
A Pattern Language for Manual Analysis of Runtime Events
Using Design Models

Michael Szvetits

Software Engineering Group

University of Applied Sciences Wiener Neustadt

Wiener Neustadt, Austria

michael.szvetits@fhwn.ac.at

Uwe Zdun

Software Architecture Research Group

University of Vienna

Vienna, Austria

uwe.zdun@univie.ac.at

ABSTRACT

Modeling is an important activity in the software development pro-

cess whose output are design artefacts that describe the resulting

software from a high-level perspective. Recent research investi-

gates the role of models at runtime and the results indicate that

analysts perform better at observing the behaviour of a running

system if they can utilize models during the analysis. However,

setting up a system which allows the analysis of its behaviour at

runtime using models involves many challenges regarding the mod-

eling environment, the introspection infrastructure, the traceability

management and the analysis integration. This paper summarizes

design alternatives for implementing systems with manual analysis

support by investigating recurring concepts like patterns, model-

ing habits, languages, middlewares and development techniques

found in approaches that utilize models at runtime. We organize

the gained knowledge as patterns in a pattern language which cap-

tures various issues and their solution alternatives, including their

benefits and liabilities. The pattern language consists of modeling

patterns for setting up the models and the environment for the

analyst, introspection patterns for extracting data from the running

system, traceability patterns for relating the extracted data with

the models, and analysis patterns for processing the extracted data

using the models. We demonstrate the application of the pattern

language based on the implementation of a robot system.

CCS CONCEPTS

• Software and its engineering→ Patterns; Designing software;

KEYWORDS

analysis, events, model, pattern, runtime

ACM Reference Format:

Michael Szvetits and Uwe Zdun. 2018. A Pattern Language for Manual Anal-

ysis of Runtime Events Using Design Models. In 23rd European Conference
on Pattern Languages of Programs (EuroPLoP ’18), July 4–8, 2018, Irsee, Ger-
many. ACM, New York, NY, USA, Article 4, 24 pages. https://doi.org/10.

1145/3282308.3282324

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

EuroPLoP ’18, July 4–8, 2018, Irsee, Germany
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6387-7/18/07. . . $15.00

https://doi.org/10.1145/3282308.3282324

1 INTRODUCTION

The level of abstraction in the software development discipline is

constantly increasing. The implementation of software systems is

nowadays more focussed on the fulfillment of customer require-

ments than overcoming technical challenges that are grounded

in the underlying execution environment. The shift from solving

technical challenges to solving customer-oriented problems can es-

pecially be observed when looking at the changes that the software

engineering discipline took over the time: Programming languages

incorporate more and more mechanisms to define abstractions,

while the emergence of model-driven techniques indicate that for-

mer informal design artefacts make the jump to become important

prescriptive artefacts which guide the software development pro-

cess from a problem space perspective [10].

Although informal models are still very common in industry

[54], model-driven approaches using formal models promise to

improve productivity and maintainability when developing soft-

ware systems [42]. Requirements and expectations on a software

system change over time and demand an increased level of flexi-

bility. As a consequence, the boundary between development time

and runtime blurs and requires new development and deployment

strageties [29]. One of them is the models at runtime paradigm

[8, 10, 21, 50] where models are causally connected to the running

system, meaning that changes to the models cause corresponding

changes within the running system, and vice versa. This paradigm

has been evaluated exhaustively in the area of automatic adaptation

decisions, especially with performance implications in mind [58].

However, there are scenarios where automatic decisions are limited

or too complex, but models can still help in the process of manually

analyzing (and in further consequence, adapting) a running system:

• Confirmation of actions. Models can provide situation-

specific information about a process that needs attention by

a human decision maker. Examples are financial transactions

or legally binding actions.

• Control of simulations.Models provide a condensed view

of the system, can highlight simulation errors and allow to

adapt testing conditions.

• Reacting to edge cases. Example of such cases are viola-

tions of service level agreements or hardware faults. Models

help to visualize and detect erroneous system parts.

• Reacting to violations. Models can highlight process ac-

tivities which violate rules that arise from non-technical

requirements, like mandatory reporting steps that were not

detected during execution.

• Manual assessments. Examples are qualitative and quanti-

tative runtime data, bottlenecks, or trends. Models allow an

https://doi.org/10.1145/3282308.3282324
https://doi.org/10.1145/3282308.3282324
https://doi.org/10.1145/3282308.3282324

EuroPLoP ’18, July 4–8, 2018, Irsee, Germany Michael Szvetits and Uwe Zdun

analyst (i.e., the person who diagnoses the running system)

to monitor and control the running system from a perspec-

tive which is closer to the problem space.

A recent controlled experiment indicated that linking models

with the running system improves the comprehension of system

behaviour when analysts manually observe the runtime events

that were recorded by the running system [57]. Using models for

runtime analysis in such a manner requires that events are recorded

and traced back to the model elements of interest where the analyst

is able to define aggregation operations on them. However, the

experiment only applied a small subset of the possible modeling,

introspection, traceability and analysis techniques that can be used

to realize a software system with manual analysis support. In the

general case, software architects and developers are confronted

with many decisions when designing a system that supports the

analysis of its behaviour with the help of models. Examples of

problems that require such decisions are:

• Which models are suited for performing manual analysis?

• Which techniques exist to efficiently capture events at run-

time to enable manual analysis?

• How can runtime events be correlated with model elements

they belong to?

• Which techniques exist for the analyst to define aggregation

operations on a stream of events?

The goal of this paper is to address the challenges software archi-

tects and developers face when implementing support for manual

analysis using design models for a software system. We divide the

necessary design decisions into four categories of related patterns

and describe their benefits and liabilities. With the help of those

patterns, software architects and developers can deliberately decide

which solution strategy fits their problem context best and weigh

their advantages and disadvantages. The patterns capture design

decisions of varying granularity and level of abstraction and are or-

ganized as pattern language, meaning that also the interconnections

of patterns are discussed.

Regarding the source of the patterns, we revisited the approaches

that were identified by our recent comprehensive systematic lit-

erature review [58] of the objectives, techniques, kinds, and ar-

chitectures of models at runtime as well as our paper on reusable

event types [56]. We extracted recurring architecture and design

concepts (e.g., patterns, modeling habits, languages, middlewares

and development techniques) that are used in those approaches

and brought them into the context of manual analysis of running

systems using design models. While some of the identified concepts

are indeed known patterns, many of them are not explicitly named

as such, but are implicitly recurring concepts which influence the

way how the analysis is performed. This paper streamlines all the

identified concepts into the common notion of a pattern, meaning

the organization of their properties into a context description, a

problem statement, a solution description and their relationships

to the underlying forces that shape the problem. The consequences

of choosing a specific pattern (i.e., the benefits and liabilities) are

also part of the pattern descriptions.

This paper is structured as follows: Section 2 describes the back-

ground of manual analysis of running systems. Section 3 gives a

motivating example in the context of a robot system. In Section 4,

we present the pattern language. In Section 5, we apply the pre-

sented pattern language to the motivating example of Section 3 to

demonstrate its applicability. We conclude in Section 6.

2 BACKGROUND: MANUAL ANALYSIS OF

RUNTIME EVENTS USING DESIGN MODELS

When speaking about manual analysis of running systems using

design models, we assume that an analyst is interested in some

runtime characteristic that belongs to an element found in one of

the models that were used during the design of the observed system.

An example of such a runtime characteristic would be the average

runtime of an action found in a UML activity diagram. However,

many other runtime characteristics are imaginable, like the average

response time of a communication path between two components

in a component diagram or the overall runtime that is spent within

a component.

Performing an analysis task on the model level can be split into

several subtasks: The models of the system must be created or

derived from its implementation, the necessary runtime events

that belong to a model element of interest must be recoded by the

running system (e.g., the execution of a modelled behaviour), the

events must be traced back to the model elements they belong to,

and analysis operations must be specified based on the recorded

events (e.g., the average or maximum runtime of such execution

events). According to those subtasks, the model elements and the

monitored runtime events (and thus, the running system itself) can

be seen as logically connected, as depicted in Figure 1.

A
Running
System

?? ?

runtime? events

events

events

Analyst

B

Figure 1: Abstract view of relating runtime events with

model elements

In a setting with a perfect separation of concerns, only the last

subtask would be of concern to the analyst who wants to analyze

the behaviour of the running system. All other subtasks would be

the concern of the software architects and developers who must

prepare the system to allow such analyses. However, in a traditional

development environment (i.e., without models that are connected

to the captured runtime events via navigable traceability links),

this separation cannot be applied since the analyst must have pro-

found technical knowledge to identify the implementation parts

that belong to the model element of interest, analyze the existing

code, write the monitoring logic that yields the necessary events

and deploy the written code to the running system. After analyzing

the events, the analyst may need to repeat this human-in-the-loop

approach iteratively to narrow down the analysis, thus constantly

switching between various levels of abstraction. We presented a

code generation and analysis approach [68] based on a reusable

set of event types [56] which lifts some of the burden from the

analyst’s shoulders.

A Pattern Language for Manual Analysis of Runtime Events Using Models EuroPLoP ’18, July 4–8, 2018, Irsee, Germany

Switch Mode

Add Task

Make Noise

Add Strategy

Calibrate Robot

Move Robot

Discover Area

Find Path

Follow Path

Solve Task

Test Components

Visualize Path

Analyst

Environment Manager

Motor A

Motor B

Control Unit

Color Sensor

Touch Sensor

Ultrasonic Sensor

Robot System

Figure 2: Uses cases of the robot system that will be used as motivating example

However, although there exist approaches that ease the work for

the analyst, software architects and developers are still unsupported

when designing the system with manual analysis in the first place.

They are confronted with several design decisions concerning the

modeling, introspection, traceability and analysis aspects of such

systems, and chances are high that possible solution alternatives

to design issues are assessed unaware of the consequences if ap-

propriate guidance does not exist. As a consequence, this paper

derives a pattern language from architecture and design concepts

found in the literature which helps architects and developers to

balance the trade-offs between the various solution alternatives.

The pattern language also highlights interrelationships between

the captured patterns so that software architects and developers

are able to assess the impact of their design decisions onto other

areas of manual analysis.

3 MOTIVATING EXAMPLE

Consider a scenario where a robot system is developed with vari-

ous control and self-management capabilities. An overview of the

desired features is shown in the use case diagram in Figure 2. The

actors on the left side of the figure represent the roles that interact

with the system. The actors on the right show the hardware units

and sensors that participate in the modelled use cases. The robot

consists of a main control unit, a color sensor to identify the color of

encountered surfaces, an ultrasonic sensor to measure the distance

to forward-facing objects, a touch sensor to detect collisions and

two motors to drive and rotate the robot.

The main responsibilities of the robot are to follow definable

paths, to drive in orthogonal directions according to external man-

ual input, and to discover the environment on its own to create a

digital grid-based map. To make the discovery process of the envi-

ronment more interesting, tasks may appear spontaneously while

driving through the terrain, simulated by the detection of specific

colours on the ground. Such tasks must be solved either by manual

user input on the control unit or by using an autonomous solution

strategy known to the robot. Adding such tasks to the robot system

and testing the hardware setup is done by the environment man-

ager, while the rest of the operations (e.g., solving a task manually

or adding a solution strategy to occurring tasks) are performed by

the analyst.

