

(a) Slicing a mesh (b) Slicing a simplex (c) 2D slice

Figure 2: An overview of how our algorithm functions. The goal is to compute the intersection of a slice with a polytope defined as a
simplical mesh (a). The slice is defined by selecting a focus point and then extending it in two directions. We (b) treat each simplex in the
mesh independently and compute the intersection of the simplex with the slice (see Algorithm 2). The collection of all intersections for a
particular plane is shown as a line plot (c). This process is repeated over a number of randomly sampled focus points.

plex. We will first explain the mathematical basis before providing
implementation details.

3.1. Mathematical basis

The basis of our mathematical derivations can be best described
by intersecting a 2D axis-aligned plane with a d-dimensional sim-
plex in a d-dimensional space. The intersection of a d-dimensional
simplex with a 2D plane will result in a 2D object [Han94]. An in-
tersection with a plane must pass through a boundary face of the
simplex. The implementation section will discuss how to extend
a (d − 1)-dimensional simplex to a d-dimensional simplex (Sec-
tion 3.2).

To illustrate the mathematics behind our slicing algorithm we
first introduce some notation. We begin with a d-dimensional focus
point fp and a simplex s consisting of d + 1 d-dimensional points,
x1, . . . ,xd+1. We denote the slice coordinates as f ′p in the formu-
lae below. Without loss of generality, we will assume the slicing
dimensions to be (d1,d2) = (1,2). Then, the two free variables for
the specification of the slice, x and y, will replace the first two com-
ponents of the focus point (Equation 2). We let T be the matrix
to convert a point from barycentric coordinates to Cartesian coor-
dinates (including a homogeneous component of 1). The columns
of T are the d + 1 points defining the simplex. We append a row
of ones to ensure that the barycentric coordinates sum to one. If
T is nonsingular then the simplex is not degenerate and we can
easily invert it. The inverse of T will convert a point from Carte-
sian coordinates (including a homogeneous component of 1) back
to barycentric coordinates (t is denoting the transpose).

fp = [p1, p2, . . . , pd ,1]
t (1)

f ′p = [x,y, p3, . . . , pd ,1]
t (2)

T =


x1,1 x1,2 · · · x1,d+1
x2,1 x2,2 · · · x2,d+1

...
...

. . .
...

xd,1 xd,2 · · · xd,d+1
1 1 · · · 1

 (3)

The next step is to convert the slice, f ′p, to barycentric coordi-
nates, λ.

T−1 =


α1,1 α1,2 · · · α1,d+1
α2,1 α2,2 · · · α2,d+1

...
...

. . .
...

αd+1,1 αd+1,2 · · · αd+1,d+1

 (4)

λ = T−1 f ′p (5)

=


α1,1x +α1,2y +α1,3 p3 + · · · +α1,d+1
α2,1x +α2,2y +α2,3 p3 + · · · +α2,d+1

...
αd+1,1x +αd+1,2y +αd+1,3 p3 + · · · +αd+1,d+1


(6)

This expression for λ is linear in x and y and we denote its coef-
ficients by ax, ay, and ac respectively. Thus, each component ex-
presses a line.

ax =
[
α1,1,α2,1, . . . ,αd+1,1

]t (7)

ay =
[
α1,2,α2,2, . . . ,αd+1,2

]t (8)

ac =

[
d+1

∑
i=3

α1,i pi, . . . ,
d+1

∑
i=3

αd+1,i pi

]t

(9)

λ = axx+ayy+ac (10)

where we assume pd+1 = 1. Further, x and y correspond to the
horizontal and vertical coordinates of the intersection of the plane
with the simplex. Each component of λ reflects the influence of one
of the (d +1) points of the simplex. If the influence is zero (i.e. for
the i-th point we have λi = 0) then we are on the boundary of the
simplex. An intersection of a plane with a simplex must cross the
boundaries (Figure 2b). It is possible that the plane will intersect
multiple faces so we set each component λi of λ to 0 in turn and
then check what pairs of x and y in the remaining components are
valid barycentric coordinates (i.e. are between zero and one). If this
is the case, then the plane intersects the simplex. Otherwise, there
is no intersection. In other words, for face i, we need to solve λi = 0
such that ∀ j 6= i, 0≤ λ j ≤ 1.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.



T. Torsney-Weir, T. Möller, M. Sedlmair, & R. M. Kirby / Hypersliceplorer

Setting a particular λi to 0 and solving for y yields:

λi = axi x+ayi y+aci = 0 (11)

y =−axi x+aci

ayi

. (12)

Then, we substitute this for y in the remaining λ j, j 6= i,

λ j = ax j x+ay j y+ac j (13)

= ax j x+ay j

(
−axi x+aci

ayi

)
+ac j (14)

λ j =

(
ax j −

ay j axi

ayi

)
x+
(

ac j −
ay j aci

ayi

)
(15)

= bx j x+bc j , (16)

where bx j and bc j denote the coefficients of the reduced equation.
In order to be on the face, all λ j must be between 0 and 1. Assuming
bx j > 0, we now find the range for each 0≤ λ j ≤ 1,

0≤ λ j ≤ 1 (17)

0≤ bx j x+bc j ≤ 1 (18)

−
bc j

bx j

≤ x≤
1−bc j

bx j

. (19)

If bx j is negative, then the inequalities are reversed. For each λ j we
will get a range of valid x. The intersection of these ranges over all
j gives the valid range for x. If this range is non-empty then we can
substitute this range of x into Equation 12 to find the corresponding
range for y and hence a line of the intersection of the slice with the
d-dimensional simplex.

