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Abstract. Metamodels play a pivotal role in conceptual modeling as
they manifest the abstraction level applied when creating conceptual
models. Consequently, design decisions made by the metamodel devel-
oper determine utility, capabilities, and expressiveness of the conceptual
modeling language - and eventually the created models. However, only
limited research defines and applies metrics for analyzing the structure
and capabilities of a metamodel, and eventually support the development
of new metamodels. This not only concerns general-purpose modeling
languages, but also domain-specific ones, which usually undergo shorter
update cycles. The paper at hand introduces a generic analysis frame-
work to syntactically analyze modeling languages. The framework is ap-
plied to 40 metamodels of domain-specific conceptual modeling languages
(DSML). This research establishes a foundation to support metamodel
development in the future. The contribution of this paper is threefold:
i) an analysis framework for conceptual modeling method metamodels is
proposed, ii) results from applying this framework to 40 ADOxx-based
DSML metamodels are presented, and iii) a human-based reasoning after
comparison of these results with Ecore-based metamodels is conducted.

Keywords: Domain-specific Modeling, Conceptual Modeling, Metamodel,
Analysis, OMiLAB, Metrics

1 Introduction

Conceptual modeling historically plays an important role in information and
computer science research. Numerous modeling approaches have been designed.
Some of which aim for general applicability and wide adoption - general-purpose
modeling languages like Unified Modeling Language (UML), and Business Pro-
cess Modeling and Notation (BPMN) - whereas others aim to precisely address
the specific characteristics of a certain domain - domain-specific modeling lan-
guages (DSMLs). While the focus in early years was on the specification of
general-purpose modeling languages, nowadays, researchers also emphasize the
importance of creating DSMLs (cf. [29] for recently developer DSMLs). Such
DSMLs employ an abstraction level that is aligned to the purposes of specific
stakeholders in a specific application domain.
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Metamodels are at the heart of any conceptual modeling language as they
establish the abstraction level to be applied while creating models. This abstrac-
tion level is realized by means of the available concepts of a modeling language
and the valid combinations thereof. Decisions taken by the metamodel developer
determine quality, expressiveness, and utility of the modeling language (cf. [23]).
A lot of research is focusing on the evaluation of modeling methods from a se-
mantical point of view [19, 18], from a notational point of view [37, 41, 7], or on
methodological guidance in developing modeling languages [16, 27] and meth-
ods [36, 3, 13]. By contrast, only limited research focuses on metamodels and
their design. ”The rationale behind decisions made during the language/model
specification are implicit so it is not possible to understand or justify why, for
instance, a certain element of the language was created with that specific syntax
or given that particular type.” [26] Thus, there is a research gap in analyzing
existing and providing guidance for the development of new metamodels. More-
over, to the best of our knowledge, no comparative analysis has been performed
targeting specifically DSML metamodels. The aim of this research is to derive
empirical quantitative answers towards filling the identified research gap.

The aim of this paper is to assess current DSML metamodel designs and
to derive ideas on how to improve metamodel design in the future. The con-
tribution of this paper is aligned to two research questions (RQ): RQ-1: How
are domain-specific metamodels structured?, and RQ-2: Are there differences be-
tween ADOxx-based and Eclipse-based metamodels?. The analysis reported in
this paper used 40 openly available DSML metamodels of the Open Models
Laboratory (OMiLAB) [8] that have been realized with the ADOxx metamod-
eling platform [15]. For the analysis we introduce a framework that adopts a
set of metamodeling metrics [35, 12]. The adoption of the metrics respects the
idiosyncrasy of both, conceptual modeling generally and the ADOxx platform
in particular. ”Similarly to software, metrics can be used to obtain objective,
transparent, and reproducible measurements on metamodels too” [12, p. 55]. Our
work adds to the knowledge base by focusing on metrics rather than a qualitative
evaluation of metamodels, and by focusing on ADOxx-based DSML metamodels.

This paper is structured as follows: Section 2 defines the foundations of this
work by introducing domain-specific conceptual modeling, the Open Models Lab-
oratory, as well as ADOxx and Eclipse as metamodel development platforms. An
overview of related works is presented in Section 3 before Section 4 proposes the
generic analysis framework. The results of applying this framework to 40 DSMLs
are discussed in Section 5. Eventually, the paper closes with some concluding re-
marks and implications for research and practice in Section 6.