EuroPLoP ’18, July 4–8, 2018, Irsee, Germany Michael Szvetits and Uwe Zdun

The challenge is now to enable the analyst to observe the be-

haviour of the robot since it is hard to recognize what the robot

is actually doing just by looking at it (e.g., when the robot is driv-

ing, it is not immediately clear if it is on an autonomic trip or

follows a predefined path). Furthermore, the analyst should be able

to perform self-defined queries on recorded events, for example to

determine the overall time the robot spends on backtracking during

the discovery process to get an insight into the efficiency of the un-

derlying discovery algorithm. Moreover, the analyst should not be

concerned with the implementation details of the robot, but instead

perform the analysis tasks based on the abstract representations

(i.e., the models) of its structure and behaviour, which hide a great

deal of the technical realization.

Setting up a system that enables the analyst to perform such

analyses leads to various design decisions for the architects and

developers who build the system. These decisions are not limited

to the implementation of the manual analysis environment, but

must also cover architectural considerations regarding constrained

resources, network outages and platform limitations. In the next

section we present the pattern language which captures such deci-

sions in the form of patterns, but we will come back to the robot

scenario when applying the pattern language to it in Section 5.

4 PATTERN LANGUAGE FOR MANUAL

ANALYSIS OF RUNTIME EVENTS

4.1 Pattern Language Overview

The pattern language is based on existing literature that documents

the usage of important concepts in the context of using models at

runtime, like patterns, modeling habits, languages, middlewares

and development techniques. More concretely, we inspected the

content and references of our comprehensive systematic literature

review of the objectives, techniques, kinds and architectures of

models at runtime [58] and our paper on reusable event types [56].

We divided the pattern language into four categories based on

the way how the manual analysis of running system using design

models is performed, as described in Section 2: The models of the

systemmust be created and managed by the modeling environment,

the running system must be inspected, the recorded events must

be related to the model elements and the analyst must assess the

recorded information by applying aggregation operations to the

events. This results in four categories of patterns: Modeling, intro-

spection, traceability and analysis patterns. Their interrelationship

is shown in Figure 3.

Modeling
Patterns

Introspection
Patterns

Traceability
Patterns

Analysis
Patterns

influence integration of

influence
integration of

embed information from

rely on correlated
events from

Figure 3: Overview of the pattern language for manual anal-

ysis of runtime events

• Modeling patterns are concerned with the issues of imple-

menting and using the modeling environment the analyst

interacts with, choosing a model syntax for describing the

system under observation, and choosing the kinds of models

that are linked to runtime events and ultimately used for

the analysis. Since these patterns mainly influence how the

analyst interacts with the modeling environment (and thus,

the running system), the main force that drives the selec-

tion of specific patterns is usability, but analyzability and

extensibility are important in this category too.

• Introspection patterns address the issues of recording

events, storing the recorded events and exchanging them

between the running system and the modeling environment

where the analysis is performed. Patterns of this category

have different consequences regarding the integration of

monitoring instructions into the implementation of the run-

ning system, the ability of performing post-mortem analyses

of the system and the up-to-dateness of analysis results in

the modeling environment.

• Traceability patterns address the issue of implementing

the traceability mechanism in the monitoring code that

yields the runtime events. The traceability patterns are uti-

lized by a subset of introspection patterns to embed addi-

tional information into the recorded runtime events so the

modeling environment can correlate runtime events with

the model elements they originate from.

• Analysis patterns address the issues of processing events

in the modeling environment by formulating aggregation

operations on the recorded events. In addition, patterns of

this category address the integration of analysis tasks into

the models that are used by the analyst.

The following subsections describe the patterns that belong to

these four categories in detail. Every category is organized into the

aforementioned issues so related patterns can be discussed together

regarding the forces that shape the respective issues. Pattern dis-

cussions contain references to related papers that were identified

in the literature [56, 58] and adopt the respective pattern.

4.2 Modeling Patterns

Choosing between the various modeling patterns mainly affects

how the modeling environment of the analyst influences the overall

architecture of a system. We divided the topic into the modeling

environment issue, the model syntax issue and the model kind

issue. Figure 4 shows the relationships of modeling-related patterns

discussed in this section between themselves and to patterns of

other categories which will be discussed later on.

4.2.1 Modeling Environment. The issue regarding the modeling

environment addresses the kind of connection between the model-

ing environment and the running system. Decisions regarding this

issue mainly influence performance characteristics, flexibility and

the degree of coupling between the components of the resulting

system. The decision of how to handle the modeling environment

issue ultimately breaks down to the question of how much work-

load should be shifted to either the modeling environment or the

running system. Decisions about this issue are subject to three

forces:

A Pattern Language for Manual Analysis of Runtime Events Using Models EuroPLoP ’18, July 4–8, 2018, Irsee, Germany

Model Integration

Graphical
Model Syntax

Textual
Model Syntax

Structural
Model

Behavioural
Model

Embedded
Analysis

External
Analysis

Automatic Link
Management

Link Creation &
Maintenance

suggests

eases

eases

al
te

rn
at

iv
es

al
te

rn
at

iv
es

d
ef

in
ed

 w
it
h

Local Analysis Client

alternatives

Thin Analysis Client

Rich Analysis Client

alternatives

manages

Modeling Environment Model Syntax

Kinds of Models

manages

Figure 4: Overview of important relationships between modeling-related patterns and patterns of other categories

Forces for Issue: Modeling Environment

• Dependability: The observed system should have mini-

mal extra dependencies.

• Extensibility: The modeling environment should be ex-

tensible in such a way that analysis tasks can be inte-

grated easily while reusing existing models.

• Scalability: Even with a large number of analysts and

captured events, the system and analysis performance

should hardly be affected.

A very simple setup is the deployment of both the modeling

environment and the running system on the same machine. In this

setup the analyst utilizes a local analysis client to interact with

the running system, which means that communication mechanisms

do not need to be applied. The analyst is able to directly operate

with the models in the modeling tool that was used during the de-

velopment of the running system, for example the Eclipse Modeling

Framework.

Pattern: Local Analysis Client

Context: The analyst wants to analyze the behaviour of a

running system on the model level. The models of the sys-

tem already exist and were created using a well-established

modeling tool.

Problem: You want to connect the modeling environment

to the running system and reuse the models, i.e. you do

not want to modify the existing models just for the sake

of performing the analysis. You want to keep the concerns

related to modeling and analysis separated, meaning that

required extensions to the modeling environment do not

affect the observed system.

Solution: Use a local client, meaning that the modeling

environment (i.e., the application that the analyst inter-

acts with) and the system under observation are ultimately

running on the same machine, possibly even in the same

machine process. The modeling environment can directly

access and adapt the running system according to the cur-

rent monitoring requirements and consume the runtime

events yielded by the running system. This setup also al-

lows the analyst to use modeling frameworks which are

originally not designed to interact with running systems

(e.g., the Eclipse Modeling Framework).

Consequences: Benefits & Liabilities

+ Dependability: The observed system has no additional

dependencies to modeling frameworks and tools.

+ Extensibility: Reuse of existing modeling frameworks is

possible. In addition, adapting the running system to

changed monitoring requirements is easy.

+ Scalability: It is a performance-friendly solution without

much overhead.

– Scalability:Multiple analysts cannot observe the running

system at the same time. Furthermore, the analyst needs

both the running system and a full-fledged modeling

environment, which hinders a realistic deployment.

Known Uses

• Garzon and Cebulla [27] use state machine models in a

local modeling environment to perform simulations for

user interaction analyses.

• Simulink is a commercial modeling tool providing a

modeling environment which simulates systems locally

before moving to hardware deployments.

EuroPLoP ’18, July 4–8, 2018, Irsee, Germany Michael Szvetits and Uwe Zdun

• LabVIEW is a commercial tool for creating data flow

models of embedded systems and performing local sim-

ulations using those models.

The other extreme is the pattern of using a thin analysis client,

meaning that the analyst does not operate within a full-fledged

modeling environment, but is only provided with minimal interac-

tion capabilities (e.g., a browser-based interface) which present the

models and display the analysis results. In this setup, the models

the analyst interacts with must be hosted somewhere, either by a

separate server or the running system itself, which adds complexity

in terms of the overall software architecture. The latter case may

be problematic if the system under observation operates in an envi-

ronment with reduced footprint or limited execution capabilities,

like in the area of embedded systems.

Pattern: Thin Analysis Client

Context: Analysts want to analyze the behaviour of a

running system on the model level. The models of the

system already exist and are stored centralized or directly

at the observed system. Multiple analysts want to observe

the running system at the same time.

Problem: You want to enable the analysts to display the

models and connect them to the running system while

not being tightly coupled to it. You want the analysts to

use modeling environments without the need of local in-

stallation routines and minimal dependencies to ease the

maintenance and reduce the technical complexity encoun-

tered by the analysts.

Solution:Use a thin client where the analysts are only pro-

vided with minimal interaction capabilities (e.g., a browser-

based interface) which present the models and display the

analysis results. The models and analysis results can di-

rectly be assembled by the system under observation.

Consequences: Benefits & Liabilities

+ Scalability: Multiple analysts can observe the running

system at the same time. Analysts have minimal setup

requirements and maintenance effort.

– Dependability: The running system needs additional de-

pendencies like modeling frameworks and web server

libraries.

– Extensibility: Reusing or extending existing modeling

frameworks is not possible (or at least limited). Two

modeling environments must be maintained: the full-

fledged environment for creating models at design time,

and a reduced one for (remotely) displaying the models

and analysis results at runtime.

Known Uses

• Kevoree is a modeling tool for creating arbitrary models

of distributed system nodes [22]. It has a web-based

version without setup efforts for the analyst.

• GenMyModel is a web-based, collaborative modeling

platform for multiple meta-models [17]. It has no setup

efforts for the analyst, but lacks appropriate visualiza-

tions of analysis results.

• Signavio is a commercial web-based modeling tool for

managing business processes. It has no setup efforts for

the analyst and also supports simulations.

• Wegmann and Wirz [64] implemented a browser-based

interface supporting animation of states in domain di-

agrams. This solves the problem that deployed appli-

cations cannot be analyzed using the domain models

(which were created in a local Eclipse-based modeling

environment) any more after generating source code

from them.

A certain middle ground between the local and the thin client

solutions is to use a rich analysis client. In this pattern, the ana-

lyst is able to utilize a local modeling environment, but the system

under observation is not restricted to run on the samemachine. As a

consequence, this setup does not require the running system to pull

in additional dependencies, but is still required to offer interfaces for

receiving newmonitoring instructions (i.e., adaptation instructions)

and sending recorded events. However, the analysis of the recorded

runtime events (e.g., the application of aggregation operations) is

now performed by the modeling environment instead of the run-

ning system, which means that some of the performance concerns

are shifted from the running system to the modeling environment.

Pattern: Rich Analysis Client

Context: Analysts want to analyze the behaviour of a

running system on the model level. The analysts utilize

local modeling environments and want to observe and

aggregate the events of a remote running system using

already existing models. Multiple analysts want to observe

the running system at the same time.

Problem: You want to enable the analysts to connect the

models to the running system and perform aggregation

operations on a possibly large number of events. However,

at the same time you want that neither the performance,

nor the amount of external dependencies of the observed

system are negatively affected by the analyses performed

by the analysts.

Solution: The analysts utilize local modeling environ-

ments, but the system under observation is not restricted

to run on the same machine. The analyses of the recorded

runtime events (e.g., the application of aggregation opera-

tions) are performed by the modeling environments of the

analysts instead of the running system.

Consequences: Benefits & Liabilities

+ Dependability: The observed system has no additional

dependencies to modeling frameworks.