3.2. Algorithm details

Our implementation is based on intersecting a 2D plane with a
(d− 1)-dimensional simplex as opposed to a d-dimensional sim-
plex. In that case, our matrix in Equation 3 is a non-square matrix
and can not easily be inverted. Hence, we add an additional point,
the focus point, to create a d-dimensional simplex. Before we draw
any slices, however, we remove all those intersections that include
the sides created by the extra point.

The outer loop of the algorithm, shown in Algorithm 1, loops
over each combination of simplex, pair of slicing dimensions, and
focus points. We select these focus points by sampling. When sam-
pling in a multi-dimensional space it is important to be economical
with sample points. These methods are based on ensuring that the
distance between sample points is as even as possible [SWN03].
There are several ready-made solutions to creating a number of uni-
formly distributed multi-dimensional samples. In our implementa-
tion we used the Sobol sequence but other methods such as Latin
hypercube sampling [MBC79] are available. Each step of the loop
is independent and thus our algorithm can be easily parallelized.

We show the algorithm for the 2D slice/simplex intersection
in Algorithm 2. This algorithm implements the mathematics from
Section 3.1. The function SOLVE checks for the plane intersection
using a linear constraint solver. In the case that there is no intersec-
tion, it will return a null range. Otherwise, it will return a pair of
points representing the line segment. The POINT-IN-SEG func-
tion checks if the given point intersects the given line segment. We

Algorithm 1 Finding slices for all simplices.

for d1 = 1 to d−1 do
for d2 = d1 to d do . all pairs of dimensions

slices← [∅,∅,∅,∅] . 4 element array for min/max x
and y

for p ∈ FP do . all focus points
for s ∈ S do . all simplices

ranges← SLICE(p, s, d1, d2)
if ranges 6= ∅ then . add new row if we found an

intersection
slices← ADD_ROW(slices, ranges)

end if
end for

end for
PLOT(slices,d1,d2) . plot slices to proper subplot

end for
end for

can then draw these intervals as line segments on the screen (Fig-
ure 2c).

Algorithm 2 Slicing a single simplex

function SLICE(p, s, d1, d2)
T ← [s p 1]t . add focus point to simplex
if IS_SINGLULAR(T ) then

return GET_COLUMNS(T , d1, d2) . the simplex lies on
the plane

end if
p′← p
p′[d1,d2]← [x,y]
axx+ayy+ac← T−1 p′ . convert to barycentric

coordinates
lb← [−∞,∞] . create 2 points for the intersection
ub← [−∞,∞]
for i← 1 to d +1 do . each face of the simplex

(lb′,ub′)← SOLVE(axi x+ ayi y+ aci = 0,s.t.∀ j 6= i,0 ≤
ax j x+ay j y+ac j ≤ 1)

if lb′ 6= ∅ ∧ ub′ 6= ∅ ∧ ¬POINT-IN-SEG(p,(lb′,ub′))
then

(lb,ub)← (lb,ub)∩ (lb′,ub′) . 2D range
intersection

end if
end for
if lb =∅∨ub =∅ then

return ∅
else

return (lb,ub)
end if

end function

4. Interface

We developed an interactive viewer to browse and select slices of
interest in order to build up an understanding of the object we are
viewing. Slicing is an inherently interactive operation. Depending

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.



T. Torsney-Weir, T. Möller, M. Sedlmair, & R. M. Kirby / Hypersliceplorer

on the focus point we will see different aspects of the data. In
a multi-dimensional space, it is easy to get lost navigating freely
without guidance. However, if we show all slices at once the user
cannot closely examine one particular aspect of the data. Thus, our
interactive interface, shown in Figure 1, has two modes: a global
view and a local view. The global view is designed to give an
overview of the general shape. By selecting a slice and correspond-
ing focus point of interest, the user can then switch to the local view
and gradually add additional slices at new focus points.

4.1. Global view

The global view (Figure 1a) gives an overview of the possible cross
sections of the object. By default we show slices for the first 50
focus points sampled using a Sobol sequence [Sob67]. We experi-
mentally found that 50 focus points was sufficient for an overview.
This has the advantage of generating equally spaced samples as
well as the incremental addition of sample points does not require
previous samples to be thrown away. Since we are slicing hulls of
simplical meshes, each slice is a contiguous line plot in the view.
We use alpha blending in order to show the distribution of hull
shapes in each pair of dimensions. From this the user can get in-
sight into whether or not a shape has a regular structure.

With more than one slice one cannot easily tell how the slices
correspond between panels in the layout. We address this by using
linked highlighting between the plots. If the user mouses over a
slice in one plot the slices corresponding to that focus point are
highlighted in the other plots. In addition, the user can click on a
particular slice of interest to focus in on that particular slice. This
brings the user into the local view mode.

4.2. Local view

The local view mode of the interface allows the user to narrow in on
a particular focus point and then explore how other slices of the fig-
ure relate to that one. We precompute the slices so that the view can
be interactive. The focus point is represented as a dot projected on
each sub plot. The user can change the focus point by dragging the
focus point dot to a new location. After the user releases the mouse
the system will snap to the nearest precomputed focus point. Thus,
the user can change one or two focus point values per dragging in-
teraction. The user can also add additional focus points by clicking
the “+ FP” button in the upper left of the interface. Each focus point
is automatically colored based on a discrete color map from Col-
orBrewer [HB03]. The slices themselves and the focus points are
linked through a similar color. For example, one mode of explo-
ration this view supports is examining the faces orthogonal to one
of the slices. The user can return to the global view by clicking the
“deselect” button on the top left of the interface.

