
Characterizing the Algorithmic Complexity of
Reconfigurable Data Center Architectures

Klaus-Tycho Foerster
University of Vienna, Austria

klaus-tycho.foerster@univie.ac.at

Manya Ghobadi
Microsoft Research

mgh@microsoft.com

Stefan Schmid
University of Vienna, Austria
stefan_schmid@univie.ac.at

ABSTRACT
Emerging data center architectures are becoming
reconfigurable. While prior work has shown the practical
benefits of reconfigurable topologies, the underlying
algorithmic complexity is not yet well understood. In
particular, most reconfigurable topologies are hybrid, where
parts of the network are reconfigurable (consisting of optical
or wireless devices) while other parts are static (consisting of
electrical switches). Current proposals enforce a routing
policy that routes flows on either part “exclusively” by
labeling flows as mice or elephant. We show that such
artificial segregation in routing policy results in non-optimal
paths and argue for algorithms that route packets across the
network seamlessly. In doing so, we present the first
algorithmic study of reconfigurable network architectures
and provide optimality and hardness proofs in terms of
topology and routing policy. Our results show that classical
matching algorithms, as used in prior work, are optimal only
when the topology consists of one reconfigurable switch, and
the routing policy is enforced to be segregated. In other
words, if there is an option of routing flows seamlessly along
reconfigurable and non-reconfigurable parts of the network,
matching algorithms are not optimal. In fact, when the hybrid
network is seen from a joint perspective, optimal routing is
an NP-hard problem. We further show that optimally routing
even two flows in a network with multiple reconfigurable
switches is an NP-hard problem as well.

CCS CONCEPTS
• Networks → Network architectures; • Theory of
computation → Design and analysis of algorithms;

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ANCS ’18, July 23–24, 2018, Ithaca, NY, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to
the Association for Computing Machinery.
ACM ISBN 978-1-4503-5902-3/18/07. . . $15.00
https://doi.org/10.1145/3230718.3230722

1 INTRODUCTION
Data center networks are critical infrastructures of today’s
online services. In an era of increased engagement with
technology on many fronts—health, business, science, and
social life—the performance and reliability of data center
networks play a critical role in their design [10, 11, 19, 36].

As a result, the data center topology design problem, that
is, the problem of finding efficient data center topologies, has
received much interest over the last decade
[2, 7, 20–22, 28, 32, 38–40, 46]. Emerging technologies for
reconfigurable data center topologies introduce an additional
degree of freedom to the data center topology design
problem [6, 8, 15, 18, 23, 24, 30, 41, 49]. These works show
that reconfigurable topologies improve network performance,
making them an attractive solution for future data centers.

One of the biggest challenges of reconfigurable topologies
is demand-awareness, the problem of deciding how to
program reconfigurable links and in turn route flows across
the network. Despite much interest in the topic, there is no
algorithmic modeling of these architectures. In fact, each
prior work is tied to its own reconfiguration algorithm that is
tailored to the technology used and to inherent assumptions
about flow routing. As a result, the algorithms and the
conclusions are not portable from paper to paper (and
technology to technology).

In particular, most prior work assumes the network
consists of two segregated parts: the non-reconfigurable part
(interconnected by electrical switches) and the reconfigurable
part (interconnected by optical or wireless devices)
[8, 15, 27, 31, 45, 49]. Hence, a common way to solve the
demand-awareness problem is to route the large flows along
the reconfigurable part of the network and let the
non-reconfigurable part handle the leftovers. In other words,
the flows are partitioned into categories, e.g., elephant and
mice flows, and these form the foundation of routing policies
and topology adaptations. As we go on to show, this segrega-
ted approach results in non-optimal network configurations.
Furthermore, there is no complexity analysis for the practical
case of multiple reconfigurable switches in the topology.

In this paper, we present a first characterization of the
algorithmic complexity for emerging data center network
architectures in which the static topology is enhanced by
reconfigurable links provided by optical switches.

https://doi.org/10.1145/3230718.3230722

ANCS ’18, July 23–24, 2018, Ithaca, NY, USA K.-T. Foerster et al.

Our results are not restricted to specific communication
patterns or network topologies. In particular, we show that:

• When the reconfigurable part consists of only one switch,
and if flows are artificially restricted to be segregated
between the non-reconfigurable and reconfigurable parts of
the topology, classic matching algorithms, such as
Edmond’s (weighted) Blossom algorithm [14, 33], as used
in Helios [15] and c-Through [45], are optimal (§3.1).
However, if flows can be routed seamlessly along a mix of
non-/reconfigurable links, finding the optimal routes
becomes an NP-hard problem, even for a single optical
switch (§3.2). We believe the segregated routing might be
an artifact of circuit establishment time in prior work and
encourage the community to consider the more practical
approach of seamless routing.

• Surprisingly, NP-hardness strikes much earlier when
multiple reconfigurable devices are present in the network,
even for two flows (§4.2). A single flow can be optimally
routed (§4.1), but the computation of such a routing
requires techniques beyond simple matching algorithms.
Even though having multiple reconfigurable devices is a
necessary requirement for practical reasons, to the best of
our knowledge, no prior work has characterized this case.