2 Foundations

2.1 Conceptual Modeling Methods

Conceptual modeling methods facilitate the reduction of complexity by apply-
ing abstraction for a specific purpose. Such methods are composed of modeling
language, modeling procedure, and mechanisms & algorithms [28]. A vital part
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of a modeling method is the modeling language which can be further decom-
posed into syntax, i.e, the available syntactic elements, notation, and semantics,
specifying the graphical representation and the meaning of the syntactic ele-
ments, respectively. The modeling procedure describes the steps to be applied
by the modeler in order to create valid models. Mechanisms & algorithms de-
fine the model processing functionality provided by the modeling method, e.g.,
simulation, model transformation.

Based on the pragmatics and purpose, domain-specific modeling methods
can be distinguished from general-purpose ones. The former has the potential to
address domain-specificity in all aspects of a modeling method, while the latter
aims for comparability, interoperability, and standardization across domains. A
further differentiation can be drawn when considering the purpose of modeling
methods. In computer science, most modeling methods are designed for model-
driven systems engineering using the Eclipse Modeling Framework1 which rely on
Ecore metamodels (see Section 2.3). Such models often lack proper visualization
and focus instead on the capabilities of model transformation and code gener-
ation. By contrast, conceptual modeling methods are used to create abstract
representations of some part of the real world for ”human users, for purposes of
understanding and communication” [38]. In this perception, which is the one we
apply in this paper, modeling of software systems and code generation is only
one out of many possible purposes for conceptual modeling.

2.2 The Open Models Laboratory (OMiLAB)

OMiLAB, www.omilab.org is an open platform for the conceptualization of mod-
eling methods, combining open source and open communities with the goal of
fostering conceptual modeling [8]. Modeling tools realized as a project within the
OMiLAB are based on the ADOxx metamodeling platform (see Section 2.3). Rel-
evance of the OMiLAB is reflected in the high number of international contrib-
utors. 40 different DSMLs have been successfully conceptualized - addressing
diverse domains like enterprise modeling [14], enterprise architecture manage-
ment [4], design thinking [22, 5], and knowledge acquisition [9, 10]. A detailed
description with sample conceptualizations is given in [29].

2.3 Metamodeling Platform

Metamodeling platforms are used for the development of modeling tools by
raising the abstraction level to a more elaborate level that is adequate for
method engineers to realize their modeling tools. The goal is to enable also non-
programmers to realize modeling tools. This is achieved by providing a rich set of
preconfigured functionality attached to a generic meta-metamodel. The method
engineer then only needs to adapt this meta-metamodel to her domain. More-
over, engineers can benefit from existing tool developments and reuse/extend
existing implementations.

1 Eclipse Modeling Framework [online], https://www.eclipse.org/modeling/emf/, last
checked: 28.08.2018
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ADOxx ADOxx2 has been successfully used in academia and industry for over
two decades. The platform comes with a rich set of domain-independent function-
ality like model management, user management, and user interaction. What is
left to be done for metamodel developers is to [2]: 1) configure the specific meta-
model by referring its concepts to the meta-metamodel concepts of ADOxx; 2)
provide a visualization for the concepts and combine them into logical chunks,
i.e., ADOxx modeltypes; and 3) realize additional functionality like model trans-
formations, queries, or simulations on top of the modeling language.
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class

User-defined
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Fig. 1. Excerpt of the ADOxx meta-metamodel (adapted from [15])

A metamodel realized with ADOxx is composed of modeltypes which them-
selves comprise predefined and user-defined modeling classes and relation classes
(Fig. 1). Following a graph-based structure, modeling classes refer to nodes and
relation classes to edges between nodes. Attributes define the semantics of all
ADOxx classes. Functionality in ADOxx is attached to predefined abstract meta
classes of the ADOxx meta-metamodel (see Fig. 1). When defining an inher-
itance relationship between domain-specific concepts and predefined abstract
meta classes, the functionality is inherited. Consequently, the metamodel design
decisions determine the functionality of the resulting modeling tool.

Table 1 briefly introduces the most important ADOxx meta classes which
are also part of the metrics introduced in Section 4. ADOxx meta classes are
either static (prefix ’S’) or dynamic (prefix ’D’). The former employ a tree-based
structure for hierarchies between static classes while the latter employ a graph-
based structure for realizing simulations. Furthermore, ADOxx modeling classes
can be either abstract, thus not instantiable by the modeler, or concrete, thus
can be instantiated thereby creating a conceptual model.