5. Case studies

Three areas where our method can be used is in the visual analysis
of multi-dimensional polytopes, differences between spaces, and
multi-objective optimization. We examine each of these in turn in
the sections below.

(a) Schlegel diagram: 16-
cell (4D) generated using
Stella4D [Web17]

(b) Hypersliceplorer: 16-cell
(4D)

(c) Hypersliceplorer: Octahedron
(3D)

(d) Hypersliceplorer: 5-orthoplex
(5D)

Figure 3: We show the 16-cell, the 4-dimensional regular ortho-
plex (4D version of an octahedron) as (a) a Schlegel diagram and
(b) the Hypersliceplorer view. The Hypersliceplorer view shows the
outside shape of the figure and the repeating structure. We can also
see the repeating structure in the 3D (c) and 5D (d) views.

(a) 3D (b) 4D (c) 5D

Figure 4: 3-, 4-, and 5-dimensional hypercubes. We can see the
regular structure in the cubes. The cross sections are all the same
size since the cube is oriented to the axes. The cross lines in the
plots are due to the simplical mesh.

(a) 3D (b) 4D (c) 5D

Figure 5: 3-, 4-, and 5-dimensional hyperspheres. We can see the
concentric rings from slicing the sphere at different points. The ir-
regularity of the slices is due to sampling.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.



T. Torsney-Weir, T. Möller, M. Sedlmair, & R. M. Kirby / Hypersliceplorer

5.1. Polytopes

Polytopes are the generalization of polygons and polyhedra to any
number of dimensions. Two key questions where visualization can
help are understanding under what transformations is the polytope
invariant and how many faces does it have [Zie01]? Naturally, in
more than three dimensions we have no way of viewing these ob-
jects directly.

Common ways to view polytopes are either through projections,
such as the Schlegel diagram [Som29], or as a graph representa-
tion, like the Hasse diagram [BT88]. Projection methods show a
particular face of the polytope in detail. For example, the Schlegel
diagram picks a particular face of a 4D polytope and projects the
remaining faces inside it. On the other hand, it does not accurately
show distances or angles. Thus, these don’t necessarily show the
symmetries in the polytope. These must be distorted to show a
multi-dimensional object in two or three dimensions. Network di-
agrams allow us to count the faces of a polytope by counting the
links in the graph. They can also show symmetries in the geome-
try. However, they do not necessarily show these symmetries unless
care is taken during layout. The layout issue makes these difficult
to use for exploratory analysis since one must first understand the
symmetry and structure of the object before visualizing it. Regular
polytopes have a well-studied structure and symmetries so we use
these as verification examples.

We can also view the polytopes as a set of two-dimensional slices
in Hypersliceplorer. The global view gives an overview of the pos-
sible 2D slices of the polytope from which we can better understand
what types of symmetries are possible. For example, in Figure 3 we
show a 16-cell which is the four-dimensional version of an octa-
hedron in both Hypersliceplorer (Figure 3b) and as a Schlegel dia-
gram (Figure 3a) using the Stella4D software [Web17]. In this case,
each face of the 16-cell is a simplex. From the Schlegel diagram it
is difficult to see that the 16-cell has rotational symmetry every 90
degrees. However, in Hypersliceplorer this property is clear from
looking at the cross sections. In addition, we can see the simpli-
cal faces from the horizontal and vertical lines in the view. These
result from intersections of the 2D slice with a face of the 16-cell
directly. We can use the local view of Hypersliceplorer to focus on
a particular face and examine the slices intersecting that face.

Further, Hypersliceplorer allows us to visualize 3D or 5D
analogs of the 16-cell (the octahedron in 3D, Figure 3c, as well
as the 5-orthoplex in 5D, Figure 3d). The Schlegel diagrams cannot
be scaled to higher dimensions.

We can also look at other regular polytopes in the same fashion.
In Figure 4 we show a hypercube in 3-, 4-, and 5-dimensions. From
these plots we can clearly see the generalization of the square, to the
cube, to higher dimensions. One of the advantages of our method
is that we do not need to choose a face to project into. For example,
with a discretized hypersphere, there are many faces. We can see in
Figure 5 the regular cross sections of a sphere as well. The Hyper-
sliceplorer visualization is better suited for exploring and identify-
ing symmetry groups while the Hasse and Schlegel diagrams are
better for quickly identifying the number of faces.

5.2. Positive and Bernstein polynomials

In physics, it is sometimes necessary to fit data with a function that
is positive everywhere on its domain. An example of such data is
density; it is a positive quantity and any regression on it should
be positive. In numerical methods, we often use polynomials as a
means of representation, and hence we want to find polynomials
that are positive on some compact domain, without loss of general-
ity say, [0,1]. It is very difficult to control a polynomial such that it
is positive during the fitting process using a linear constraint solver.
One method used by physicists is to restrict the fitting process to
Bernstein polynomials [Phi03]. By only using positive Bernstein
coefficients, Bernstein polynomials are restricted to be strictly pos-
itive. Bernstein polynomials have been studied extensively for over
50 years. It is well-known how these polynomials can be used to
approximate continuous functions, for example, in the creation of
Bezier curves [Far96]. However, physicists do not know how “rep-
resentative” are the positive Bernstein expansions of the space of
positive polynomials. In other words, can every positive polyno-
mial be represented by a corresponding Bernstein polynomial? We
can select a large number of polynomials and visually compare the
spaces in order to understand the differences.