+ Extensibility: Reuse of existing modeling frameworks is

possible, i.e. the effort of implementing a separate model

editor does not exist. In addition, adapting the running

system to changed monitoring requirements is easy.

A Pattern Language for Manual Analysis of Runtime Events Using Models EuroPLoP ’18, July 4–8, 2018, Irsee, Germany

+ Scalability: It is a performance-friendly solution allowing

multiple analysts to observe the system. Aggregating

events is done by the modeling environment, which

increases the performance of the observed system.

– Dependability: The running system needs additional de-

pendencies like web server libraries to allow remote

access to the captured events. This ultimately leads to

security considerations too.

– Scalability: Performance concerns are shifted from the

running system to the modeling environment and espe-

cially their connection since all events must be trans-

ferred to the modeling environment for analysis.

Known Uses

• Alférez and Pelechano [1] use architecture models

hosted in Eclipse. The models are evolved by a context

monitor which observes the remotely running system.

• Almorsy et al. [2] enforce security specifications at run-

time through aspect-oriented techniques according to a

security model in a local modeling environment.

• Fouquet et al. [22] discuss a graphical simulator which

is pluggable on applications as debugger/monitor.

4.2.2 Model Syntax. While the used model syntax does not di-

rectly influence the overall architecture of the system, it has an

impact on the analysis capabilities that are offered to the user. The

decision about the model syntax is mainly driven by the usability

requirements of the analyst and involves the selection of the right

modeling tools which offer the necessary degree of customization.

Forces for Issue: Model Syntax

• Accessibility: The models used for the analysis should

be easily editable, usable and readable for analysts with

variable preferences and assistive needs. Textual models

can easily be processed by machines, but usability may

be improved when using graphical models for analyzing

the running system.

• Understandability: The models used for the analysis

should assist the analyst in understand the behaviour of

the running system.

• Usability: The models should enable the analyst to di-

rectly interact with the running system and modify the

analysis properties. Graphical models are intuitive ab-

stractions for analyzing the running system, but hinder

the applicability of accessibility-related editor features.

There are two types of model syntaxes: A graphical model syn-

tax describes models with the help of customized nodes, edges and

their properties. The Unified Modeling Language (UML) diagram

types are prominent examples which fall into this category. The

other type is textual model syntax where models are described

with textual definitions that follow a formal grammar. Prominent

examples are architecture description languages, which sometimes

provide both types of syntax. Choosing a model syntax mainly

depends on the usability requirements of the analyst and the cus-

tomizability of the usedmodeling tools: editors for graphical models

can often be adapted easily to fit the needs of the analyst, while

textual models can easily be edited even without a specialized ed-

itor. Prominent tools for creating and editing models which also

integrate with a wide range of other model-driven development

tools are Eclipse Sirius (graphical) and Xtext (textual).

Pattern: Graphical Model Syntax

Context: The analyst wants to analyze the behaviour of

a running system on the model level using a coherent

interface for both the models and analysis results.

Problem: You want to enable analysts to perform their

analysis tasks (e.g., the formulation of aggregation opera-

tions on captured events) directly in the model editor. You

want a system where the analyst is not required to leave

the modeling environment to perform the analysis.

Solution: Use a graphical modeling environment (e.g.,

Eclipse Sirius) that is customizable in a way such that

additional information can be toggled on or off in separate

layers containing custom model elements. This allows the

analyst to examine recorded runtime events and formulate

analysis expressions in the models without leaving the

graphical environment.

Consequences: Benefits & Liabilities

+ Understandability: Graphical models can offer a quick

overview of the system part under observation and in-

tegrate customized symbols and visualizations, e.g. to

highlight faulty model elements that were detected dur-

ing analysis.

+ Usability: Usability is enhanced, since analysis can be

done directly in the models. There is no need for an

external viewer for analysis results.

– Accessibility: Assistive tools like screen readers do not

work. More generally, modeling frameworks which offer

the required customizability are scarce.

Known Uses

• Fouquet et al. [22] discuss a graphical simulator which

is pluggable on applications as debugger/monitor.

• Georgas et al. [28] use architectural models to manage

runtime adaptations. Models are graphical and are en-

riched with architectural performance metrics.

• Simulink is a commercial modeling tool which enhances

graphical models during simulation with additional run-

time information.

• LabVIEW is a commercial tool for designing embedded

systems. It highlights execution paths in graphical data

flow models when starting a simulation.

• Signavio is a commercial web-based modeling tool for

creating graphical BPMN diagrams. It highlights busi-

ness process model activities with simulation data.

EuroPLoP ’18, July 4–8, 2018, Irsee, Germany Michael Szvetits and Uwe Zdun

Pattern: Textual Model Syntax

Context: The analyst wants to analyze the behaviour of a

running system on the model level. The modeling environ-

ment for the analysis of runtime events hosts the models

and can be extended with custom views and controls.

Problem: You want to enable the analyst to display the

analysis results in the modeling environment, but also

want the used models to remain easy to edit and process.

Solution: Use a textual model editor to display models

describing the system under observation, and use external

views (i.e., separate visual areas in the modelling environ-

ment) for showing the analysis results. The results must

have a reference to the model elements (e.g., their names)

they belong to in order to make sense to the analyst. This

solution ensures thatmodels can be created andmaintained

with established text processing tools.

Consequences: Benefits & Liabilities

+ Accessibility: Text can easily be interpreted by various

tools (screen readers, version management tools, etc.).

There exists a vast amount of tools for building textual

editors to edit the model of the observed system.

– Understandability: Integration of customized symbols

and visualizations (and thus, analysis results) is more

difficult than in graphical environments.

– Usability: External views lead to a fragmented user ex-

perience for analysts.

Known Uses

• PlantUML is an alternative to the graphical syntax used

in UML diagrams. PlantUML also allows to convert dia-

gram definitions to images (not graphical models).

• yUML is a textual language for defining UML diagrams

that can easily be shared online. Diagrams are defined

in an URL format.

• QuickDBD is a commercial online tool for drawing data-

base diagrams using a textual syntax. QuickDBD also

allows to convert diagram definitions to images (not

graphical models).

4.2.3 Kinds of Models. Similar to the model syntax, the kinds of

models do not directly influence the overall architecture of the

system, but they have certain control over the information that

can be monitored from the running system and the model-driven

techniques that can assist in relating runtime events with their

corresponding model elements. The decision about the kinds of

models to use for manual analysis is mainly driven by the amount

of traceability links that can be generated by supplemental model-

driven techniques.

Forces for Issue: Kinds of Models

• Analyzability: The models used by the analyst should en-

able a wide range of analysis possibilities for the running

system.

• Traceability: The models used by the analyst should be

traceable to their implementation counterparts to sup-

port the formulation of monitoring code. Structural mod-

els can easily be traced to their implementation, but the

analyzability of modelled behaviours is mainly consti-

tuted by using behavioural models.

Structural models describe the static structure of the running

system. Structural information is easy to process by model-driven

development tools, especially in code generation approaches be-

cause entities describing structure can often be transformed directly

into equivalent concepts of the target language the observed system

is implemented in. As a result, the effort for writing monitoring

code and the actual business logic can be reduced.

Pattern: Structural Model

Context: An analyst is expected to analyze the behaviour

of a specific system on the model level in the future. The

observed system is currently in the development phase

and you decide which models to use for future analyses

while implementing the system.

Problem: You want to keep the effort of implementing the

manual analysis capabilities as small as possible. You want

these capabilities to almost come for free when implement-

ing the actual business logic of the observed system.

Solution: Use models that describe the structure of the

system. Model-driven techniques like model transforma-

tion can generate the corresponding implementation and

monitoring code for those models rather easily. It is very

often the case that structural high-level model elements

can be identified one way or another (e.g., via naming

conventions) in the underlying implementation.

Consequences: Benefits & Liabilities

+ Traceability: Utilizing automatic traceability approaches

like the ones from model transformation languages is

easy. The resulting traceability links can be used to au-

tomatically generate monitoring code which yields the

necessary events for the model element of interest.

– Analyzability: Many interesting runtime events are

linked to behavioural model elements (e.g., the execution

of modelled actions), not structural ones.

Known Uses

• Bauer et al. [7] transform UML deployment and class

diagrams into a security monitor. Violations detected by

the monitor are fixed using aspect-oriented techniques.

• In the approach of Gjerlufsen et al. [30], events recorded

from a Nokia phone are related to graphical, structural

models. Special overlays are directly embedded into the

models which allows the analyst to inspect the events.

• Hamann et al. [39] present USE, a tool for monitoring

programs with the help of class and object diagrams.

Object diagrams are enriched with values extracted from

the running systems via events.

A Pattern Language for Manual Analysis of Runtime Events Using Models EuroPLoP ’18, July 4–8, 2018, Irsee, Germany

Applying model-driven techniques to generate code is also pos-

sible for behavioural models. However, generating business logic

and monitoring code which adequately reflects the data and control

flows described in the models is slightly more complex. This is

especially true for models that are close to the problem space, i.e.

where the conceptual gap to the actual implementation is large.

Prominent examples of behavioural models for manual analyses

are activity and state machine models.

Pattern: Behavioural Model

Context: An analyst is expected to analyze the behaviour

of a specific system on the model level in the future. The

observed system is currently in the development phase

and you decide which models to use for future analyses

while implementing the system.

Problem: You want to enable the analyst to perform so-

phisticated analyses on the model level, e.g. by annotating

specific control flow paths with aggregation operations of

corresponding events.

Solution: Use models that describe the behaviour of the

system. They enable the analyst to track the execution

states of the system under observation and pinpoint the lo-

cation of problems in case of failures. This can be combined

with graphical modeling environments to highlight con-

trol flow paths with symbols and additional information

to gain insight into the behaviour of the running system.

Consequences: Benefits & Liabilities

+ Analyzability: Many interesting runtime events are

linked to behavioural model elements (e.g., the execution

of modelled actions).

– Traceability: Utilizing automatic traceability approaches

like the ones from model transformation languages is

hard because the generation of fully executable code

from behaviour models is complex.

Known Uses

• Bodenstaff et al. [11] use activity models to check con-

sistency constraints in organization cooperations. Con-

sistency is checked by tracing events that are written to

multiple logs.

• Garzon and Cebulla [27] use highlighted state machine

models for user interaction analyses.

• Fouquet et al. [22] discuss a graphical simulator which

is pluggable on applications as debugger/monitor. In

the paper, they provide an example of simulating and

debugging using state machines.

• Hamann et al. [39] present USE, a tool for monitoring

programs with the help of class and object diagrams.

Additional state machine and sequence diagrams are

used to monitor sequence of operations [38].

For both structural models and behavioural models, many

model transformation languages provide traceability information

between the model elements and the generated output automat-

ically [20, 46, 52, 62], thus simplifying the feedback of runtime

events to their corresponding model elements. However, the same

is not quite as easy for other kinds of models which do not directly

reflect the structure or behaviour of the system. Examples of such

models are role-based access control (RBAC) models, architectural

decision models and goal models [31, 63, 65, 67]. For those kinds of

models, finding suitable runtime events and corresponding coun-

terparts in the implementation is much harder and can hardly be

performed automatically. The more the models describe concepts

that are different from the structure and behaviour of the system,

the more handiwork is needed to relate the model elements with

their corresponding implementation counterparts.