• While the main focus of our work is on the important case
of optical circuit switches, some results generalize to other
reconfigurable technologies, including hybrid data center
architectures using unidirectional connections (§4.3).

We believe that our model and algorithmic study open new
perspectives on an active research area, raising topics for
future research, such as (i) the design of new heuristics for
the practical case of multiple reconfigurable switches, or,
(ii) the case of a single reconfigurable switch,when artificial
segregation is removed from the routing policy.

2 MODEL
We study the problem of computing a data center topology
to optimally serve a given communication pattern, where the
topology combines static (fixed) and reconfigurable links.
Network model. Let N = (V , E, S ,w) be a weighted hybrid
network [31, 44] connecting the nodes V (e.g.,
top-of-the-rack switches), using 1) (usually electrical) static
links E and 2) optical links implemented through
reconfigurable optical circuit switches S .

An optical switch sℓ connects a set of nodes Vℓ ⊆ V by
choosing a matching Mℓ on Vℓ , where two matched nodes
are connected by a bidirectional link; see Figure 1. For the
sake of generality, we assume each link, whether electrical or
optical, comes with a weight w (a cost, e.g., latency).
Generality. Our results also apply to non-optical switches
and links, as long as they match the theoretical properties

v1

v2

v3

v4

v5

v6

v7

v8

v9

Reconfigurable Switch

Static Topology

Figure 1: Line topology with nine nodes, where the five nodes,
v1 , v3 , v5 , v7 , v9, are connected to a reconfigurable switch (dashed): the
choice of the matching inside the switch, e.g., (v3 , v5) and (v1 , v9), de-
pends on the current communication demands. If the routing policy is
segregated, the flows of four nodes, v2 , v4 , v6 , v8, are cut off from the
reconfigurable switch. Furthermore, in a segregated setting, when v1
wants to send flows to v7 or v9, one of the flow paths will be very long.
Without segregation, reconfigurable links can be used as shortcuts.

described in the model. As such, we will only talk about
reconfigurable switches and links, simply implying any
appropriate technology that matches our model.
Traffic demands. The resulting network should serve a
certain communication pattern, represented as a |V | × |V |
communication matrix D (the demand matrix) with positive
real-valued entries. An entry (i , j) in D represents the
communication frequency from the node vi to the node vj .
Reconfiguration problem. We say that the hybrid network
N is configured by the reconfigurable switches. That is, we
will refer to the set of configured links M = ∪n

ℓ=1Mℓ , the
union of the matchings provided by the reconfigurable
switches, as the configuration of N . For ease of notation, we
will simply write N (M) to denote the concrete topology
resulting from configurationM and define distN (M)(i , j) to
be the shortest (weighted) distance from node vi to node vj
on the network N (M). Given a hybrid network N and a
communication demand D, our goal is to compute a network
N (M) which minimizes the (weighted) average path length
for serving D in N by providing a set of matchings M
accordingly. Succinctly stated:

min
∑
(i , j)∈D

D[i , j] · distN (M)(i , j) (1)

That is, we want to minimize the sum of the path lengths,
weighted by the demand (i.e., flow size) and link costs: for
each ordered pair of nodes vi ,vj ∈ V , we multiply the
(weighted) length of the shortest path distN (M)(i , j) from vi
to vj on N (M) with their entry (i , j) in D.
Different goals. We note that other objectives, such as, e.g.,
link load, congestion, or flow completion times, have been
studied in recent work [26, 47]. While all these objectives
are conceptually related, we only focus on (1) in this work.
Furthermore, reconfigurations can be performed in mili- to
microseconds [3, 18, 48], but are not instantaneous, which
poses the problem of how to gracefully transition between
two topologies. We do not study these issues, they fall into
the realm of consistent network updates [16].

Algorithmic Complexity of Reconfigurable Data Center Architectures ANCS ’18, July 23–24, 2018, Ithaca, NY, USA

3 ONE RECONFIGURABLE SWITCH
A common approach in previous work on hybrid networks is
to use Edmond’s Blossom algorithms [14, 33] for the reconfi-
gurable network components [6, 15, 45]. The underlying in-
tuition is that large flows are prioritized, and all other flows
have to share the remaining network. As both network com-
ponents are not jointly optimized, the resulting matching can
be inefficient.

3.1 Segregated Networks
We show in the following that the above idea is only optimal
in a specific routing policy [44] setting, namely when the
connections choose between either a direct reconfigurable
(single-hop) or an arbitrary static connection.

THEOREM 1. Let N = (V , E, S ,w) be a weighted hybrid
network with a single reconfigurable circuit switch. If every
route must either solely use 1) the static links E or 2) a single
hop via the reconfigurable switch, then an optimal reconfigu-
ration N (M) can be computed in polynomial time for any D.

PROOF. We start by computing the shortest path lengths for
all matrix entries in D via the static network E, multiplying
each one by its demand entry in D. For an ordered node
pair vi ,vj ∈ V , we denote the resulting value as |vi ,vj |E ,D .
Similarly, we denote the link weight between vi ,vj via an
appropriate matching in the reconfigurable switch as |vi ,vj |M ,
(−∞ if neither is connected to the reconfigurable switch).