A Bernstein polynomial of degree n is a linear combination of
n+1 basis polynomials.

Bn(x) =
n

∑
i=0

βibi,n(x)

where βi is a scalar factor and bi,n is a Bernstein basis polynomial.
These are defined as,

bi,n(x) =

(
n
i

)
xi(1− x)n−i.

Each of the Bernstein basis polynomials is positive in the range
[0,1], therefore if we constrain all βi ≥ 0 then the resulting polyno-
mial will also be positive in that range.

The space of a polynomial of degree n is the range of each of
its coefficients. For example, a 2nd degree polynomial, a0 + a1x+
a2x2, has three coefficients: a0, a1, and a2. Since we are only con-
cerned with positivity, any polynomials that differ from each other
by a positive factor are equivalent. For example, the polynomials
0.2x2 +0.1x+2 and 0.1x2 +0.05x+1 will be positive in the same
range. Thus, we need to examine only the polynomials with coeffi-
cients between−1 and 1. We can constrain the sampling by setting
one of the coefficients to 1 or −1 and then sampling the rest be-
tween −1 and 1. We used 10,000 sample points to get a represen-
tative sample. Since one coefficient is constrained in turn to either
−1 and 1 we have 2n possible polynomials where the remaining n
coefficients range between [−1,1]. We then test to see if each poly-
nomial is positive in the domain [0,1]. We also determine if the
equivalent Bernstein polynomial has all βi ≥ 0. We can compute
the βi factors because each coefficient a j is a linear combination of
Bernstein coefficients. For our two-dimensional example: a0 = β0,
a1 = 2(β0 − β1), and a2 = β0 − 2β1 + β2. Then, for each poly-
nomial it is either non-positive, or positive without positive Bern-
stein coefficients, or positive with positive Bernstein coefficients.
We perform this process to examine polynomials of degree 3, 4,
and 5. By constraining a coefficient to ±1 we produce a face of

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.



T. Torsney-Weir, T. Möller, M. Sedlmair, & R. M. Kirby / Hypersliceplorer

(a) degree 3 polynomials (b) degree 4 polynomials (c) degree 5 polynomials

Figure 6: Examining differences in the space of general positive polynomials and Bernstein polynomials with positive Bernstein coefficients.
In this example the x2 term is set to 1. We can see that across degrees of polynomials, the space differences in the a0 and a1 coefficients is
relatively consistent. The single slice in c for the a3, a4 plot is because the focus point sampling rarely hit a particular slice. The solution is
to add additional focus point samples.

the space of polynomials. These faces are convex so we generate
a convex hull of these points and examine them using Hyperslice-
plorer. We are interested in seeing the differences and thus it makes
sense to show the difference views explicitly [GAW∗11]. The dif-
fernce view shows the convex hull around the set of all coefficients
that produce a positive polynomial but cannot be represented as a
Bernstein polynomial with positive coefficients.

While there is a difference between the set of all positive poly-
nomials and the set of all Bernstein polynomials with positive coef-
ficients, currently, that difference is assumed to be small. However,
our Hypersliceplorer visualization shows that this is not the case.
Figure 7a shows all 4th degree polynomials with the x4 term fixed
to 1. We can see that for almost an entire range of the x2 and x3 co-
efficients a1,a2 there are positive polynomials for which we cannot
find a Bernstein polynomial with positive Bernstein coefficients.
Using the local view (Figure 7b), we can see that this difference is
also large in the other dimensions. Further, other patterns become
apparent, such that the space of positive, non-Bernstein polynomi-
als requires a0 > 0 which could lead to novel hypotheses that can
be tested.

The global overview also lets us compare across degrees of poly-
nomials. In Figure 6 we show a 3rd, 4th, and 5th degree polynomial
with the coefficient of the x2 term set to 1. Here we can see that the
a0×a1 plots all look the same. In fact, the width across all the pan-
els including a0 are the same. In this case this means that for these
ranges of a0 (the constant term) we will not be able to find a Bern-
stein polynomial with positive Bernstein coefficients no matter the
degree of polynomial.

This information is novel to the domain scientists with whom
we interact. They had previously run a number of numerical experi-
ments to try and understand the volume and shape characteristics of
the difference space. However, once they saw the visualizations of
the polytope they realized that they needed a different method than
using Bernstein polynomials with positive Bernstein coefficients.

5.3. Pareto fronts

A Pareto front (also known as the efficient frontier) is the set of
all points that are optimal with respect to some trade-off between
objectives. Algorithms such as the skyline algorithm [BKS01] or
NSGA-II [DPAM02] can extract these points automatically. It is
often difficult to obtain insight into the trade-offs among multiple
objectives when searching for an optimum. Thus visual analysis of
the trade-offs is necessary. With two objectives, this can be visu-
alized using a scatterplot or line plot of the two objectives against
each other.

In more than two dimensions this is no longer a curve, it is a hull.
The common technique is to use a scatterplot matrix with discretely
sampled points. This, however, hides the trade-offs between points
in the other dimensions. Instead, we can examine the hull of the
Pareto front by slicing using Hypersliceplorer.