4.3 Introspection Patterns

Choosing between the various introspection patterns mainly affects

how runtime events are extracted from the running system, stored

and exchanged with the modeling environment. Consequently, we

divided the topic into the event recording issue, the event storage

issue and the event exchange issue. Figure 5 shows the relation-

ships of introspection-related patterns discussed in this section

between themselves and to patterns of other categories which will

be discussed later on.

4.3.1 Event Recording. The event recording issue is concernedwith
the monitoring of runtime events in the most unobtrusive way as

possible, meaning that the formulation of monitoring logic should

be as independent as possible from the actual business logic of the

running system. This independence ensures that the system can

dynamically be adaptedwith new versions ofmonitoring codewhile

it is up and running. The decision of how to record events is mainly

driven by the desired degree of flexibility and the offered services

of the used execution environment and middleware technologies.

Forces for Issue: Event Recording

• Adaptability: The monitoring code should be changeable

at runtime according to changing monitoring require-

ments. Event recording strategies with high orthogonal-

ity are usually also easily adaptable since the business

logic needs no changes.

• Flexibility: The recording should not be restricted to

certain types of events.

• Modularity: The monitoring code should be imple-

mented in separate modules. High modularity coincides

with high orthogonality since monitoring instructions

can be formulated separately from the business logic.

• Orthogonality: The recording logic should not interfere

with the business logic. High orthogonality ensures high

adaptability since changes to the recording logic are

isolated from the business logic and can be managed

separately at runtime.

One common technique to perform event recording in a cross-

cutting manner is to use aspect-oriented programming (AOP

[47]). The monitoring logic is implemented in separate modules

named aspects and woven into the actual business logic by a spe-

cial compiler. Most of the AOP implementations only support the

application of monitoring aspects during compile time without the

possibility of weaving newly introduced aspects into the running

EuroPLoP ’18, July 4–8, 2018, Irsee, Germany Michael Szvetits and Uwe Zdun

Model-Based Log

Remote
Storage

Polling-Based
Exchange

In-Memory
Storage

Event Log

Publish/Subscribe
Exchange

Request/Response
Exchange

can support

enables

alternatives

alternatives

alternatives

alternatives

variant of

Middleware-Based
Event Recording

Indirection-Based
Event Recording

alternatives

alternatives

Aspect-Oriented
Event Recording

Debug API
Event Recording

alternatives

yields
events for

Correlation Mechanism

Model-Based
Correlation

uses

Event RecordingEvent Storage

Event Exchange

Figure 5: Overview of important relationships between introspection-related patterns and patterns of other categories

system. One possibility of applying aspects at runtime is to weave

a generic aspect at system startup which intercepts all possible

events and then checks if an intercepted event conforms to the

monitoring criteria which can be exchanged at runtime. This so-

lution is flexible but subpar when it comes to performance since

every possible event must be intercepted and checked at runtime.

Another option is to use an aspect weaver which natively supports

the adaptation of aspects at runtime [23].

Pattern: Aspect-Oriented Event Recording

Context: The analyst wants to analyze the behaviour of a

running system on the model level. You decide how events

should be recorded while the observed system is running.

The system under observation is implemented using object-

oriented principles.

Problem: Changes to the actual business logic are not pos-

sible or forbidden. Nevertheless, you want the monitoring

logic to record essential parts of the business logic without

violating the separation of concerns principle.

Solution:With aspect-oriented programming (AOP), mon-

itorig instructions are written in separate components

called aspects without changing the actual implementation

of the system. The final system is assembled by a special

compiler which weaves the monitoring instructions into

the actual implementation. Dynamic aspect weavers na-

tively support the adaptation of aspects at runtime.

Consequences: Benefits & Liabilities

+ Flexibility: Arbitrary monitoring code can be executed

at predefined points of the execution.

+ Modularity: Aspects allow modular programming of

monitoring code.

+ Orthogonality: The recording logic does not interfere

with the business logic.

– Adaptability: Although possible, performance overhead

must be considered if aspects are changed at runtime.

Known Uses

• Amoui et al. [3, 4] use aspect-oriented techniques to

probe the environment of the observed system and prop-

agate state changes to a runtime model. Adaptations are

based on constraints analyzed on this runtime model.

• Arcaini et al. [5] use AspectJ to record events of the

observed system and trace them to model elements of a

state machine for conformance monitoring.

• The approach of Krüger et al. [48] relies on generating

AspectJ monitors from sequence models. The monitored

events are used to check if interactions sequences in a

distributed system conform to the modelled behaviour.

• Kieker is a framework for continuous monitoring of soft-

ware services [61]. It relies on AspectJ to record events

during execution (here: messages that are exchanged

between components), which are then grouped to derive

complete execution traces. Such traces can be analyzed

using generated sequence diagrams.

Alternatives to aspect-oriented event recording are debug

API and middleware-based event recording which both address

the utilization of interfaces that are provided by the execution envi-

ronment or communication middlewares used by the system under

observation. Examples of such interfaces are the debug interface

A Pattern Language for Manual Analysis of Runtime Events Using Models EuroPLoP ’18, July 4–8, 2018, Irsee, Germany

of the Java Virtual Machine (JDI) and the message interceptors of

the Common Object Request Broker Architecture (CORBA). While

those interfaces provide an unobtrusive access to runtime events

(i.e., the system implementation needs no changes) and allow to

adapt the monitoring conditions at runtime, the operations are

rather low-level or limited to the event types offered by the respec-

tive middleware.

Pattern: Debug API Event Recording

Context: The analyst wants to analyze the behaviour of a

running system on the model level. You decide how events

should be recorded while the observed system is running.

The system under observation is implemented using a

virtual machine.

Problem: Changes to the actual business logic are not pos-

sible or forbidden. Nevertheless, you want the monitoring

logic to record essential parts of the business logic without

violating the separation of concerns principle. You do not

want no introduce additional dependencies by utilizing

features of the virtual machine.

Solution: Utilize the debug interfaces that are provided

by the execution environment used by the system under

observation to extract events. This interface provides an

unobtrusive access to runtime events (i.e., the system im-

plementation needs no changes) and allows to adapt the

monitoring conditions at runtime.

Consequences: Benefits & Liabilities

+ Adaptability: Monitoring is adaptable without the need

of pre-processing like weaving.

+ Orthogonality: The recording logic does not interfere

with the business logic.

– Flexibility: The captured event types are restricted and

rather low-level.

– Modularity: Monitoring code structure is arbitrary, mod-

ularity is optional.

Known Uses

• Various approaches exist which make use of the Joint

Test Action Group (JTAG) debugging interface to cap-

ture events [33, 34, 55, 69]. The recorded events are

traced back to highlighted state machine models where

the system can be analyzed in a graphical manner.

• Hamann et al. [37] utilize the Java Debug Interface (JDI)

to relate events to their corresponding UML behavioural

models. The recorded events are used in combination

with OCL constraints for conformance analysis.

• Keil µVision is a commercial debugger using the JTAG

interface to trace events of embedded programs.

Pattern: Middleware-Based Event Recording

Context: The analyst wants to analyze the behaviour of a

running system on the model level. You decide how events

should be recorded while the observed system is running.

The system under observation is implemented using a

communication middleware.

Problem: You want the monitoring logic to record essen-

tial parts of the business logic without directly interfering

it. Although the system operates in a distributed setting,

you want to comply with the separation of concerns princi-

ple and introduce no additional dependencies for recording

the events.

Solution: Utilize the interfaces that are provided by the

middleware used by the observed system to extract events.

Examples of such an interface are the message interceptors

provided by the CORBA architecture.

Consequences: Benefits & Liabilities

+ Adaptability: Monitoring is adaptable without the need

of pre-processing like weaving.

+ Orthogonality: The recording logic does not interfere

with the business logic.

– Flexibility: Middleware interceptors often operate on a

low-level and make high-level analyses harder. Captured

event types are restricted to the ones that are observable

through the middleware interceptors.

– Modularity: Monitoring capabilities are tightly coupled

to the used communication middleware. A change in the

used technologies for the business logic might invalidate

existing monitoring code.

Known Uses

• Bertolino et al. [9] present GLIMPSE, a middleware to

capture events according to a custom event meta-model.

Events are combined to metrics for quantifiable obser-

vations of the system.

• Gamez et al. [24] present FamiWare, a middleware to

record and distribute events in a publish/subscribe man-

ner. Recorded events are traced to architecture and fea-

ture models for further analyses and reconfiguration

actions.

• ReMMoC is a middleware for mobile client interoper-

ability using CORBA-based events [32].

Another possibility of recording events in a modular way is to

make deliberate use of indirection patterns when implementing

the system under observation [25]. Examples of such patterns are

the proxy pattern and the decorator pattern, which can both be

used to dynamically attach or detach monitoring instruction to the

actual business logic, thus modifying the event recording conditions

at runtime. This indirection-based event recording pattern

ensures flexibility in an early stage of development, but is not

simple to set up because it is hard to decide beforehand which

parts of the system to design for the sake of adaptability of the

monitoring instructions. Since the monitoring requirements of an

analyst cannot easily be foreseen during the development phase,

the extreme case is to model every single component and operation

with the help of indirection patterns, which ultimately leads to

a system whose implementation is very flexible but very hard to

understand.

EuroPLoP ’18, July 4–8, 2018, Irsee, Germany Michael Szvetits and Uwe Zdun

Pattern: Indirection-Based Event Recording

Context: The analyst wants to analyze the behaviour of a

running system on the model level. You decide how events

should be recorded while the observed system is running.

The system under observation is implemented using object-

oriented principles.

Problem: Youwant themonitoring logic to record runtime

events of the business logic, but at the same time you want

the monitoring logic to be adaptable without the use of

additional libraries or pre-execution steps.

Solution: Cope with dynamic event recording conditions

at runtime by making a deliberate use of indirection pat-

terns when implementing the observed system. Indirection

patterns like the proxy and the decorator pattern allow to

change the behaviour (and thus, the monitoring instruc-

tions) of components and operations while the system is

up and running.

Consequences: Benefits & Liabilities

+ Adaptability: Monitoring is adaptable with native lan-

guage features.

+ Flexibility: Flexibility regarding dynamically changing

monitoring requirements is ensured in an early stage of

the software development phase.

+ Modularity:Modularity is an inherent goal of established

design patterns.

– Flexibility: The monitoring requirements of an analyst

cannot easily be foreseen during the development phase.

– Orthogonality: A speculative overuse of indirection pat-

terns can lead to an implementation that is harder to

understand.

Known Uses

• In the approach of Bertolino et al. [9], events are

recorded using either code injection or the proxy de-

sign pattern.

• Log4j is a prominent, de-facto standard framework for

logging runtime events using the abstract factory pat-

tern. It can also be combined with other event yielding

and reporting backends using the popular Java library

named Metrics.

• Hibernate is an often used persistence framework which

provides runtime events.

4.3.2 Event Storage. The event storage issue is concerned with the

temporal availability and storage formats of recorded events. The

decision drivers for this issue are the performance of the overall

system, the up-to-dateness of the analysis results and the reliability

of the system in case of failures:

Forces for Issue: Event Storage

• Analyzability: The event storage should ensure the up-

to-dateness of analysis results and enable further pro-

cessing of recorded events.

• Availability: The event storage should be accessible by

the modeling environment and allow retrospective anal-

ysis of recorded events. Availability may contradict ana-

lyzability since storing events for retrospective analysis

adds complexity for keeping analysis results up-to-date.