We create a complete undirected graph G ′ = (V , E ′) with
the n nodes, where the link weights between two nodes vi
and vj are set as |vi ,vj |E ,D + |vj ,ve |E ,D − |vi ,vj |M : the net
gains of choosing a link to be included in a matching of the
reconfigurable switch, as a possible shortcut via the
reconfigurable component of the hybrid network. We then
compute a maximum weight matching on G ′ in polynomial
time [33] and choose the corresponding matching for N (M).

No matching can negatively impact the expected path
lengths; it can only improve them. Even if no matching im-
proves the expected path lengths, the communication pattern
can simply ignore these links. Hence, optimality of N (M)
follows from the fact that there are no multi-hop dependen-
cies when reconfigurable links are chosen via the maximum
weight matching in G ′; every chosen link e = (vi ,vj) only
impacts the communication pattern between vi and vj . �

3.2 Non-Segregated Networks
We saw in the last section that reconfiguring a single switch
is easy if the routing policy is artificially restricted to segre-
gation. However, as shown in Figure 1, non-segregation can
lead to network configurations with better performance.

If the network configuration can be planned well ahead of
time, it is possible to perform rigorous and long-running opti-
mizations, e.g., employing mixed integer programs. Current

work, however, relies on heuristics respectively sophisticated
mechanisms, such as quickly rotating through a set of matc-
hings [34]. For example, the authors of FireFly [6] note: “The
high-level idea behind our heuristic is to extend the traditio-
nal Blossom algorithm for computing the maximum matching
to incorporate multi-hop traffic.”

We go on to show that these heuristic choices can be
substantiated because the non-segregated problem is
NP-hard. More precisely, we prove NP-hardness, even for
sparse unit demands and unit link weights.

THEOREM 2. Let N be a weighted hybrid network with
one reconfigurable switch, connected to all n nodes. Optimal
network reconfiguration is NP-hard, even for sparse unit size
communication patterns and unit weight links.

To prove Theorem 2, we first prove a supporting lemma,
using multiple switches with small port counts [48]. Note that
the proof is directly extendable to higher port counts.

LEMMA 1. Let N be a weighted hybrid network with mul-
tiple reconfigurable switches, each connecting three nodes.
Computing an optimal network reconfiguration is NP-hard,
even for sparse unit size entries in D and unit weight links.

PROOF. Our reduction is from 3-SAT [17], with r
variables and k clauses Ci , each containing exactly three
literals. For any 3-SAT instance I , we create an instance I ′ of
our problem as follows: all link costs will be one, as well as
all communication demands greater than zero.

We create a node ci for each clause Ci , along with a single
destination node d for all communication patterns. We also
create r variable gadgets, with the following idea: if we set
an appropriate truth assignment in the reconfigurable switch,
the resulting matching can satisfy some clause, yielding a
short path. Otherwise, the path will be slightly longer via this
variable. The construction details are presented in Figure 2,
zooming in on a variable gadget with two clauses.

For each variable x j contained in any clauseCi , we connect
the node ci to either x true

j or x false
j , depending on whether the

literal is set to x j or ¬x j in Ci . Moreover, each clause node ci
has unit communication demand to d . As those are all entries
in the matrix D, we have a sparse communication pattern.

x j

x true
j x false

j

d

c1 c2

true false

x true
j ,← x false

j ,→

Figure 2: Variable gadget for x j , set to true by matching x true
j to x j ,

with clausesC1 = (x j , . . .) andC2 = (¬x j , . . .). Now, the shortest path
from clause-node c1 to d has a length of three via x j , but of four for c2.

ANCS ’18, July 23–24, 2018, Ithaca, NY, USA K.-T. Foerster et al.

It remains to study the optimal solutions for our instances I ′.
Observe that if I is satisfiable, we can create a set of matchings
M corresponding to the correct truth assignment of I , where
each flow has an optimal path length of three (one hop to
a variable gadget, one hop through the variable gadget, one
hop to d), 3k in total. Assume, for the sake of contradiction,
that I is not satisfiable and we still obtain a path length of
3k or better in I ′. As no flow can have a path length of two
by construction, every flow must have a path length of three.
However, this implies that every clause node ci is connected to
at least one variable gadget that “satisfies” a literal in Ci . �
One switch. We can now consider the case that there is only
one reconfigurable switch, connected to all nodes. Our proof
can easily be adapted to the case that the switch is just con-
nected to a constant fraction of all nodes, as in, e.g., [15, 45].

PROOF. We follow the proof idea from Lemma 1, i.e., a
reduction from 3-SAT. The challenge is that we no longer
have convenient 3-port reconfigurable switches, but a single
switch that connects all nodes. In order to re-use the proof
idea, we first allow for demand matrix entries of arbitrary
size; we later show how to set them to unit size again. We
again create r variable gadgets, but this time, they are slightly
modified. More specifically, they contain the nodes x j , x true

j ,
x false
j , and a further node x ′j , with the latter node connected to

x j via a static link. Next, we create communication demands
with an arbitrarily high value f∞ from both x true

j and x false
j to

x j . If the whole graph were to consist of those four nodes, an
optimal matching would create a link between one of
x true
j , x

false
j and x j and connect the remaining node from

x true
j , x

0
j to x ′j , yielding an objective function value of

f∞ + 2 · f∞ (one path of length one, the other of length two
via x ′j). When the graph is extended to r such gadgets, the
optimal solution N (M) again has a cost of r · f∞ + 2 · f∞.
Next, we add the node d again, but also with a node d ′, again
with a demand of f∞ from d to d ′, forcing an optimal
solution to match d and d ′. As before, we connect d to all
nodes x j with static links; similarly, with ci and c ′i , we
connect the ci to the variable gadgets as before.