The smoothest possible Pareto front is a sphere in the positive
orthant of the objective space. In order to illustrate our technique
we show a 3D and 5D positive orthant section of a sphere in Fig-
ure 8. Each arc is the trade-off holding all other parameters fixed.
In the multi-dimensional view, setting the focus point is analogous
to fixing all but two parameters. Thus, in one plot one can directly
see the trade-off between two of the objective measures given that
all other objectives are held in place. However, the user can also
see at a glance what are the possible trade-off curves for a pair of
objectives. This helps the user to understand what are the costs and
benefits of changing one of the remaining objectives.

We also show a popular multi-objective test problem,
DLTZ1 [DTLZ02] with 5 objectives. We find the Pareto points
using the NSGA-II [DPAM02] algorithm. We used the same set-
tings for the algorithm as in Deb et al. [DTLZ02]. In real-world
situations, the Pareto front is not convex. We can use, for exam-
ple, alpha shapes [EKS83] to generate a non-convex hull of a set
of points. For this example, we use the convex hull of the points
generated using the quickhull [BDH96] algorithm since the Pareto

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.



T. Torsney-Weir, T. Möller, M. Sedlmair, & R. M. Kirby / Hypersliceplorer

(a) global view (b) local view

Figure 7: The difference between possible coefficient values for general positive polynomials, a0 +a1x+a2x2 +a3x3 + x4, and polynomials
that can be represented with positive Bernstein coefficients. From the global view (a) we can see that the area of the slices is quite large. This
means that the difference between spaces is quite large, especially with respect to the higher-order coefficients. We can focus our view on a
few particular slices in the local view (b) where we can see the orthogonal faces to the slice in the a2×a3 plot.

(a) 3D (b) 5D

Figure 8: Hypersliceplorer views of spherical Pareto fronts in 3D (a) and 5D (b). The smoothest possible Pareto front is the positive orthant
of a hypersphere. From the Hypersliceplorer view we can clearly see the concentric arcs. Each arc allows the user to compare the trade-offs
between two objectives given that all other objectives are fixed. Changing from one arc to another means changing other objective settings.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.



T. Torsney-Weir, T. Möller, M. Sedlmair, & R. M. Kirby / Hypersliceplorer

(a) 3-objective (b) 5-objective

Figure 9: Visualization of the 3-objective (a) and 5-objective (b) DLTZ1 problems [DTLZ02] in Hypersliceplorer. The DLTZ1 Pareto front
is a hyperplane that cuts diagonally across the objective dimensions. In the 3-objective case we can see the slices of the hyperplane. The
NSGA-II [DPAM02] algorithm tends to push points towards one objective. This becomes much more pronounced in higher dimensions (b)
where the Pareto front is squared off.

front of DLTZ1 is convex. The Pareto front is a hyperplane that
cuts diagonally across the objective dimensions. In the 3-objective
(Figure 9a) we can see how the NSGA-II algorithm is getting close
to fitting the points to the hyperplane. It does not find it exactly
though which is why the lines appear bent in the figure. In addi-
tion, NSGA-II pushes some points out to the maximum value for
each objective. This creates the horizontal and vertical lines at the
edges of the plots. This becomes much more pronounced in higher
dimensions (Figure 9b) where the Pareto front appears as a corner
shape.

6. Algorithm performance

In order to test the running time of our algorithm we ran a number
of experiments to understand the timing. We tested regular poly-
topes in 3, 4, and 5 dimensions as well as hyperspheres. We also
tested the four-dimensional version of the Klein bottle because it
has a large number of simplices in its mesh. For each test, we ran
the slicing algorithm for all pairs of dimensions and for 1,000 focus
points. We recorded the total wall clock time as well as the number
of simplices given by the quickhull algorithm. The testing machine
has an 8-core 3.2GHz Intel i7-6900K with 64GB of RAM.

Our results are shown in Table 1. The total number of slicing
checks (Algorithm 2) is the number of simplices, times the number
of pairs of dimensions (

(d
2
)
), times the total number of focus points

(1,000). We divide the total time by this number to show the time
per simplex.

As we can see, the times are roughly constant between the num-

Cube

Octahedron

Sphere

Tesseract

16−cell

3−sphere

5d−cube

5d−ortho

4−sphere
Klein bottle

1ms/s
im

plex

1e+03

1e+05

1e+03 1e+05

simplices*plots

to
ta

l t
im

e 
(s

ec
)

dimensions

3

4

5

Figure 10: Chart showing the number of slicing operations (sim-
plices × number of plots) versus timing results from running our
algorithm on a number of different datasets. The axes are on a log-
log scale. The points are all clustered around the “1 ms/simplex”
line showing that the running time is roughly one millisecond per
slicing operation.

ber of dimensions and simplices (see Figure 10). The reason the
Klein bottle is faster is because many slices do not hit any simplices
and the algorithm will exit early once this is detected. Right now,
this algorithm is not optimized. For example, it would be greatly
beneficial to pre-compute a spatial data structure so that only slices

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.



T. Torsney-Weir, T. Möller, M. Sedlmair, & R. M. Kirby / Hypersliceplorer

Table 1: Results of timing the Hypersliceplorer algorithm on a number of different datasets. We ran the algorithm, setting the number of
slices to 1,000. We record the number of simplices created by the quickhull algorithm [BDH96], the total time for all slices, and the time per
simplex. The time per simplex is the total time divided by the number of plots (i.e. dimension pairs, the number of simplices, and the number
of focus points. The time per simplex is roughly constant.