2 ADOxx platform [online], http://www.adoxx.org, last checked: 27.08.2018



Metamodel-based Analysis of Domain-specific Conceptual Modeling Methods 5

Table 1. Excerpt of ADOxx meta classes

Meta Class Description

D Aggregation Every modeled object ’a’ having its x/y coordinates within the draw-
ing area of any container ’b’ has the relation ’a’ is-inside ’b’. More-
over, subclasses come with a self-defined ”drawing area” by means
of resizeable rectangles.

D Swimlane Also provides the ”is-inside” relation but the ”drawing area” is lim-
ited to strict horizontal or vertical rectangles.

D Event Encapsulates all nodes of a graph necessary for its simulation. Sub-
classes are e.g., D Start, D Subgraph, D Activity, D Decision.

S Group This class represents a node in a tree structure.

S Aggregation Special kinds of nodes in a tree structure. Similar semantics as for
the dynamic counterparts.S Swimlane

S Person Implements person-dependent aspects like wages and working hours.

Eclipse Modeling Framework The Eclipse Modeling Framework (EMF) pro-
vides a generic metamodel called Ecore, one can inherit from in order to develop
metamodels. A dominant focus of using EMF is the generation of code from
models in model-driven development. Thus, models are primarily perceived as
”structured data models”. EMF comes with a rich set of functionality that eases
the generation of Java classes from EMF models.

Fig. 2. Excerpt of the Ecore meta-metamodel [30]

The Ecore metamodel comes with a plethora of predefined meta classes neces-
sary for code generation purposes and general model management. Relevant for
conceptual modeling are particularly the classes visualized in Fig. 2. Ecore-based
metamodels are clustered in EPackages which are comprised of EClasses. Every
EClass itself is comprised of EStructuralFeatures like changeability or volatility.
Two special kinds of features are further distinguished: EReferences relate two
EClass instances to each other, whereas EAttributes define additional properties
of EClasses.
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3 Related Works

A lot of research can be found on the analysis of models, focusing for example
on the usage of modeling concepts by modelers [33], the evaluation of modeling
languages according to their notation [37, 32, 7], their semantics [42, 19], their
ontological completeness [18], their metamodels [34], their specification tech-
niques [6], or their applicability in certain use cases [20] and domains [24, 25].
These approaches however never investigate the syntactic metamodel backbone
of the modeling language and the way metamodels are structured. Up to now,
only limited research structurally assesses metamodels by applying metrics. The
relevant works will be reviewed in the following sub-sections.

An approach for metamodel analysis was proposed in [43]. The authors in-
troduced metrics for the syntactic analysis of metamodels. They distinguish
between metrics concerning meta-classes and metrics concerning meta-features.
The former comprises the number of (abstract) classes, and whether classes have
features. Moreover, average numbers for features, attributes, and references are
computed. The metrics for meta-features consider some of the class-level met-
rics, however, applied to the whole metamodel. The authors developed a script
that automatically analyzed over 500 Ecore metamodels.

Di Rocco [12] proposed a set of metrics to analyze metamodels. A focus of
their study was computing the correlations between different metrics toward the
identification of structural characteristics of metamodels. The metrics have been
applied to a corpus of Ecore metamodels. They identified e.g., that the adoption
of inheritance is proportional to the size of metamodels [12, p. 59].

[35] proposed a quality model for metamodels. The aim of their work was to
provide guidance for researchers and practitioners on how to design metamod-
els of ”good quality” by introducing the following quality attributes: syntactic,
semantic, pragmatic, capability, and evolvability. Their approach remains on a
theoretical level, contributing a research model that, based on questionnaires
with 15 metamodel developers, quantifies the relationships between the quality
parameters and the quality properties of a metamodel. Eventually, the authors
apply the quality model to evaluate a set of evolutionary UML metamodels.

Recently, Lopez et al. [34] proposed 30 quality properties for metamodels,
comprising the categories design, best practice, naming conventions, and met-
ric. The focus was on measuring ex post the quality of a given metamodel.
The metrics introduced by the authors establish some threshold values, e.g., for
the number of direct children (10-max as default), mostly related from object-
oriented design. The five metrics focus on coupling and inheritance aspects. The
metrics have been applied to EMF metamodels.