Observe that to obtain an optimal solution, all matchings
are already pre-defined, with the exception of the nodes in the
variable gadget, where choosing an assignment corresponding
to true or false yields the same value for the objective function.
At this point, we re-add the demands from the clause nodes
ci to d , and observe that the analogous proof arguments hold
as for the proof of Theorem 1. This concludes the case where
arbitrarily high demands of f∞ are allowed.

We now consider sparse unit size communication pattern
entries in D. Note that the previous demands of f∞ do not need
to be arbitrarily high for the construction to work; they just
need to outweigh any benefit of the communication pattern
between the clause nodes ci andd . For example, f∞ = 1000·n2

v1 v2 v3 v4 v5

1 1

10 10 10

10

10 101 1

Figure 3: A 4-port reconfigurable switch with all possible links shown
in dotted blue, along with link weights of 1 or 10. The static links form
a path from v1 to v5. The shortest path from v1 to v5 traverses the re-
configurable switch twice, via v1−−v4—v3—v2−−v5. Note that this is
an extreme example, to showcase that our algorithms work even in this
setting. Our NP-hardness proof in §4.2 for two flows does not require
different link weights for the reconfigurable switches.

clearly suffices, we could easily optimize for smaller values.
For each node v with a demand of f∞, w.l.o.g. f∞ mod 2 = 0,
to some other node v′, we create 2 · f∞ further nodes, where
half are connected to v with static links, and the other half are
not connected to any static link. We remove the demand of f∞
from v, and replace it with unit demands from the first half of
the new nodes to v′. Due to construction, the first half of the
nodes need to create a perfect matching with the second half –
imagine the outcome as a star where each of the f∞/2 arms
has a length of two. This modification increases the instance
size only polynomially but retains the correct NP-hardness
reduction from 3-SAT; we omit the technical details. �

4 MANY RECONFIGURABLE SWITCHES
As seen in the last sections, restrictions to segregated
reconfigurable components are tractable, and non-segregated
connections with a reconfigurable switch are NP-hard. We
now turn our attention to the other end of the spectrum, the
study of multiple reconfigurable switches. Unlike Section 3,
it is unclear how matching algorithms apply in a useful way.

Furthermore, in a multi-hop setting, a single flow might
traverse a single reconfigurable switch multiple times under
adversarial weight functions; see the example in Figure 3. As
the direct connection from v1 to v5 has a cost of 10, a detour
crossing the same reconfigurable switch twice is optimal.

4.1 One Flow: Easy
However, we can apply network flow algorithms by modifying
the hybrid network topology for our computations.

THEOREM 3. Let N = (V , E, S ,w) be a weighted hybrid
network. If D contains a communication pattern for only one
pair of nodes, then an optimal reconfiguration N (M) can be
computed in polynomial time, if the triangle inequality holds
for the link weights of every reconfigurable switch.

PROOF. Our proof will rely on the fact that an integral
minimum cost flow can be computed in polynomial time,

Algorithmic Complexity of Reconfigurable Data Center Architectures ANCS ’18, July 23–24, 2018, Ithaca, NY, USA

for a single source-destination pair [1]. In our construction,
we assume all links have unit capacity. We also create a fake
source and destination node, which are respectively connected
to the real source and destination with a static directed link
of weight 0, enforcing that the maximum flow is one. As the
solution is integral, we obtain a single path.

It remains to combinatorially augment the network to apply
flow algorithms. The key idea we want to capture is that every
node, for every reconfigurable switch, may only connect to
one other node. Thus, for nodes v connected to switches
sℓ , we create a fake node vℓ , connecting it to v with link
weight 0. We remove the reconfigurable switches, recreating
connectivity with weight-preserving links between fake nodes.
Unfortunately, this construction fails to capture one important
aspect. Consider a 3-port switch sℓ with nodes u,v,w . A flow
from u to w could take the path u − uℓ − vℓ −wℓ −w , which
cannot be translated back to the original hybrid network: it
would require v to match with both u and w . Nevertheless,
as we require that each reconfigurable switch upholds the
triangle inequality for its link weights, the path u − uℓ − vℓ −
wℓ −w can be optimized to a valid one of equal or shorter
length, namely u − uℓ − wℓ − w . We can thus compute a
minimum cost flow in polynomial time, yielding an optimal
solution after “post-processing” the infeasible parts. �

4.2 Two Flows and Beyond: Hard
The previous section shows that optimizing reconfiguration
is easy when there is a single communication flow. From a
complexity point of view, we can extend the tractability re-
sults to more flows when the number of different switch con-
figurations is small: for example, hybrid networks containing
O(1) switches with O(1) ports each can be (inefficiently) sol-
ved in polynomial time by a brute-force approach. However,
for many switches, computing an optimal reconfiguration al-
ready becomes NP-hard for even two flows, if we want to mi-
nimize the worst-case path length [29].