Dataset Dims Simplices Total time (sec) Time/simplex (ms)

Cube 3 12 48 1.345
Octahedron 3 8 38 1.624
Sphere 3 596 1,243 0.696
Tesseract 4 58 289 0.833
16-cell 4 16 108 1.135
3-sphere 4 2,567 14,283 0.927
5d-cube 5 316 2,378 0.753
5d-ortho 5 32 258 0.808
4-sphere 5 12,886 130,453 1.012
Klein bottle 4 36,258 129,158 0.594

that are likely to intersect simplices are evaluated. In our case, the
algorithm must check every simplex against every focus point for
every pair of dimensions. This is a lot of extra work for figures such
as the Klein bottle with many simplexes.

7. Conclusion and future work

In this paper we have presented Hypersliceplorer, an algorithm to
compute 2D slices of multi-dimensional shapes defined as a sim-
plical mesh. We also discussed an interactive interface we devel-
oped to view the slices. We evaluated our method in two ways:
through three target use case scenarios and with measuring the run-
ning time.

In the future we will improve the speed of our algorithm by in-
tegrating a spatial data structure such as a k-d tree or bounding box
method. The current algorithm needs to try and find an intersec-
tion with every simplex in the figure. The data structure will help
to avoid these extra checks. This should improve the speed of our
algorithm by avoiding unnecessary intersection tests. Our aim is to
make the algorithm run in interactive time.

Currently, we have only tested our method with convex hulls
of shapes. There is nothing limiting our algorithm to non-convex
hulls. As long as the hull of the multi-dimensional object can be
defined as a set of simplices then our algorithm can compute the
slice. We plan to also examine the visualization possibilities with
non-convex hulls and with pre-generated hulls. Perhaps our method
will lead to new insights in mesh generation algorithms.

We will also work closely with target user groups to customize
the interface for their specific goals. For example, geometry users
may require more integration with the Schlegel diagram while
multi-objective optimization users may need better support for lo-
cal neighborhoods.

Acknowledgements

We wish to thank the members of the VDA lab for their helpful
feedback and support with this project. The authors wish to espe-
cially thank Johanna Schlereth for her help in producing some of
the diagrams. R. M. Kirby was supported in part by DMS-1521748
and W911NF-15-1-0222.

References

[BDH96] BARBER C. B., DOBKIN D. P., HUHDANPAA H.: The quick-
hull algorithm for convex hulls. ACM Transactions on Mathemati-
cal Software 22, 4 (Dec. 1996), 469–483. doi:10.1145/235815.
235821. 3, 8, 11

[BKS01] BORZSONY S., KOSSMANN D., STOCKER K.: The skyline op-
erator. In Proceedings of the 17th International Conference on Data En-
gineering (2001), IEEE Computuer Society. doi:10.1109/icde.
2001.914855. 3, 8

[BSM∗13] BERGNER S., SEDLMAIR M., MÖLLER T., ABDOLYOUSEFI
S. N., SAAD A.: ParaGlide: Interactive parameter space partitioning for
computer simulations. IEEE Transactions on Visualization and Com-
puter Graphics 19, 9 (Sept. 2013), 1499–1512. doi:10.1109/tvcg.
2013.61. 2

[BT88] BATTISTA G. D., TAMASSIA R.: Algorithms for plane represen-
tations of acyclic digraphs. Theoretical Computer Science 61, 2 (Nov.
1988), 175–198. doi:10.1016/0304-3975(88)90123-5. 3, 7

[BWC00] BHANIRAMKA P., WENGER R., CRAWFIS R.: Isosurfacing
in higher dimensions. In Proceedings of the conference on Visualization
’00 (2000), IEEE Computer Society, pp. 267–273. doi:10.1109/
VISUAL.2000.885704. 3

[CD14] CARR H., DUKE D.: Joint contour nets. IEEE Transactions on
Visualization and Computer Graphics 20, 8 (Aug. 2014), 1100–1113.
doi:10.1109/tvcg.2013.269. 3

[CLB11] CORREA C. D., LINDSTROM P., BREMER P.-T.: Topologi-
cal spines: A structure-preserving visual representation of scalar fields.
IEEE Transactions on Visualization and Computer Graphics 17, 6 (Aug.
2011), 1842–1851. doi:10.1109/TVCG.2011.244. 2

[CSA03] CARR H., SNOEYINK J., AXEN U.: Computing contour trees
in all dimensions. Computational Geometry 24, 2 (Feb. 2003), 75–94.
doi:10.1016/S0925-7721(02)00093-7. 2

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

http://dx.doi.org/10.1145/235815.235821
http://dx.doi.org/10.1145/235815.235821
http://dx.doi.org/10.1109/icde.2001.914855
http://dx.doi.org/10.1109/icde.2001.914855
http://dx.doi.org/10.1109/tvcg.2013.61
http://dx.doi.org/10.1109/tvcg.2013.61
http://dx.doi.org/10.1016/0304-3975(88)90123-5
http://dx.doi.org/10.1109/VISUAL.2000.885704
http://dx.doi.org/10.1109/VISUAL.2000.885704
http://dx.doi.org/10.1109/tvcg.2013.269
http://dx.doi.org/10.1109/TVCG.2011.244
http://dx.doi.org/10.1016/S0925-7721(02)00093-7


T. Torsney-Weir, T. Möller, M. Sedlmair, & R. M. Kirby / Hypersliceplorer

[Dey06] DEY T. K.: Curve and Surface Reconstruction: Algorithms with
Mathematical Analysis. Cambridge University Press, New York, NY,
USA, 2006. doi:10.1017/CBO9780511546860. 3