• Efficiency: The distribution of runtime events should be

performance-friendly for both the modeling environ-

ment and the observed system. Efficiency may contra-

dict availability since writing events to a persistent log

(needed for retrospective analysis) with a high frequency

introduces noticeable I/O overhead.

One pattern to solve this issue is to read and write an event

log which stores the recorded runtime events. Such a persistent

solution allows that the recorded events may outlive the uptime of

the system under observation, meaning that the recorded events

can be analyzed even after the running system was shut down. The

concurrent access of reading (by the modeling environment) and

writing (by the running system) the event log must be managed

and the up-to-dateness of the analysis results must be ensured by

polling the event log or using notification mechanisms. Log files are

an important source of information when analyzing the behaviour

of a running system [45].

Pattern: Event Log

Context: Runtime events are recorded by the observed

system. The modeling environment needs those events to

perform aggregations and obtain analysis results.

Problem: You not only want to perform analyses on the

recorded events, but also introduce a temporal decoupling

between the event recording at runtime and the analyses

performed by analysts. You want give the analysts the

freedom to perform analyses at a later stage with tools

and model environments of their choice, even after the

observed system was halted.

Solution: Read and write an event log which holds the

recorded runtime information. Such a persistent solution

allows that the recorded events may outlive the uptime of

the system under observation, meaning that the recorded

events can be analyzed even after the running system

crashed or was shut down on purpose.

Consequences: Benefits & Liabilities

+ Analyzability: Depending on the log format, the events

can be further processed by many tools.

+ Availability: Post-mortem analysis of the observed sys-

tem is possible.

– Analyzability: Concurrent access to the event log (writ-

ing by the observed system, reading by the modeling

environment) must be managed. As a consequence, get-

ting a live view of the events introduces additional com-

plexity.

– Efficiency: Writing and reading events with a high fre-

quency is problematic.

A Pattern Language for Manual Analysis of Runtime Events Using Models EuroPLoP ’18, July 4–8, 2018, Irsee, Germany

Known Uses

• Holmes et al. [41] utilize business process execution

engine logs as basis for analyses to identify compliance

violations. Violations are detected by tracing the events

to process models and associated compliance rules.

• Bodenstaff et al. [11] use activity models to check con-

sistency constraints in organization cooperations. Con-

sistency is checked by tracing events that are written to

multiple logs.

• Garzon and Cebulla [27] analyze user interactions by

logging XML-based events to trace execution states.

• Related: Splunk is a commercial tool for synthesizing

event logs from multiple sources and generating reports

to help analysts in assessing the system health.

An alternative to the persistent solution of using an event log

is to order the system under observation to keep the recorded

events in an in-memory storage only. This solution is superior

regarding performance, but prone to crashes and shutdowns since

the recorded events are essentially lost if the system shuts down

unexpectedly.

Pattern: In-Memory Storage

Context: Runtime events are recorded by the observed

system. The modeling environment needs those events to

perform aggregations and obtain analysis results.

Problem: You want a high-performance solution where

recorded events are transferred to and processed by the

modeling environment as requested. You not only want to

perform analyses on the recorded events, but also introduce

a temporal decoupling between the event recording at

runtime and the analyses performed by analysts.

Solution: Instruct the system under observation to keep

the recorded events in memory only. The retrieval of the

recorded events must be performed on an on-demand ba-

sis initiated by the modeling environment, which means

that the running system must be equipped with a suitable

interface.

Consequences: Benefits & Liabilities

+ Efficiency: The performance is better than in persistent

approaches.

– Analyzability: The complexity of managing the concur-

rent access to events is shifted to the observed system.

Furthermore, existing offline tools (version management,

search, etc.) cannot be applied to the events.

– Availability: Post-mortem analysis of the observed sys-

tem is not possible.

– Efficiency: The observed systemmust store events even if

no modeling environment is connected. This introduces

additional complexity, e.g. through the need of a round-

robin storage mechanism for memory management.

Known Uses

• See Section 5 for a possible manifestation of this pattern.

• Simulink is a commercial modeling tool for performing

simulaions. Events captured during simulations are lost

after ending the simulation.

• LabVIEW is a commercial tool for designing embedded

systems and performing simulations. Events captured

during simulations are lost after ending the simulation.

Another possibility is to watch the recorded events in a remote

storage located in the modeling environment. The observed sys-

tem installs the necessary monitoring logic (see the aforementioned

patterns on event recording) for connected modeling environments

and publishes the requested events when they arise. This strategy

can be combined with the aforementioned in-memory storage pat-

tern, meaning that the running system keeps the recorded events

in memory as long as no observer is connected, but switches to live

mode when being observed by an external modeling environment.

Pattern: Remote Storage

Context: Runtime events are recorded by the observed

system. The modeling environment needs those events to

perform aggregations and obtain analysis results.

Problem: You want a high-performance solution where

recorded events are transferred to and processed by the

modeling environment as quickly as possible. In addition,

it is desired that the observed system experiences no over-

head if no modeling environment is currently connected.

Solution: Instruct the running system to not record any

events as long as no modeling environment is connected.

When a modeling environment connects to the system un-

der observation and transmits its monitoring requirements,

the system installs the necessary monitoring logic and pub-

lishes the requested events immediately to the modeling

environment when they arise.

Consequences: Benefits & Liabilities

+ Efficiency: The performance is better than in persistent

approaches. No overhead if no modeling environment

is connected to the running system.

+ Availability:Analysis results can be kept up-to-date with-
out the need of constantly polling the system.

– Analyzability: The complexity of managing the concur-

rent access to events is shifted to the observed system.

Furthermore, existing offline tools (version management,

search, etc.) cannot be applied to the events.

– Availability: The support of post-mortem analysis must

be managed individually by each modeling environment.

Known Uses

• See Section 5 for a possible manifestation of this pattern.

A special case of using an event log is to store events in a model-

based log. The model-based event log itself can then be further

processed with model-driven techniques like model transformation

to gain additional insights into the course of events of the running

system.

EuroPLoP ’18, July 4–8, 2018, Irsee, Germany Michael Szvetits and Uwe Zdun

Pattern: Model-Based Log

Context: Runtime events are recorded by the observed

system. The modeling environment needs those events to

perform aggregations and obtain analysis results.

Problem: You not only want to perform analyses on the

recorded events, but also introduce a temporal decoupling

between the event recording at runtime and the analyses

performed by analysts. You want give the analysts the

freedom to perform analyses at a later stage and also enable

additional analyses of the recorded events with existing

model-driven development tools.

Solution: Store events in a model which conforms to a

separate event log meta-model. Such a model can have ref-

erences to model element instances of other meta-models,

which means that the traceability links between runtime

events and the model elements of interest can directly be

encoded into the event log.

Consequences: Benefits & Liabilities

+ Analyzability: Events can be processed by model-driven

development tools.

+ Availability: Post-mortem analysis of the observed sys-

tem is possible.

– Analyzability: Concurrent access to the event log (writ-

ten by the observed system, read by the modeling envi-

ronment) must be managed. As a consequence, getting a

live view of the events introduces additional complexity.

– Efficiency: Writing and reading events with a high fre-

quency is problematic.

Known Uses

• Mayerhofer et al. [49] present an approach where the

behaviour of a system is tracked using events conform-

ing to a separate event meta-model. Recorded events are

directly related to nodes of a UML activity diagram.

• Dongen and van der Aalst [18] propose a meta-model for

event logs using a custom XML-based format. Recorded

events are used for process mining to extract knowledge

and models from the system for further analyses.

• Tax et al. [60] present a similar approach for process

mining using the XES event log meta-model.

4.3.3 Event Exchange. The issue of exchanging events between the

modeling environment and the running system is closely related to

the techniques of storing events. Related patterns are concerned

with the point of time when the event source is checked for new

runtime events. If new runtime events are available, the modeling

environment has to reapply the filter and aggregation instructions

defined by the analyst to refresh the displayed analysis results.

Forces for Issue: Event Exchange

• Efficiency: The distribution of runtime events should be

performance-friendly for both the modeling environ-

ment and the observed system.

• Responsiveness: The event exchange strategy should al-

low the analyst to keep the analysis results up-to-date.

High responsiveness demands high efficiency when a

large amount of events is distributed and processed by

the modeling environment.

• Scalability: Even with a large number of observing ana-

lysts and captured runtime events, the event exchange

performance should hardly be affected. High scalability

demands high efficiency when a large amount of events

is distributed and processed by the connected clients.

Events can be exchanged in a reqest/response exchange

style, which means that the modeling environment receives the

recorded events of the running system on an on-demand basis.

This strategy is compatible with the in-memory storage pattern

discussed above.

Pattern: Reqest/Response Exchange

Context: Runtime events are recorded by the observed

system. The observed system is ready to transmit those

events to the modeling environment to enable the analysis

of its behaviour.

Problem: You want a simple solution where the observed

system offers the events to connected modeling environ-

ments without introducing an overhead for the observed

system with respect to keeping track of connected model-

ing environments.

Solution: Exchange events between the observed system

and the modeling environment in a request/response style,

meaning that the modeling environment receives recorded

events of the running system on an on-demand basis.

Consequences: Benefits & Liabilities

+ Efficiency: Easy to implement in a synchronous manner,

for both the modeling environment and the running

system.

– Responsiveness: Up-to-dateness is not guaranteed by sin-

gle requests.

– Scalability: Performance and storage considerations are

necessary if the amount of captured runtime events per

request is large.

Known Uses

• See distributed system approaches [59].

Another possibility is a polling-based exchange of events,

which means that that a periodic request for data takes place. This

can be applied in combination with event logs and model-based

logs by regularly requesting their stored runtime event entries.

Pattern: Polling-Based Exchange

Context: Runtime events are recorded by the observed

system. The observed system is ready to transmit those

events to the modeling environment to enable the analysis

of its behaviour.

A Pattern Language for Manual Analysis of Runtime Events Using Models EuroPLoP ’18, July 4–8, 2018, Irsee, Germany

Problem:Youwant the observed system to offer the events

to connected modeling environments without keeping

track of connected environments. On the other hand, you

want the analysis results to be updated regularly in the

modeling environment to track the system behaviour.

Solution: Exchange events between the observed system

and the modeling environment by regularly requesting

the stored runtime events. This strategy can be applied

in combination with the event log and model-based log

patterns.

Consequences: Benefits & Liabilities

+ Efficiency: Easy to implement in a synchronous manner,

for both the modeling environment and the running

system.

+ Responsiveness: The analysis results can be kept up-to-

date.

– Responsiveness: The polling interval decides the up-

to-dateness of the analysis results, which is domain-

dependent.

– Scalability: Polling is concerned with performance con-

siderations.

Known Uses

• See enterprise integration patterns [40].

Another alternative is the publish/subscribe exchange pattern

where the modeling environment registers itself at the source of

events and is immediately notified when new runtime events arrive

[40, 59]. This strategy can be applied in combination with the re-

mote storage pattern, but also together with event logs if they

provide subscription functionality (e.g., offered by databases).

Pattern: Publish/Subscribe Exchange

Context: Runtime events are recorded by the observed

system. The observed system is ready to transmit those

events to the modeling environment to enable the analysis

of its behaviour.

Problem: You want the observed system to distribute

recorded runtime events to the connected modeling envi-

ronments as quickly as possible. You want to ensure that

all those environments always have up-to-date analysis

results, thus providing a live view of the system behaviour

through a constant stream of events.

Solution: Instruct the modeling environments to register

themselves at the source of events (i.e., the running system

or an event log) so they are immediately notified when new

runtime events arrive. In this setup the running system is

not enforced to store the events.