THEOREM 4. Let N = (V , E, S ,w) be a weighted hybrid
network where all reconfigurable switches have four ports.
Let D be a communication pattern with two unit size entries
sharing the same destination vj . A reconfiguration that
minimizes the maximum path length for the flows is NP-hard.

PROOF. Our reduction is from the NP-complete Partition
problem [17]: given k integers i1, . . . , ik of total sum P , is
there a partition into two disjoint sets of equal sum. Our
construction sketch uses only 4-port reconfigurable switches.

For any Partition instance I , we create an instance I ′ of
our problem, as depicted in Figure 4: the two flows have to
pass through k reconfigurable switches with 4 ports each. To
obtain a connected graph, only two matchings are feasible at
every switch, with one flow routed along the upper path, and
the other along the lower path. Depending on the choice, the

s1

s2

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

d

i1 i2

Figure 4: Topology for a partition instance with two values i1 , i2. When
i1 = i2, the shown solution yields s1 , d & s2 , d paths of identical length.

respective flow is impacted by either a delay (weight) of some
i j or 0. As such, if the k integers i1, . . . , ik can be distributed
among both flows s.t. their summed up delay is identical, then
I is a yes-instance. Otherwise, one of the two flows incurs a
larger delay; i.e., I is a no-instance. �

4.3 Unidirectional Links
In the last sections, we investigated hybrid networks with
bidirectional dynamic connections. A natural model extension
is to consider unidirectional dynamic links.
Background. Farrington et al. show that unidirectional
circuits outperform bidirectional circuits in asymmetric
demand situations, by configuring circuits unidirectionally in
Helios [15]. Unidirectional reconfigurable links also exist in
the wireless domain; e.g., Zhou et al. [49] use 3D
beamforming to let 60GHz wireless signals bounce off data
center ceilings.1 FireFly [6] brings the same concept to
steerable free-space lasers with a reflecting ceiling mirror;
ProjecTor [18] extends this with digital micromirror devices
attached to so-called disco-balls, thus improving the number
of possible connections (from ten to thousands) and the
switching time (from 20ms to 7-12µs).
Directed Model. We study directed weighted hybrid
networks, where we follow the naming conventions of
free-space optics for ease of readability. In other words, we
say that a node v may have multiple lasers and receivers. As
before, our results apply to any technology adhering to the
described model, e.g., unidirectional optical circuits or
directed point-to-point wireless connections.

Formally, a laser at a node v may match to a receiver at a
node from some set Vv ∈ V , creating a directed link, but
every receiver may only be matched with one laser. In other
words, we investigate weighted hybrid free-space optics net-
works N = (V , E, S ,w), where S describes the laser/receiver
setting, and a network reconfiguration N (M) describes a
valid directed matching of the lasers to the receivers.
One Flow. We modify the proof of Theorem 3, removing the
triangle inequality requirement on the way. As before, the key
idea we want to capture is that every node may have, at most,
one outgoing reconfigurable link (a laser) and, at most, one
incoming reconfigurable link (a receiver).

1We note that the implementation of Zhou et al. [49] uses bidirectional links
by employing frequency division on two bands near 60Ghz.

ANCS ’18, July 23–24, 2018, Ithaca, NY, USA K.-T. Foerster et al.

Even though a node may have multiple lasers and receivers,
it suffices to create a single one in our construction: if an
integral unit size flow were to make use of two lasers (or two
receivers) at a single node, the flow would contain a loop,
which can be canceled out due to non-negative link weights.

For each node v with at least one laser, we add a node vout ,
and if v has at least one receiver, a node vin , we also add a
directed link from vin to v and a directed link from v to vout ,
both of weight 0. Next, we appropriately add directed links
from out nodes to in nodes, where a directed link from vout
to win has the same weight as the corresponding link created
in the original directed weighted hybrid network. Feasible
solutions can be directly translated between the augmented
and the original problem setting with identical costs.

COROLLARY 1. Let N be a directed weighted hybrid net-
work. If D contains only one communication entry from one
node vi to another node vj , then an optimal reconfiguration
N (M) can be computed in polynomial time.

Outlook. While the NP-hardness results of the previous
sections can be directly adapted to the directed case,
transferring Theorem 1 to multiple lasers/receivers per node
is non-trivial; see also the discussion by Devanour et al. [12,
§3] on the non-hybrid case. Nor is it clear how to extend
Theorem 1 to multiple reconfigurable switches. We leave the
investigation of such scenarios to future work.

5 RELATED WORK
To the best of our knowledge, we are the first to study
polynomial-time and exact network reconfiguration algo-
rithms for data center networks enhanced with reconfigurable
switches. Much previous work has not accounted for a static
topology at all, e.g., [4, 5], or has focused on optimizing the
reconfigurable part of hybrid networks, using, e.g.,
matching [6, 15, 30, 31, 45], edge-coloring [9], or
stable-marriage algorithms [18], see [34, Table 1]. In this
section, we focus on the most closely related works and refer
the reader to [26, 47] for a more comprehensive overview.