[DPAM02] DEB K., PRATAP A., AGARWAL S., MEYARIVAN T.: A fast
and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transac-
tions on Evolutionary Computation 6, 2 (Apr. 2002), 182–197. doi:
10.1109/4235.996017. 3, 8, 10

[DTLZ02] DEB K., THIELE L., LAUMANNS M., ZITZLER E.: Scal-
able multi-objective optimization test problems. In Proceedings of the
2002 Congress on Evolutionary Computation (May 2002), vol. 1, IEEE,
pp. 825–830. doi:10.1109/CEC.2002.1007032. 8, 10

[EKS83] EDELSBRUNNER H., KIRKPATRICK D. G., SEIDEL R.: On
the shape of a set of points in the plane. IEEE Transactions on Informa-
tion Theory 29, 4 (July 1983), 551–559. doi:10.1109/TIT.1983.
1056714. 3, 8

[Far96] FARIN G. E.: Curves and Surfaces for Computer-Aided Geomet-
ric Design: A Practical Code, 4th ed. Academic Press, Inc., Orlando,
FL, USA, 1996. 2, 7

[GAW∗11] GLEICHER M., ALBERS D., WALKER R., JUSUFI I.,
HANSEN C. D., ROBERTS J. C.: Visual comparison for information
visualization. Information Visualization 10, 4 (Sept. 2011), 289–309.
URL: http://dx.doi.org/10.1177/1473871611416549,
doi:10.1177/1473871611416549. 8

[GBPW10] GERBER S., BREMER P.-T., PASCUCCI V., WHITAKER R.:
Visual exploration of high dimensional scalar functions. IEEE Transac-
tions on Visualization and Computer Graphics 16, 6 (Nov./Dec. 2010),
1271–1280. doi:10.1109/TVCG.2010.213. 2

[GLG∗13] GRATZL S., LEX A., GEHLENBORG N., PFISTER H.,
STREIT M.: LineUp: Visual analysis of multi-attribute rankings. IEEE
Transactions on Visualization and Computer Graphics 19, 12 (Dec.
2013), 2277–2286. doi:10.1109/TVCG.2013.173. 3

[Han94] HANSON A. J.: Geometry for n-dimensional graphics. Aca-
demic Press Professional, Inc., San Diego, CA, USA, 1994, ch. Geom-
etry for N-dimensional Graphics, pp. 149–170. URL: http://dl.
acm.org/citation.cfm?id=180895.180909. 4

[HB03] HARROWER M. A., BREWER C. A.: ColorBrewer.org: An on-
line tool for selecting color schemes for maps. The Cartographic Journal
40, 1 (June 2003), 27–37. doi:10.1179/000870403235002042.
6

[HC93] HANSON A. J., CROSS R. A.: Interactive visualization meth-
ods for four dimensions. In IEEE Conference on Visualization, 1993
(Oct. 1993), IEEE, pp. 196–203. doi:10.1109/VISUAL.1993.
398869. 3

[KDMW16] KIEFFER S., DWYER T., MARRIOTT K., WYBROW M.:
HOLA: Human-like orthogonal network layout. IEEE Transactions
on Visualization and Computer Graphics 22, 1 (Jan. 2016), 349–358.
doi:10.1109/TVCG.2015.2467451. 3

[KLMA10] KARPENKO O., LI W., MITRA N. J., AGRAWALA M.: Ex-
ploded view diagrams of mathematical surfaces. IEEE Transactions on
Visualization and Computer Graphics 16, 6 (Nov. 2010), 1311–1318.
doi:10.1109/TVCG.2010.151. 3

[LBK04] LOTOV A. V., BUSHENKOV V. A., KAMENEV G. K.: Interac-
tive Decision Maps: Approximation and Visualization of Pareto Frontier.
Springer US, 2004. doi:10.1007/978-1-4419-8851-5. 2

[MBC79] MCKAY M. D., BECKMAN R. J., CONOVER W. J.: A com-
parison of three methods for selecting values of input variables in the
analysis of output from a computer code. Technometrics 21, 2 (May
1979), 239–245. doi:10.1080/00401706.1979.10489755. 5

[Mun09] MUNZNER T.: A nested model for visualization design and
validation. IEEE Transactions on Visualization and Computer Graphics
15, 6 (Nov. 2009), 921–928. doi:10.1109/TVCG.2009.111. 2

[PBK10] PIRINGER H., BERGER W., KRASSER J.: HyperMoVal: In-
teractive visual validation of regression models for real-time simula-
tion. Computer Graphics Forum 29, 3 (Aug. 2010), 983–992. doi:
10.1111/j.1467-8659.2009.01684.x. 3

[Phi03] PHILLIPS G. M.: Interpolation and Approximation by Poly-
nomials. CMS Books in Mathematics. Springer, New York, NY,
2003, ch. Bernstein polynomials, pp. 247–290. doi:10.1007/
0-387-21682-0_7. 7

[PSTW∗16] PAJER S., STREIT M., TORSNEY-WEIR T., SPECHTEN-
HAUSER F., MÖLLER T., PIRINGER H.: WeightLifter: Visual weight
space exploration for multi-criteria decision making. IEEE Transactions
on Visualization and Computer Graphics 23, 1 (Jan. 2016), 611–620.
doi:10.1109/TVCG.2016.2598589. 3