Consequences: Benefits & Liabilities

+ Efficiency: Performance- and memory-friendly solution

since the observed system is not required to store events.

+ Responsiveness: Analysis results are always up-to-date,
and stream-based processing of events is possible.

+ Scalability: Transmitting single events to multiple ob-

servers is fast.

– Scalability: The observed system has an overhead since

it must manage multiple connected modeling environ-

ments (e.g., send events to all environments, manage

timeouts and unexpected disconnects, memorize which

events are still pending for which modeling environ-

ment, etc.).

Known Uses

• Various approaches utilize the publish/subscribe ex-

change functionalities of middlewares to distribute

recorded runtime events [14, 15, 24, 26].

• Caporuscio et al. [14, 15] present an approach where

events are routed from publishers to architectural and

performance models of subscribers to enable model-

based analysis and trigger system reconfigurations.

• See the Publish-Subscribe Channel messaging pattern

used in enterprise integration [40]. There are also con-

crete examples on the accompanied web site using Rab-

bitMQ
1
and Apache Kafka

2
.

4.4 Traceability Patterns

Choosing between the various introspection patterns mainly af-

fects how to relate runtime events with their corresponding model

elements of the modeling environment. We divided the topic into

traceability link creation and maintenance issue and the correlation

mechanism issue. Figure 6 shows the relationships of traceability-

related patterns discussed in this section between themselves and

to patterns of other categories.

4.4.1 Link Creation & Maintenance. The link creation issue is

concerned with the establishment of traceability links between

recorded runtime events and their corresponding model elements.

Link maintenance deals with the prevention of the connected model

elements and runtime events drifting apart. The solution alterna-

tives are similar to the traceability link creation strategies. Incon-

sistencies between the model elements and runtime events are

mainly introduced by changes to the model without making the

appropriate changes to the monitoring code.

Forces for Issue: Link Creation & Maintenance

• Productivity: Traceability links should be created and

maintained easily by a developer without noticeable

increase in effort.

• Traceability: The established traceability links should en-
able a broad range of analysis possibilities for the analyst.

A high degree of traceability decreases productivity if

many traceability links must be created and maintained

manually.

1
enterpriseintegrationpatterns.com/patterns/messaging/Filter.html

2
enterpriseintegrationpatterns.com/patterns/messaging/CompetingConsumers.html

https://www.enterpriseintegrationpatterns.com/patterns/messaging/Filter.html
https://www.enterpriseintegrationpatterns.com/patterns/messaging/CompetingConsumers.html

EuroPLoP ’18, July 4–8, 2018, Irsee, Germany Michael Szvetits and Uwe Zdun

alternatives

used in

Link Creation & Maintenance Event Storage

Identifier-Based
Correlation

Model-Based
Correlation Model-Based Log

Model Integration

External Analysis

embeds

used in

Correlation Mechanism

alternatives

Automatic Link
Management

Manual Link
Management

Kinds of Models

Structural Model
suggests

Figure 6: Overview of important relationships between traceability-related patterns and patterns of other categories

One simple strategy is to perform manual link management,

i.e. to write the monitoring logic manually so it yields the appro-

priate events that are relevant for the model elements of interest:

The developer must follow existing traceability links (if available),

analyze the corresponding implementation and write the neces-

sary monitoring code. For link maintenance, the procedure must

be repeated, the monitoring code updated by hand and the system

redeployed.

Pattern: Manual Link Management

Context: The analyst wants to analyze the behaviour of

a running system on the model level. You decide how to

relate recorded runtime events with the models they origi-

nate from while implementing the observed system with-

out the help of model-driven techniques.

Problem: You want to relate events and their associated

model elements, but the observed system is implemented

without the help of model-driven development techniques,

which means that the models and the corresponding code

live in isolation.

Solution:Write the monitoring logic manually so it yields

the appropriate events that are relevant for the model el-

ements of interest. This is a flexible strategy for systems

where the relevant parts of the implementation code can

quickly be found and changed, if necessary.

Consequences: Benefits & Liabilities

+ Traceability: Flexible since the monitoring code can be

written carefully for the current analysis task at hand.

– Productivity: Manual effort is large, so manual link man-

agement is only feasible for small systems.

Known Uses

• Every traceability approach where automatic link man-

agement is not performed.

The contrast to the manual strategy, traceability links between

runtime events and model elements can also be generated auto-

matically by using model transformation [20, 46, 52, 62]. In this

automatic link management pattern, a code generator takes the

model elements of interest as input and inject references to those

model elements into the generated monitoring code. When the

generated monitoring code is executed, the runtime events are in-

stantiated with the model references as arguments and transmitted

to the modeling environment which can close the feedback loop by

relating the events with the model elements they originate from.

For maintaining the traceability links in case of model updates,

new versions of the monitoring code must be re-generated from

the updated models and deployed while the system is up and run-

ning. This action also incorporates the undeployment of the old

monitoring code.

Pattern: Automatic Link Management

Context: The analyst wants to analyze the behaviour of

a running system on the model level. You decide how to

relate recorded runtime events with the models they origi-

nate from while implementing the observed system with

the help of model-driven techniques.

Problem: You want to relate events and their associated

model elements. You want to keep the effort of implement-

ing the traceability mechanism as small as possible.

Solution: Integrate a code generator into the existing

model-driven development workflow to generate the mon-

itoring code from the model elements of interest. The gen-

erator can inject references to those model elements into

the generated monitoring code. When the monitoring code

is executed, the runtime events are instantiated with the

model element references as arguments and transmitted

to the modeling environment to close the feedback loop.

Consequences: Benefits & Liabilities

+ Productivity: Effort reduction is achieved through code

generation.

+ Traceability: Many existing model transformation lan-

guages have integrated traceability support.

– Productivity: Higher initial effort for writing the code

generator in the first place. Long-term effort reduction

can only be achieved if the generator is written in a

generic, reusable way. Code generators are often written

for a specific source meta-model, and thus limited in

their reuse.

A Pattern Language for Manual Analysis of Runtime Events Using Models EuroPLoP ’18, July 4–8, 2018, Irsee, Germany

Known Uses

• Jakumeit et al. [44] present a comprehensive com-

parison of model transformation tools and languages.

Many of the presented model transformation languages

have built-in traceability support with specialized meta-

models (e.g., ATL, Epsilon, QVT, Viatra).

• Amoui et al. [3, 4] present an approach where traceabil-

ity links are generated from code annotations [3, 4].

• Bai et al. [6] present an approach where sensors are

generated from workflow and service models. Recorded

events from these sensors are used to analyze the behav-

ior of services.

A middle ground between the two patterns is to establish the

traceability links in a semi-automated manner, which means that

some traceability links originate from the generated code and some

links are established in manually written monitoring code. This is

necessary if some models used for the analysis describe concepts

that are not directly related to the structure and behaviour of the

system.

4.4.2 Correlation Mechanism. While the establishment of trace-

ability links can be done either manually, automatically or semi-

automatically, the identities of the corresponding model elements

must be somehow encoded into the runtime event entries.

Forces for Issue: Correlation Mechanism

• Correctness: Correlated events and model elements

should stay correlated even if models are evolved.

• Interoperability: The correlation information should be

stored in a way such that it can easily be processed by

other tools.

• Traceability: Recorded runtime events and their associ-

ated model elements should be linked directly. Model-

driven tools can ensure correctness by updating the links

between runtime events and their model elements in

case the model changes.

One common pattern to do this is identifier-based correla-

tion where an artificial identifier is introduced which is unique for

every model element. This identifier is encapsulated in the prop-

erties of an event and can be used by the modeling environment

to reconstruct the references to the related model elements. We

used the identifier-based approach in our previous work on manual

analysis with reusable event types [56], but it is also a well-known

pattern in enteprise integration [40] and distributed systems in the

form of tokens [13].

Pattern: Identifier-Based Correlation

Context: The implemented monitoring code detects an

execution state of interest and yields an event. You decide

a strategy of how to relate the event to the model elements

of interest in the modeling environment of the analyst.

Problem: You want to encode the identities of the corre-

sponding model elements into the recorded runtime events

so that the modeling environment can close the feedback

loop between events and model elements, but the identities

are required to be unique for each model element so the

feedback is unambiguous.

Solution: Introduce an artificial identifier which is unique

for every model element. This identifier is passed to the in-

stantiation routine of runtime events (i.e., in the generated

or manually written monitoring code) and can be used by

the modeling environment to reconstruct the references

to the related model elements. The artificial identifier can

be as simple as a hash value of the model element name or

the fully-qualified name of the model element within the

model.

Consequences: Benefits & Liabilities

+ Traceability: The implementation of a unique identifier

is simple and already performed internally by somemod-

eling frameworks.

– Correctness: The validity of captured events is prone to

changes to the referenced model elements. Changes to

the model elements (e.g., renaming) entail that the model

elements and the recorded runtime events drift apart,

which means that events cannot be associated with their

model elements anymore.

Known Uses

• In the already mentioned approach of Amoui et al. [3],

events are traced to activity diagrams using the fully-

qualified name of methods for disambiguation.

• Haberl et al. [36] present an approach where monitoring

code is generated from component language (COLA)

models. The generated monitoring code yields special

names in binary recorded events for disambiguation.

• In the approach of Holmes et al. [41], standardized Uni-

versally Unique Identifiers (UUIDs) are assigned to busi-

ness process models. These UUIDs are embedded inmon-

itoring codes generated from process and compliance

models.

Another possibility to relate model elements and runtime events

is to use model-based correlation with the help of an event log,

as described in Section 4.3.2.

Pattern: Model-Based Correlation

Context: The implemented monitoring code detects an

execution state of interest and yields an event. You decide

a strategy of how to relate the event to the model elements

of interest in the modeling environment of the analyst.

Problem: You want to encode the identities of the corre-

sponding model elements into the recorded runtime events

so that the modeling environment can close the feedback

loop, but changes to models must not invalidate already

recorded correlated events.

Solution: Use a model-based event log where log entries

reference the corresponding model elements of the model

EuroPLoP ’18, July 4–8, 2018, Irsee, Germany Michael Szvetits and Uwe Zdun

directly without the need of artificial identifiers. Mod-

eling frameworks can automatically update such cross-

references between models in case a model changes.

Consequences: Benefits & Liabilities

+ Correctness: The approach is robust against small-scale

model changes.

+ Interoperability: Existing modeling tools and libraries

can be applied to the model-based event log.

+ Traceability: Links between model elements and cap-

tured events are directly stored in the model-based log.

– Correctness: Profound changes to the model elements

like deletion still corrupt already existing traceability

links. Furthermore, the approach requires a separate

runtime event meta-model which must be created and

maintained.

Known Uses

• Mayerhofer et al. [49] present an approach where the

behaviour of a system is tracked using events conform-

ing to a separate event meta-model. Recorded events are

directly related to nodes of a UML activity diagram.

• Dongen and van der Aalst [18] propose a meta-model for

event logs using a custom XML-based format. Recorded

events are used for process mining to extract knowledge

and models from the system for further analyses.

• Tax et al. [60] present a similar approach for process

mining using the XES event log meta-model.

4.5 Analysis Patterns

Choosing between the various analysis patterns mainly affects

how to further process recorded events and integrate the results

into the models. Consequently, we divided the topic into the event

processing issue and the model integration issue. Figure 7 shows the

relationships of analysis-related patterns discussed in this section

between themselves and to patterns of other categories.