The reviewed approaches all analyze EMF metamodels. This is not surpris-
ing, as up until recently, no corpus of metamodels developed with any other
metamodeling platform was available. Consequently, the introduced metrics are
also designed for EMF metamodels, omitting aspects of DSMLs like relations
and modeltypes. The paper at hand extends the knowledge base by: i) estab-
lishing a framework to comprehensively analyze DSMLs; and ii) applying this
framework to 40 DSML metamodels.
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4 Metamodel Analysis Metrics

In the following, a novel analysis metrics framework is proposed targeting the
comprehensive analysis of syntactic and structural aspects of DSMLs. The frame-
work includes generic metamodel metrics found in literature and extends them in
two ways: First and foremost, generic metrics for conceptual modeling methods.
Second, some metrics specifically for ADOxx metamodels.

Table 2. Metamodel analysis metrics

Metric Description

Generic metamodel metrics

Concrete Classes The number of concrete classes.

Abstract Classes The number of abstract classes.

Attributes The number of attributes.

References Number of references between two concepts.

Inheritance Maximal inheritance level.

Conceptual Modeling-specific metamodel metrics

Modeltypes The number of modeltypes.

Relation Classes The number of relation classes.

ADOxx-specific metamodel metrics

Dynamic Modeltypes The number of dynamic modeltypes.

Static Modeltypes The number of static modeltypes.

Dynamic Classes The number of dynamic classes.

Static Classes The number of static classes.

Generic metamodel metrics Analyzing the relevant literature [35, 43, 12, 34],
a set of recurring metamodel metrics can be identified (see Table 2). For
these metrics, average values, min-max values, and statistical measures like
median, quartiles, and standard deviation can be computed.

Conceptual Modeling-specific metamodel metrics The set of metrics in
literature does not consider important characteristics of conceptual modeling
methods. Relation classes are not considered explicitly but subsumed in the
classes metric. Moreover, the decomposition of a modeling language into
modeltypes is neglected. Consequently, corresponding metrics are introduced
in Table 2, particularly addressing these shortcomings.

ADOxx-specific metamodel metrics In addition to the metrics described
previously, meta class-specific metrics are introduced in order to enable a
deeper analysis of the realization of DSMLs by means of the inheritance
relationships to the predefined ADOxx meta classes (see Table 1). These
metrics indicate the functionality utilized by a DSML and contribute toward
externalizing the implicit design decisions made by the metamodel developer.
Thus revealing the rationale behind metamodel designs (cf. [26]).
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5 Analyzing Domain-specific Metamodels

In the following, the metrics will be applied to 40 DSML metamodels. All meta-
models have been realized within the OMiLAB using the ADOxx platform. Sec-
tion 5.1 will first describe the research procedure followed while Section 5.2
reports on the key findings. Eventually, Section 5.3 compares the results with
metrics of Ecore-based metamodels.

5.1 Preparing the Analysis

The analysis was aligned to extensively used literature survey methodologies [31].
However, instead of surveying articles, we surveyed metamodels. Thus, we fol-
lowed a three-phased approach, comprising: 1. Planning, 2. Conducting, and 3.
Analyzing. In the planning phase, we defined the research objectives. We were
interested in empirically analyzing metamodels of DSMLs. Besides, we were also
interested in how our results differ from Ecore metamodels. As a consequence,
we chose the openly available metamodel repository of the OMiLAB as a source.

In the conducting phase, we queried the OMiLAB and collected 44 DSMLs
metamodels. We then applied two exclusion criteria: Ex-1: the metamodel com-
bines several completely independent modeling languages; and Ex-2: metamodels
realized on an old version of ADOxx, these methods are neither maintained nor
used anymore. In total, 4 metamodels matched the exclusion criteria, resulting
in 40 metamodels which were analyzed in the analysis phase by applying the
metamodel analysis metrics introduced in Section 4.

5.2 Results of the Analysis

The average number of modeltypes for a DSML is 7.15, whereas dynamic mod-
eltypes following a graph-based structure are dominant with 6.68 compared to
static ones following a tree-based structure with 0.48. All investigated DSMLs
have at least one dynamic modeltype whereas only 40 % have at least one static
modeltype. The maximum number of modeltypes was found for LearnPAD [11]
with 23 (22 + 1), followed by CuTiDe [5] with 21 (20 + 1), HORUS [40] with
19 (19 + 0), and MEMO4ADO [1] with 18 (18 + 0) modeltypes (dynamic +
static), respectively. Fig. 3 illustrates the dominance of dynamic modeltypes.