[SHB∗14] SEDLMAIR M., HEINZL C., BRUCKNER S., PIRINGER H.,
MÖLLER T.: Visual parameter space analysis: A conceptual framework.
IEEE Transactions on Visualization and Computer Graphics 20, 12
(Dec. 2014), 2161–2170. doi:10.1109/tvcg.2014.2346321. 2

[Shn96] SHNEIDERMAN B.: The eyes have it: A task by data type
taxonomy for information visualizations. In Proceedings of the 1996
IEEE Symposium on Visual Languages (1996), pp. 336–343. doi:
10.1109/VL.1996.545307. 2

[Sob67] SOBOL I. M.: On the distribution of points in a cube and the
approximate evaluation of integrals. USSR Computational Mathemat-
ics and Mathematical Physics 7, 4 (1967), 86–112. doi:10.1016/
0041-5553(67)90144-9. 6

[Som29] SOMMERVILLE D.: Introduction to the Geometry of N Dimen-
sions. Dover Publications, 1929. 3, 7

[SWN03] SANTNER T. J., WILLIAMS B. J., NOTZ W. I.: The
Design and Analysis of Computer Experiments. Springer Series
in Statistics. New York, NY, USA, July 2003. doi:10.1007/
978-1-4757-3799-8. 5

[TM04] TORY M., MÖLLER T.: Human factors in visualization research.
IEEE Transactions on Visualization and Computer Graphics 10, 1 (Jan.
2004), 72–84. doi:10.1109/TVCG.2004.1260759. 2

[TS98] TWEEDIE L., SPENCE R.: The Prosection Matrix: A tool to sup-
port the interactive exploration of statistical models and data. Computa-
tional Statistics 13, 1 (Mar. 1998), 65–76. 2

[TWSM17] TORSNEY-WEIR T., SEDLMAIR M., MÖLLER T.: Slice-
plorer: 1D slices for multi-dimensional continuous functions. Computer
Graphics Forum 36, 3 (June 2017), 167–177. doi:10.1111/cgf.
13177. 2, 3

[vWvL93] VAN WIJK J. J., VAN LIERE R.: HyperSlice: Visualization
of scalar functions of many variables. In Proceedings of the 4th Confer-
ence on Visualization (Oct. 1993), IEEE Computer Society, pp. 119–125.
doi:10.1109/VISUAL.1993.398859. 1, 2, 3

[Web17] WEBB R.: Stella4D 5.4, 2017. URL: http://www.
software3d.com/Stella.php. 6, 7

[Wen13] WENGER R.: Isosurfaces: Geometry, topology, and algorithms.
A.K. Peters/CRC Press, 2013. doi:10.1201/b15025. 3

[Zie01] ZIEGLER G. M.: Questions about polytopes. In Mathemat-
ics Unlimited — 2001 and Beyond. Springer Berlin Heidelberg, 2001,
pp. 1195–1211. 7

[Zie12] ZIEGLER G. M.: Lectures on polytopes, vol. 152.
Springer Science & Business Media, 2012. doi:10.1007/
978-1-4613-8431-1. 2

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

http://dx.doi.org/10.1017/CBO9780511546860
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1109/CEC.2002.1007032
http://dx.doi.org/10.1109/TIT.1983.1056714
http://dx.doi.org/10.1109/TIT.1983.1056714
http://dx.doi.org/10.1177/1473871611416549
http://dx.doi.org/10.1177/1473871611416549
http://dx.doi.org/10.1109/TVCG.2010.213
http://dx.doi.org/10.1109/TVCG.2013.173
http://dl.acm.org/citation.cfm?id=180895.180909
http://dl.acm.org/citation.cfm?id=180895.180909
http://dx.doi.org/10.1179/000870403235002042
http://dx.doi.org/10.1109/VISUAL.1993.398869
http://dx.doi.org/10.1109/VISUAL.1993.398869
http://dx.doi.org/10.1109/TVCG.2015.2467451
http://dx.doi.org/10.1109/TVCG.2010.151
http://dx.doi.org/10.1007/978-1-4419-8851-5
http://dx.doi.org/10.1080/00401706.1979.10489755
http://dx.doi.org/10.1109/TVCG.2009.111
http://dx.doi.org/10.1111/j.1467-8659.2009.01684.x
http://dx.doi.org/10.1111/j.1467-8659.2009.01684.x
http://dx.doi.org/10.1007/0-387-21682-0_7
http://dx.doi.org/10.1007/0-387-21682-0_7
http://dx.doi.org/10.1109/TVCG.2016.2598589
http://dx.doi.org/10.1109/tvcg.2014.2346321
http://dx.doi.org/10.1109/VL.1996.545307
http://dx.doi.org/10.1109/VL.1996.545307
http://dx.doi.org/10.1016/0041-5553(67)90144-9
http://dx.doi.org/10.1016/0041-5553(67)90144-9
http://dx.doi.org/10.1007/978-1-4757-3799-8
http://dx.doi.org/10.1007/978-1-4757-3799-8
http://dx.doi.org/10.1109/TVCG.2004.1260759
http://dx.doi.org/10.1111/cgf.13177
http://dx.doi.org/10.1111/cgf.13177
http://dx.doi.org/10.1109/VISUAL.1993.398859
http://www.software3d.com/Stella.php
http://www.software3d.com/Stella.php
http://dx.doi.org/10.1201/b15025
http://dx.doi.org/10.1007/978-1-4613-8431-1
http://dx.doi.org/10.1007/978-1-4613-8431-1