4.5.1 Event Processing. Since the amount of recorded runtime

events can be very large, filter and aggregation mechanisms are

required so that the analyst is able to obtain manageable insights

into the behaviour of the running system. The decision of how the

further process events is mainly driven by the expressiveness of

the filter and aggregation operations.

Forces for Issue: Event Processing

• Analyzability: The language for defining aggregation

instructions should be tailored to process streams of

runtime events.

• Expressiveness: The language for defining aggregation

instructions should enable a broad range of analyses in

a concise manner.

• Usability: From the analyst’s point of view, the formu-

lation of aggregation instructions should be ease to ac-

complish.

A widely used pattern for filtering and aggregating data is to

store the data in a database and perform database-based pro-

cessing with the help of specialized query languages. The most

prominent language for querying databases is the Structured Query

Language (SQL).

Pattern: Database-Based Processing

Context: Events were recorded by the running system and

transmitted to the storage location. You want to enable

the analyst to specify aggregation operations on these

events to gain meaningful insights into the behaviour of

the running system.

Problem: You want the analyst to be able to apply ag-

gregation operations without the need of learning a new

language. Furthermore, you do not want to spend effort

on implementing a special editor for the analysts so they

can write their queries.

Solution: Use a database for storing runtime events.

Databases provide the widely used language SQL for fil-

tering and aggregating data. There exists a vast amount of

SQL tools and editors which support the formulation of

correct SQL queries.

Consequences: Benefits & Liabilities

+ Expressiveness: SQL is a language that is widely used and
well-understood by many analysts. It has a wide range

of predefined aggregation operations.

– Analyzability: SQL is not optimal for analyzing time

series of events. SQL-like event processing languages

are better suited for this task.

– Usability: Existing SQL editors are likely external editors
which are not integrated into the modeling environment

that is operated by the analyst.

Known Uses

• Widespread use, namely whenever an event of a running

system is stored in a database.

An alternative is the usage of complex event processing (CEP)

systems which offer expressive mechanisms to handle time series

of events and data. There are three broad classes of systems to

process complex events with a varying degree of performance and

scalability [16].

Pattern: Complex Event Processing

Context: Events were recorded by the running system and

transmitted to the storage location. You want to enable

the analyst to specify aggregation operations on these

events to gain meaningful insights into the behaviour of

the running system.

Problem: You have high performance demands and want

to enable the analyst to apply aggregation operations on a

constant stream of events.

Solution: Use complex event processing (CEP) systems

which offer expressive mechanisms to handle time series of

events and data. There are three broad classes of systems to

A Pattern Language for Manual Analysis of Runtime Events Using Models EuroPLoP ’18, July 4–8, 2018, Irsee, Germany

Model IntegrationEvent Processing

Event Exchange

Publish/Subscribe
Exchange

Database-Based
Processing

Complex Event
Processing

Embedded
Analysis

External
Analysis

Event Storage

Event Log

Model Syntax

Graphical
Model Syntax

alternatives alternatives

backed by

uses

suggests

Figure 7: Overview of important relationships between analysis-related patterns and patterns of other categories

process complex events. Publish/subscribe-based CEP sys-

tems in particular are characterized by high performance

and high scalability.

Consequences: Benefits & Liabilities

+ Analyzability: SQL-like event processing languages are

well suited for analyzing streams of events. CEP systems

promise to deliver high performance and scalability for

a large amount of events.

+ Expressiveness: CEP utilizes well-known aggregation op-

erations from SQL.

– Usability: Existing CEP editors are likely external editors
which are not integrated into the modeling environment

that is operated by the analyst. Tool support for CEP

systems is not as mature as, for example, the support for

SQL tools and editors. Although many CEP systems are

based on SQL, CEP-specific dialects must be learned by

the analyst.

Known Uses

• Fabret et al. [19] present a high-performance publish/-

subscribe system with limited query abilities. Observed

systems can utilize this approach to record events and

filter them with predicates defined in the subscription.

• Various approaches utilize SQL-inspired stream data-

bases. Demers et al. [12, 16] present Cayuga, a general

purpose event monitoring system which uses SQL as

query language, extended with special expressions to fil-

ter, fold and temporally relate events. A similar system is

proposed by Motwani et al. [51] where SQL-like queries

are continuously applied to event streams instead of

using one-time queries of traditional databases.

• A similar approach is followed by Wu et al. [66], using

an SQL-like pattern matching mechanism with limited

semantics to perform analyses on event streams.

A third alternative is to develop a custom language which al-

lows to analyze the stream of events. We did this in our previous

work on reusable event types [56] by introducing a stream-based

language that is inspired by functional reactive programming [53].

The language allows to filter and aggregate streams of events in

a concise way that can directly be integrated into graphical mod-

eling environments. Although a custom language can be tailored

to event streams by providing event-specific and chronological no-

tations, implementing a custom language is accompanied with an

initial effort. For better usability, the custom language should be

integrated into existing modeling tools, which results in additional

effort. Another example is AQL, which is a SQL-based language

that can be used to perform queries on architectural models [43].

4.5.2 Model Integration. The issue of how to integrate the analysis

results into the models is closely related to the issue of which model

syntax to use. The decision about the integration of analysis results

into models is mainly driven by the usability requirements of the

analyst and involves the selection of the right modeling tools and

frameworks which offer the necessary degree of customization.

Forces for Issue: Model Integration

• Customizability: The analyst should be supported by

customized symbols and decorations to model elements

according to current analysis results.

• Usability: The analyst should have a seamless user ex-

perience when interacting with both the models and

the analysis aspects. High usability can be ensured with

modeling tools which offer a high customizability.

Many graphical modeling environments are customizable in

a way such that existing model elements can be altered in their

appearance or additional information can be toggled on or off in

separate layers, which means that analysis results can be integrated

directly into the models to enable an embedded analysis. This al-

lows the analyst to examine analysis results and formulate analysis

expressions directly in the models. We followed this strategy in our

previous work on reusable event types [56].

Pattern: Embedded Analysis

Context: Events were recorded by the running system and

transmitted to the storage location. You want to enable the

analyst to specify aggregation operations on these events

and decide for a strategy to integrate these operations into

the modeling environment.

EuroPLoP ’18, July 4–8, 2018, Irsee, Germany Michael Szvetits and Uwe Zdun

Problem: You want the analyst to be able to formulate

aggregation operations in a very direct way. You want a

coherent user experience without requiring the analyst to

leave the model environment.

Solution: Use a graphical modeling environment that is

customizable in a way such that existing model elements

can be altered in their appearance or additional informa-

tion can be toggled on or off in separate layers, which

means that analysis results can be embedded directly into

the models. This allows the analyst to examine analysis

results and formulate analysis expressions directly in the

models without leaving the graphical environment.

Consequences: Benefits & Liabilities

+ Customizability: Alternate symbols and visualizations

are possible based on the current analysis results.

+ Usability: Usability is enhanced since analysis is done

directly in the models.

– Customizability: Modeling frameworks which offer the

required customizability are scarce, especially for textual

model editors.

Known Uses

• Georgas et al. [28] use architectural models to manage

runtime adaptations. Architectural performance metrics

are embedded into those graphical models for further

analysis [28].

• In the approach of Gjerlufsen et al. [30], events recorded

from a Nokia phone are related to graphical, structural

models. Special overlays are directly embedded into the

models which allows the analyst to inspect the events.

• Various approaches exist which make use of the Joint

Test Action Group (JTAG) debugging interface to cap-

ture events and trace them back to related graphical

model elements [33, 34, 55, 69]. Analysis results are em-

bedded directly into the models, e.g. by highlighting

special execution paths in a state machine model.

• Haberl et al. [36] propose model-level debugging of em-

bedded real-time systems. Similar to the approaches

above, analysis results are directly embedded into the

models via highlighting of model elements.

The same functionality may be harder to integrate into textual

editors, meaning that additional external analysis views and

editors may be necessary to display analysis results and formulate

analysis tasks.

Pattern: External Analysis

Context: Events were recorded by the running system and

transmitted to the storage location. You want to enable the

analyst to specify aggregation operations on these events

and decide for a strategy to integrate these operations into

the modeling environment.

Problem: You want the analyst to be able to formulate

aggregation operations with the help of specialized editors.

These editors possibly already exist, so you want them to

be integrated into the overall analysis experience.

Solution: Separate the model editor from the query editor

used for the formulation of aggregation operations. This

strategy allows to utilize a modeling environment and a

query editor arbitrarily that fits the abstract description

of the observed system and the analysis task best. How-

ever, the events that are analyzed in the query editor must

still somehow be connected to the model elements in the

model editor, e.g. via unique identifiers as described in the

identifier-based correlation pattern.

Consequences: Benefits & Liabilities

+ Customizability: The syntax and properties of both the

query language and the modeling language can be cho-

sen freely.

– Usability: Separating the model editor from the query

editor can lead to a fragmented user experience for an-

alysts. The analyst is burdened with the mental task

of correlating query results from the query editor with

model elements of the model editor.

Known Uses

• WindView is a visualization tool which is able to im-

port events gained by instrumenting a running system

[35]. Events (and thus, execution traces) are recorded us-

ing a XML-based format, the Instrumentation Interface

Format (IIF).

• In the aforementioned approach by Haberl et al. [36],

runtime events are traced to state machine models, but

can also be observed in an external tabular view.

• The Event Viewer of the Windows operating system

is often used as external analysis tool to perform post-

mortem analyses of systems. The external viewer is pri-

marily accessed by C/C++ programs.

5 APPLICATION TO THE MOTIVATING

EXAMPLE

In this section, we apply our pattern language to the robot system

example from Section 3. We will focus on a single model to demon-

strate the event aggregation performed by the analyst. However,

the same procedure can also be applied to other models of the ob-

served system as well. Note that the robot system has actually been

implemented using the selected patterns mentioned in this section

during a software architecture course on the University of Applied

Sciences Wiener Neustadt.

Figure 8 shows the deployment of the resulting solution and the

connection between the modeling environment and the robot sys-

tem. The figure shows that the pattern rich analysis client was

chosen as interface for the analyst. This has various reasons: The

system was implemented in a model-driven manner, which means

that parts of the implementation were directly generated from

the models of the system with the help of the Eclipse modeling

environment. Reusing those models (and the modeling environ-

ment) prevented the effort of implementing a separate model editor

A Pattern Language for Manual Analysis of Runtime Events Using Models EuroPLoP ’18, July 4–8, 2018, Irsee, Germany

Analyst's Notebook

Windows 10 OS

Java Virtual Machine

Eclipse Modeling Environment

Component
Diagram

Use Case
Diagram

Package
Diagram

Class
Diagram

State
Diagram

Activity
Diagram

Robot

leJOS Firmware

path.jar

network.jar

task.jar

logging.jar

robot.jar

Figure 8: Deployment diagram showing the connection be-

tween the modeling environment and the robot system

for the analyst to remotely analyze the robot system. Furthermore,

events were aggregated in a separate Eclipse plugin in the modeling

environment, which rendered additional performance considera-

tions about the robot and its reduced footprint unnecessary, even

for a large number of events. The figure also shows that the pat-

terns graphical model syntax (UML), structural model and

behavioural model were applied.