Heterogeneous results were derived by looking at the number of classes. The
average number of concrete classes is 49.23, with a median of 36. The maximum
number of classes was found in CuTiDe [5] with 180 whereas the minimal number
was found in the SERM [17] metamodel containing five classes. Abstract classes
are used in 57.5 % of the DSMLs, whereas the average number of abstract classes
per metamodel is only 3.45 with a median of 1. CuTiDe has the most abstract
classes (24). We found an average number of 20.2 relation classes, the median was
15. The most relation classes were found for the MEMO4ADO method [1] with
81, whereas the lowest number was found for PGA [39] and JCS [21] which both
only contain one relation class. Fig. 4 visualizes analysis results for concrete,
abstract, and relation classes of the DSML metamodels.
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Fig. 3. Dynamic and static modeltypes per metamodel

In conceptual modeling, the majority of the semantics is encoded with the
attributes of classes and relation classes. It is thus interesting to analyze, e.g.,
how many and which kind of attributes have been introduced as an indica-
tor for the complexity of the domain to be addressed by the modeling method.
Three kinds of attributes have been analyzed: regular attributes, e.g., of datatype
string, integer, or boolean; reference attributes, enabling the creation of relation-
ships between concepts within one or between different models; and record table
attributes, used to create multi-dimensional attributes, i.e., tables. Finally, the
DSMLs were analyzed for featureless classes - classes with no own attributes.

The average number of regular attributes is 11,76. The DICE method has the
highest average amount of regular attributes per class (30.5), JCS has the lowest
amount with 1.67. Reference attributes are used by 87.5 % of the DSMLs with
an average number of 45 per metamodel. By contrast, record table attributes
are used by 67.5 % of the DSMLs with an average number of only 8.75.

Fig. 4. Number of Concrete, Abstract, and Relation Classes per metamodel
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Fig. 5. Distribution of DSMLs based on classes, relations, attributes, and references

Besides the average and total numbers, it is also interesting to analyze the
distribution of metrics criteria. We focus in the following on the most interesting
ones due to limited space. Fig. 5 provides the results of grouping the DSMLs
according to the total number of classes and relations, the average number of
attributes per class, and the number of reference attributes per metamodel. It
can be derived, that the biggest group of metamodels comprises 11 to 20 classes
(25 %), less than 10 relations (40 %), and less than 10 references (35 %). More-
over, in 50 % of the metamodels, a class has in average less than 10 attributes.
The majority of metamodels have less than 40 classes, less than 20 relations, less
than 10 attributes, and less than 30 references.

Next, we investigated the inheritance relationships of the abstract and con-
crete classes. Within the analyzed metamodels, the abstract ADOxx meta class
D Aggregation was inherited from the most (in 67.5 %), followed by D Swimlane
and S Group from which was inherited from by 40 % of the metamodels.

It can be derived from the complete analysis summarized in Table 3, that
predefined abstract meta classes are more often used in the dynamic modeltypes
compared to the static ones. Moreover, abstract classes for geographical con-
tainment (e.g., aggregation and swimlane) are used more frequently compared
to simulation-specific classes like D Event which was only inherited from by 10 %
of the DSMLs. Table 3 also provides for each applied metric, the total number of
appearances in the 40 DSML metamodels and an average number, the maximal
and minimal number of appearances, and the percentage of occurrences.

5.3 Comparison with Ecore-based Metamodels

As mentioned in Section 3, related works exist that analyze Ecore-based meta-
models. An assumption underlying both, Ecore and ADOxx metamodels is that
the former primarily concentrates model-driven development and code gener-
ation whereas the latter primarily focuses on applying abstraction in order to
create conceptual models for the purpose of communication and understanding
by human beings [38]. Thus, we were interested in testing this hypothesis by
comparing those metrics that are applicable to Ecore and ADOxx metamodels.