So far, polynomial-time algorithms for optimal or provably
approximate demand-aware networks have only been
established for networks forming a single tree providing local
routing [35], for constant degree networks where the demand
is sparse [5] and for non-constant degree networks [4] where
the degree can depend on the node popularity. All these
designs assume that all links are reconfigurable, so it is
unclear how to extend these results to hybrid networks
combining both reconfigurable and non-configurable links.
That said, the lower bounds on the achievable average path
length derived in [5] also apply to our model: if the computed
network N(M) is of bounded degree the expected path length
is at least in the order of the conditional entropy of the
demand matrix D.

Non-segregated routing in hybrid networks is used by Xia
et al. [48] by leveraging small port-count converter switches
for reconfiguration which can dynamically convert between
a Clos network and approximate random graphs of different
sizes. However, rather than computing optimal configurations,
they locally reconfigure the topology according to the traffic
patterns, where the performance depends on how well Clos
networks respectively random graphs handle the traffic.

Kassing et al. [28] took the aforementioned concept of
random graphs [40] and proposed building such a data center
topology deterministically, leveraging expanders [13, 42],
using only static devices. The performance of their topologies
depends on using many source-destination paths, instead of
restricted routing policies. In fact, the idea is conceptually
similar to the non-segregated approach for hybrid networks.

Venkatakrishnan et al. [44] studied the reconfigurable parts
of the topology and pointed out that routing policies restricted
to direct or single-hop routing are inefficient: when indirect or
multi-hop routing is employed in the reconfigurable domain,
the reachability of nodes can be increased exponentially. The
authors provide near optimal scheduling algorithms for the
segregated case where network configuration is calculated
separately and leave the joint problem as an open question.
We advocate taking non-segregated routing policies a step
further, i.e., taking the static topology of the hybrid network
into account for the joint optimization.

Mellette et al. [34] proposed an approach orthogonal to
ours, where the switches rotate through a set of pre-defined
matchings, also leveraging Valiant-style [43] multi-hop
optical connections. Such indirect routing would also be of
interest to us when considering reconfiguration latency.

Lastly, while our paper focuses on data center technology,
some recent work has studied reconfigurable wide area
networks, employing Reconfigurable Optical Add-Drop
Multiplexers (ROADMs) [24, 25] or rate adaptive links [37].
These are relevant to our work and we believe it would be
interesting to develop a model that makes algorithms and
conclusions portable between the two areas.

6 CONCLUSION
We have presented a first formal characterization of the algo-
rithmic complexity of data center network architectures ba-
sed on reconfigurable switches. We understand our work as
a first step and believe it opens several questions for future
research. More particularly, it would be interesting to chart a
more detailed landscape of the algorithmic complexity under-
lying such network architectures, and to study the design of
approximation algorithms and thresholds.
Acknowledgements. We would like to thank Chen Avin for
valuable discussions and feedback. We would also like to
thank our shepherd Aurojit Panda and the anonymous
reviewers for their helpful feedback on our paper.

Algorithmic Complexity of Reconfigurable Data Center Architectures ANCS ’18, July 23–24, 2018, Ithaca, NY, USA

REFERENCES
[1] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. 1993.

Network flows - theory, algorithms and applications. Prentice Hall.
[2] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. 2008.

A scalable, commodity data center network architecture. In SIGCOMM.
ACM, 63–74.

[3] Dan Alistarh, Hitesh Ballani, Paolo Costa, Adam Funnell, Joshua Ben-
jamin, Philip M. Watts, and Benn Thomsen. 2015. A High-Radix,
Low-Latency Optical Switch for Data Centers. Computer Communica-
tion Review 45, 5 (2015), 367–368.

[4] Chen Avin, Alexandr Hercules, Andreas Loukas, and Stefan Schmid.
2018. rDAN: Toward robust demand-aware network designs. Inf.
Process. Lett. 133 (2018), 5–9.

[5] Chen Avin, Kaushik Mondal, and Stefan Schmid. 2017. Demand-Aware
Network Designs of Bounded Degree. In DISC (LIPIcs), Vol. 91.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 5:1–5:16.

[6] Navid Hamed Azimi, Zafar Ayyub Qazi, Himanshu Gupta, Vyas Se-
kar, Samir R. Das, Jon P. Longtin, Himanshu Shah, and Ashish Tan-
wer. 2014. FireFly: a reconfigurable wireless data center fabric using
free-space optics. In SIGCOMM. ACM, 319–330.

[7] Maciej Besta and Torsten Hoefler. 2014. Slim Fly: A Cost Effective
Low-Diameter Network Topology. In SC. IEEE Computer Society,
348–359.

[8] Kai Chen, Ankit Singla, Atul Singh, Kishore Ramachandran, Lei Xu,
Yueping Zhang, Xitao Wen, and Yan Chen. 2014. OSA: An Optical
Switching Architecture for Data Center Networks With Unprecedented
Flexibility. IEEE/ACM Trans. Netw. 22, 2 (2014), 498–511.

[9] Li Chen, Kai Chen, Zhonghua Zhu, Minlan Yu, George Porter, Chun-
ming Qiao, and Shan Zhong. 2017. Enabling Wide-Spread Communi-
cations on Optical Fabric with MegaSwitch. In NSDI. USENIX Associ-
ation, 577–593.