The results of this comparison are summarized in Table 4. The metamodel
size is on average quite similar with 49.23 classes in ADOxx metamodels and 39.3
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Table 3. DSML metamodel metrics results

Metric Total
Average
per MM

Max Min
Used by

% of MM

Modeltype Metrics

Dynamic Modeltypes 267 6.68 22 1 100 %

Static Modeltypes 16 0.48 4 0 40 %

Classes and Relation Classes Metrics

Abstract Classes 138 3.45 24 0 57.5 %

Concrete Classes 1969 49.23 180 5 100 %

Dynamic Classes 1782 44.55 169 5 100 %

Static Classes 187 4.675 33 0 47.5 %

Relation Classes 808 20.2 81 1 100 %

Dynamic Relation Classes 655 16.38 81 1 100 %

Static Relation Classes 153 3.825 14 0 37.5 %

ADOxx-specific Inheritance Metrics

D Aggregation 80 2 8 0 67.5 %

D Swimlane 41 1.03 8 0 40 %

D Event 6 0.15 3 0 10 %

S Group 44 1.1 4 0 40 %

S Aggregation 15 0.38 2 0 35 %

S Swimlane 22 0.55 2 0 27.5 %

S Person 24 0.6 2 0 37.5 %

Attribute Metrics

Regular 27161 679.03 3411 14 100 %

References 1802 45.05 175 0 87.5 %

Record Tables 350 8.75 59 0 67.5 %

classes in Ecore. However, the median of ADOxx metamodels is almost 3 times
higher compared to Ecore ones (36 compared to 13 classes). Abstract classes
are almost equally used with 56 % and 57.5 %. Interestingly, Ecore metamodels
differ significantly from ADOxx metamodels when analyzing the attributes and
references. Ecore metamodels have a median of 13.5 references (ADOxx median
is only 0.75), and a median of 8 attributes (ADOxx median is 7.5). They also
differ with respect to the depth of the inheritance hierarchy. ADOxx metamodels
have an average depth of 2.65 (Ecore: 5) and a maximal depth of 6 (Ecore: 10).
The distribution of the size of the metamodels differs significantly. For ADOxx
metamodels, only one third have less than 20 classes, whereas 69 % of Ecore-
based metamodels are this small.

It seems that the ADOxx based DSML metamodels are significantly larger
compared to Ecore-based ones. This indicates, that the Ecore-based modeling
languages are mostly designed for really narrow purposes which fits to the model-
driven development domain. On the other hand, the usage of reference attributes
is way more common in Ecore-based metamodels. This fact could be explained
by the purpose of Ecore metamodels to act as structured data model. These
references could solve referential integrity in the resulting data models.
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Table 4. ADOxx vs. Ecore-based metamodel metrics

Metric
DSML

Metamodels
Ecore Meta-
models [43]

Average number of Classes 49.23 39.3

Median number of Classes 36 13

Max. number of classes 180 912

% metamodels using abstract classes 57.5 % 56 %

Median number of attributes per class 7.6 8

Median number of references per class 0.75 13.5

Average depth of inheritance 2.65 5

Max. depth of inheritance 6 10

metamodels with < 20 classes 33 % 69 %

6 Concluding Remarks and Future Work

To improve the development of new metamodels, analysis of existing ones seems
promising. The paper at hand first introduced a generic metamodel analysis
framework for analyzing conceptual modeling metamodels. This framework has
then been applied to analyze 40 domain-specific conceptual modeling languages.
Eventually, the results have been compared with Ecore-based metamodels.

It can be derived, that DSML metamodels are generally larger by nature
considering the number of classes. When looking at the attributes, similarities
and differences can be found. Ecore metamodels significantly more often use
references, whereas the usage of regular attributes is almost equal. Moreover,
Ecore metamodels have significantly deeper metamodel hierarchies.

As for any analysis, the results also have some threats to validity. All analyzed
metamodels were realized with ADOxx. Thus, a platform bias is inevitable.
Finally, it needs to be stated, that the Ecore metrics are based on a larger
corpora of publicly available metamodels. Further application of the metrics need
to verify completeness of the analysis framework and validity of the results.

From a practical perspective, the results indicate which concepts are actually
used in DSMLs. It thus gives empirical insights into previously implicit meta-
model design decisions and points metamodeling platform developers to aspects
worthwhile for improvement - and others that can be lower prioritized.

We will prepare an open source webservice implementation of the metrics
that will enable method engineers to apply the metrics to their metamodels by
themselves. Moreover, we will now focus on identifying best practices and anti-
patterns of metamodel design by investigating their quality impact. Moreover,
research is left to be done in analyzing e.g., the metamodel domain, the communi-
ties developing the metamodels, and linguistic/semantic analysis of metamodels.
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