[10] Cisco. 2015. Cisco Global Cloud Index: Forecast and Methodology,
2015-2020. White Paper (2015).

[11] Rodrigo De Souza Couto, Stefano Secci, Miguel Elias Mitre Campista,
and Luís Henrique Maciel Kosmalski Costa. 2016. Reliability and
Survivability Analysis of Data Center Network Topologies. J. Network
Syst. Manage. 24, 2 (2016), 346–392.

[12] Nikhil Devanur, Janardhan Kulkarni, Gireeja Ranade, Monia Ghobadi,
Ratul Mahajan, and Amar Phanishayee. 2016. Stable Matching Algo-
rithm for an Agile Reconfigurable Data Center Interconnect. Technical
Report. Microsoft Research.

[13] Michael Dinitz, Michael Schapira, and Asaf Valadarsky. 2017. Explicit
Expanding Expanders. Algorithmica 78, 4 (2017), 1225–1245.

[14] Jack Edmonds. 1965. Paths, Trees and Flowers. Canad. J. Math 17
(1965), 449–467.

[15] Nathan Farrington, George Porter, Sivasankar Radhakrishnan,
Hamid Hajabdolali Bazzaz, Vikram Subramanya, Yeshaiahu Fainman,
George Papen, and Amin Vahdat. 2010. Helios: a hybrid electri-
cal/optical switch architecture for modular data centers. In SIGCOMM.
ACM, 339–350.

[16] Klaus-Tycho Foerster, Stefan Schmid, and Stefano Vissicchio. 2018.
Survey of Consistent Network Updates. CoRR abs/1609.02305v2
(2018).

[17] M. R. Garey and David S. Johnson. 1979. Computers and Intractability:
A Guide to the Theory of NP-Completeness. W. H. Freeman.

[18] Monia Ghobadi, Ratul Mahajan, Amar Phanishayee, Nikhil R. Deva-
nur, Janardhan Kulkarni, Gireeja Ranade, Pierre-Alexandre Blanche,
Houman Rastegarfar, Madeleine Glick, and Daniel C. Kilper. 2016. Pro-
jecToR: Agile Reconfigurable Data Center Interconnect. In SIGCOMM.
ACM, 216–229.

[19] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. 2011. Under-
standing network failures in data centers: measurement, analysis, and

implications. In SIGCOMM. ACM, 350–361.
[20] Albert G. Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kan-

dula, Changhoon Kim, Parantap Lahiri, David A. Maltz, Parveen Patel,
and Sudipta Sengupta. 2009. VL2: a scalable and flexible data center
network. In SIGCOMM. ACM, 51–62.

[21] Chuanxiong Guo, Guohan Lu, Dan Li, Haitao Wu, Xuan Zhang, Yun-
feng Shi, Chen Tian, Yongguang Zhang, and Songwu Lu. 2009. BCube:
a high performance, server-centric network architecture for modular
data centers. In SIGCOMM. ACM, 63–74.

[22] Chuanxiong Guo, Haitao Wu, Kun Tan, Lei Shi, Yongguang Zhang,
and Songwu Lu. 2008. Dcell: a scalable and fault-tolerant network
structure for data centers. In SIGCOMM. ACM, 75–86.

[23] Daniel Halperin, Srikanth Kandula, Jitendra Padhye, Paramvir Bahl,
and David Wetherall. 2011. Augmenting data center networks with
multi-gigabit wireless links. In SIGCOMM. ACM, 38–49.

[24] Su Jia, Xin Jin, Golnaz Ghasemiesfeh, Jiaxin Ding, and Jie Gao. 2017.
Competitive analysis for online scheduling in software-defined optical
WAN. In INFOCOM. IEEE, 1–9.

[25] Xin Jin, Yiran Li, Da Wei, Siming Li, Jie Gao, Lei Xu, Guangzhi Li,
Wei Xu, and Jennifer Rexford. 2016. Optimizing Bulk Transfers with
Software-Defined Optical WAN. In SIGCOMM. ACM, 87–100.

[26] Christoforos Kachris and Ioannis Tomkos. 2012. A Survey on Optical
Interconnects for Data Centers. IEEE Communications Surveys and
Tutorials 14, 4 (2012), 1021–1036.

[27] Srikanth Kandula, Jitendra Padhye, and Paramvir Bahl. 2009. Flyways
To De-Congest Data Center Networks. In HotNets. ACM SIGCOMM.

[28] Simon Kassing, Asaf Valadarsky, Gal Shahaf, Michael Schapira, and
Ankit Singla. 2017. Beyond fat-trees without antennae, mirrors, and
disco-balls. In SIGCOMM. ACM, 281–294.

[29] Chung-Lun Li, S. Thomas McCormick, and David Simchi-Levi. 1990.
The complexity of finding two disjoint paths with min-max objective
function. Discrete Applied Mathematics 26, 1 (1990), 105–115.

[30] He Liu, Feng Lu, Alex Forencich, Rishi Kapoor, Malveeka Tewari,
Geoffrey M. Voelker, George Papen, Alex C. Snoeren, and George
Porter. 2014. Circuit Switching Under the Radar with REACToR. In
NSDI. USENIX Association, 1–15.

[31] He Liu, Matthew K. Mukerjee, Conglong Li, Nicolas Feltman, George
Papen, Stefan Savage, Srinivasan Seshan, Geoffrey M. Voelker, David G.
Andersen, Michael Kaminsky, George Porter, and Alex C. Snoeren.
2015. Scheduling techniques for hybrid circuit/packet networks. In
CoNEXT. ACM, 41:1–41:13.

[32] Vincent Liu, Daniel Halperin, Arvind Krishnamurthy, and Thomas E.
Anderson. 2013. F10: A Fault-Tolerant Engineered Network. In NSDI.
USENIX Association, 399–412.

[33] László Lovász and Michael D Plummer. 2009. Matching theory.
Vol. 367. American Mathematical Soc.

[34] William M. Mellette, Rob McGuinness, Arjun Roy, Alex Forencich,
George Papen, Alex C. Snoeren, and George Porter. 2017. RotorNet: A
Scalable, Low-complexity, Optical Datacenter Network. In SIGCOMM.
ACM, 267–280.

[35] Stefan Schmid, Chen Avin, Christian Scheideler, Michael Borokhovich,
Bernhard Haeupler, and Zvi Lotker. 2016. SplayNet: Towards Lo-
cally Self-Adjusting Networks. IEEE/ACM Trans. Netw. 24, 3 (2016),
1421–1433.

[36] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armis-
tead, Roy Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie
Germano, Anand Kanagala, Jeff Provost, Jason Simmons, Eiichi Tanda,
Jim Wanderer, Urs Hölzle, Stephen Stuart, and Amin Vahdat. 2015. Ju-
piter Rising: A Decade of Clos Topologies and Centralized Control in
Google’s Datacenter Network. Computer Communication Review 45, 5
(2015), 183–197.

ANCS ’18, July 23–24, 2018, Ithaca, NY, USA K.-T. Foerster et al.

[37] Rachee Singh, Monia Ghobadi, Klaus-Tycho Foerster, Mark Filer, and
Phillipa Gill. 2018. RADWAN: Rate Adaptive Wide Area Network. In
SIGCOMM. ACM.

[38] Ankit Singla. 2016. Fat-FREE Topologies. In HotNets. ACM, 64–70.
[39] Ankit Singla, Philip Brighten Godfrey, and Alexandra Kolla. 2014.

High Throughput Data Center Topology Design. In NSDI. USENIX
Association, 29–41.

[40] Ankit Singla, Chi-Yao Hong, Lucian Popa, and Philip Brighten Godfrey.
2012. Jellyfish: Networking Data Centers Randomly. In NSDI. USENIX
Association, 225–238.

[41] Ankit Singla, Atul Singh, Kishore Ramachandran, Lei Xu, and Yueping
Zhang. 2010. Proteus: a topology malleable data center network. In
HotNets. ACM, 8.

[42] Asaf Valadarsky, Gal Shahaf, Michael Dinitz, and Michael Schapira.
2016. Xpander: Towards Optimal-Performance Datacenters. In Co-
NEXT. ACM, 205–219.

[43] Leslie G. Valiant. 1982. A Scheme for Fast Parallel Communication.
SIAM J. Comput. 11, 2 (1982), 350–361.

[44] Shaileshh Bojja Venkatakrishnan, Mohammad Alizadeh, and Pramod
Viswanath. 2016. Costly Circuits, Submodular Schedules and Approxi-
mate Carathéodory Theorems. In SIGMETRICS. ACM, 75–88.

[45] Guohui Wang, David G. Andersen, Michael Kaminsky, Konstantina
Papagiannaki, T. S. Eugene Ng, Michael Kozuch, and Michael P. Ryan.
2010. c-Through: part-time optics in data centers. In SIGCOMM. ACM,
327–338.

[46] Haitao Wu, Guohan Lu, Dan Li, Chuanxiong Guo, and Yongguang
Zhang. 2009. MDCube: a high performance network structure for
modular data center interconnection. In CoNEXT. ACM, 25–36.

[47] Wenfeng Xia, Peng Zhao, Yonggang Wen, and Haiyong Xie. 2017. A
Survey on Data Center Networking (DCN): Infrastructure and Ope-
rations. IEEE Communications Surveys and Tutorials 19, 1 (2017),
640–656.

[48] Yiting Xia, Xiaoye Steven Sun, Simbarashe Dzinamarira, Dingming
Wu, Xin Sunny Huang, and T. S. Eugene Ng. 2017. A Tale of Two
Topologies: Exploring Convertible Data Center Network Architectures
with Flat-tree. In SIGCOMM. ACM, 295–308.

[49] Xia Zhou, Zengbin Zhang, Yibo Zhu, Yubo Li, Saipriya Kumar, Amin
Vahdat, Ben Y. Zhao, and Haitao Zheng. 2012. Mirror mirror on the
ceiling: flexible wireless links for data centers. In SIGCOMM. ACM,
443–454.

	Abstract
	1 Introduction
	2 Model
	3 One Reconfigurable Switch
	3.1 Segregated Networks
	3.2 Non-Segregated Networks

	4 Many Reconfigurable Switches
	4.1 One Flow: Easy
	4.2 Two Flows and Beyond: Hard
	4.3 Unidirectional Links

	5 related work
	6 Conclusion
	References