Regarding introspection, events were recorded by the robot us-

ing the aspect-oriented event recording pattern with the help

of AspectJ
3
, an efficient and feature-rich Java-based aspect-oriented

programming framework. This was possible due to the fact that

the underlying robot firmware leJOS
4
is a tiny Java virtual machine

3
see https://www.eclipse.org/aspectj/

4
see http://www.lejos.org/

that is able to execute arbitrary Java code. Recorded events were

exchanged with the modeling environment using a combination of

the remote storage and publish/subscribe exchange patterns,

meaning that the robot performs no event logging until the model-

ing environment subscribes to the robot. From this point on, events

were immediately sent to the modeling environment, which could

be done efficiently using the internal Java-based (de-)serialization

mechanisms of Eclipse and leJOS. This strategy enabled the robot to

operate at full performance and at minimum memory requirements

while not being observed by a modeling environment. Furthermore,

the application of the publish/subscribe exchange pattern al-

lowed the analysis results to be kept up-to-date in the observing

modeling environment of the analyst.

Traceability was achieved through the automatic link man-

agement pattern for the structural models and the manual link

management pattern for the behavioural models. Regarding the

correlation mechanism, the pattern identifier-based correla-

tion was applied in combination with the automatic link manage-

ment: AspectJ-based monitoring code was directly generated from

the models (where possible) with the fully-qualified names of the

participating model elements encoded into the monitoring code.

When the monitoring code is executed, events are transmitted im-

mediately to the modeling environment to close the feedback loop

by using the fully-qualified name found in the event properties.

For the analysis, we decided to use the embedded analysis

pattern and directly integrate the analysis results into the UML

diagrams of the robot system. As an example, Figure 9 shows the

activity diagram which describes the autonomous discovery feature

of the robot. On the bottom of the figure, the backtrack action is

annotated with an event aggregation statement to determine the

overall time the robot spends on backtracking during the discovery

process. As can be seen, the result of the operation is directly shown

in the model. We neither used database-based processing nor

complex event processing for aggregating events, but instead

a custom aggregation language which allows the analyst to filter

streams of events (in this case, events of type Executed which has

some properties regarding the start and end of an operation) in

a concise manner without the need of a database. However, this

requires that the analyst has a certain level of technical knowledge

to formulate the queries in the provided language. This problem

could be mitigated by tailoring the language to the analyzed do-

main and/or to the knowledge of the analyst. More details of the

used aggregation language can be found in our previous paper on

reusable event types [56].

Table 1 summarizes the patterns that were selected for realizing

the robot system and describes the reasons why the patterns were

selected. Note that the reasons largely comply with the context and

problem descriptions of the patterns presented in this paper.

6 CONCLUDING REMARKS

Models are software engineering artefacts which try to cope with

the increasing need of abstraction and flexibility through the use

of model-driven development techniques. An increase in the level

of abstraction is usually accompanied with an increasing interest

in the analyses which can be performed closer to the problem

space. This phenomenon can especially be observed in modern

https://www.eclipse.org/aspectj/
http://www.lejos.org/

EuroPLoP ’18, July 4–8, 2018, Irsee, Germany Michael Szvetits and Uwe Zdun

Figure 9: Demonstration of the embedded analysis pattern applied on a graphical model of the robot system

Table 1: Summary of the Selected Patterns and the Reasons for Choosing the Respective Patterns

Category Selected Pattern Reasons

Modeling Rich Analysis Client Remote analysis, relieve robot from load because of its reduced footprint.

Modeling Graphical Model Syntax Enable analysis with existing models, no effort for additional models.

Modeling Structural Model Transformations could easily be extended to generate monitoring code.

Modeling Behavioural Model Interesting robot properties are captured in the modelled control flows.

Introspection Aspect-Oriented Event Recording Monitoring logic is independent from business logic. High performance.

Introspection Remote Storage The robot must not have an overhead if the models are not connected.

Introspection Publish/Subscribe Exchange Analysis results must be up-to-date while the robot drives around.

Traceability Automatic Link Management Low effort of integrating traceability in existing model transformations.

Traceability Manual Link Management Monitoring code could not be fully generated from behavioural models.

Traceability Identifier-Based Correlation Straightforward implementation using naming conventions of EMF.

Analysis Embedded Analysis Analysis directly in the existing models. No external viewers required.

high-level programming languages, where programs are usually

analyzed and debugged using the statements and expressions of the

language the program is actually written in, not the intermediate

language or machine instructions they are eventually compiled to.

However, while many modeling languages exist, the design and

implementation of their corresponding analysis infrastructure is

accompanied with several design decisions regarding the modeling

environment, the used introspection and traceability mechanisms

and the analysis interface the analyst is interacting with.

There is a great amount of recurring patterns in the literature

which tackle the various issues when designing a system with sup-

port for manual analysis using design models. Unfortunately, these

A Pattern Language for Manual Analysis of Runtime Events Using Models EuroPLoP ’18, July 4–8, 2018, Irsee, Germany

patterns are seldomly labelled as such and discussed rather implic-

itly in the presented approaches. As a consequence, although the

current literature contains the required knowledge about manual

analysis, it is inconvenient, time-consuming and hardly usable in

its current form for software architects and developers when de-

signing and implementing a system with manual analysis support.

Furthermore, the indexed scientific literature cannot be searched

efficiently for names, properties and consequences of recurring

patterns as well as their interrelationships.

The contribution of this paper is the extraction of these recurring

patterns from the literature and the explicit description of their

properties and trade-offs. Furthermore, the extracted patterns are

organized in a pattern language so that software architects and

developers are able to understand the interrelationships of patterns

and the impacts of certain decisions on other parts of the system.

For better usability, the pattern language presented in this paper is

divided into four categories that provide a comprehensive coverage

of the involved design decisions: Modeling, introspection, traceabil-

ity and analysis. Within each category, related patterns are grouped

according to the issues they are trying to solve to allow a better

comparison between the patterns with respect to the underlying

forces that must be balanced accordingly.

Even though the presented pattern language covers the most

important aspects of manual analysis using design models, it could

also be extended by including recurring patterns that can be found

on a more fine-grained level when implementing such systems.

Examples of such patterns are architectural and design patterns for

realizing the model editor, the running system itself or patterns for

deciding where to log which events. However, we argue that design

decision on this level of granularity are covered adequately by the

existing literature about architectural patterns [13, 40] and design

patterns [25] which are also mentioned throughout this paper.

REFERENCES

[1] Germán H. Alférez and Vicente Pelechano. 2012. Dynamic evolution of context-

aware systems with models at runtime. In Proceedings of the 15th interna-
tional conference on Model Driven Engineering Languages and Systems (MOD-
ELS’12). Springer-Verlag, Berlin, Heidelberg, 70–86. https://doi.org/10.1007/

978-3-642-33666-9_6

[2] Mohamed Almorsy, John Grundy, and Amani S. Ibrahim. 2012. MDSE@R: model-

driven security engineering at runtime. In Proceedings of the 4th international
conference on Cyberspace Safety and Security (CSS’12). Springer-Verlag, Berlin,
Heidelberg, 279–295. https://doi.org/10.1007/978-3-642-35362-8_22

[3] Mehdi Amoui, Mahdi Derakhshanmanesh, Jürgen Ebert, and Ladan Tahvildari.

2011. Software Evolution towards Model-Centric Runtime Adaptivity. In Pro-
ceedings of the 2011 15th European Conference on Software Maintenance and
Reengineering (CSMR ’11). IEEE Computer Society, Washington, DC, USA, 89–92.

https://doi.org/10.1109/CSMR.2011.14

[4] Mehdi Amoui, Mahdi Derakhshanmanesh, Jürgen Ebert, and Ladan Tahvildari.

2012. Achieving dynamic adaptation via management and interpretation of

runtime models. J. Syst. Softw. 85, 12 (Dec. 2012), 2720–2737. https://doi.org/10.

1016/j.jss.2012.05.033

[5] Paolo Arcaini, Angelo Gargantini, and Elvinia Riccobene. 2012. CoMA: confor-

mance monitoring of java programs by abstract state machines. In Proceedings
of the Second international conference on Runtime verification (RV’11). Springer-
Verlag, Berlin, Heidelberg, 223–238. https://doi.org/10.1007/978-3-642-29860-8_

17

[6] Xiaoying Bai, Yongli Liu, Lijun Wang, Wei-Tek Tsai, and Peide Zhong. 2009.

Model-Based Monitoring and Policy Enforcement of Services. In Proceedings
of the 2009 Congress on Services - I (SERVICES ’09). IEEE Computer Society,

Washington, DC, USA, 789–796. https://doi.org/10.1109/SERVICES-I.2009.103

[7] Andreas Bauer, Jan Jürjens, and Yijun Yu. 2011. Run-Time Security Traceability

for Evolving Systems†. Comput. J. 54, 1 (Jan. 2011), 58–87. https://doi.

org/10.1093/comjnl/bxq042

[8] Nelly Bencomo. 2009. On the use of software models during software execution.

In Proceedings of the 2009 ICSE Workshop on Modeling in Software Engineering
(MISE ’09). Vancouver, Canada, 62–67. https://doi.org/10.1109/MISE.2009.5069899

[9] Antonia Bertolino, Antonello Calabrò, Francesca Lonetti, Antinisca Di Marco,

and Antonino Sabetta. 2011. Towards a model-driven infrastructure for runtime

monitoring. In Proceedings of the Third international conference on Software en-
gineering for resilient systems (SERENE’11). Springer-Verlag, Berlin, Heidelberg,
130–144. http://dl.acm.org/citation.cfm?id=2045537.2045557

[10] Gordon Blair, Nelly Bencomo, and Robert B. France. 2009. Models@ run.time.

Computer 42, 10 (Oct. 2009), 22–27. https://doi.org/10.1109/MC.2009.326

[11] Lianne Bodenstaff, Andreas Wombacher, Manfred Reichert, and Roel Wieringa.

2010. MaDe4IC: an abstract method for managing model dependencies in inter-

organizational cooperations. Serv. Oriented Comput. Appl. 4, 3 (Sept. 2010), 203–
228. https://doi.org/10.1007/s11761-010-0062-7

[12] Lars Brenna, Alan Demers, Johannes Gehrke, Mingsheng Hong, Joel Ossher,

Biswanath Panda, Mirek Riedewald, Mohit Thatte, and Walker White. 2007.

Cayuga: A High-performance Event Processing Engine. In Proceedings of the 2007
ACM SIGMOD International Conference on Management of Data (SIGMOD ’07).
ACM, New York, NY, USA, 1100–1102. https://doi.org/10.1145/1247480.1247620

[13] Frank Buschmann, Kevlin Henney, and Douglas C. Schmidt. 2007. Pattern-
Oriented Software Architecture, Volume 4: A Pattern Language for Distributed
Computing. Wiley, Chichester, UK. https://www.safaribooksonline.com/library/

view/pattern-oriented-software-architecture/9780470059029/

[14] Mauro Caporuscio, Antinisca Di Marco, and Paola Inverardi. 2007. Model-based

system reconfiguration for dynamic performance management. J. Syst. Softw. 80,
4 (April 2007), 455–473. https://doi.org/10.1016/j.jss.2006.07.039

[15] Mauro Caporuscio, Antinisca Di Marco, and Paola Inverardi. 2005. Run-time per-

formance management of the Siena publish/subscribe middleware. In Proceedings
of the 5th international workshop on Software and performance (WOSP ’05). ACM,

New York, NY, USA, 65–74. https://doi.org/10.1145/1071021.1071028

[16] Alan J. Demers, Johannes Gehrke, Biswanath Panda, Mirek Riedewald, Varun

Sharma, and Walker M. White. 2007. Cayuga: A General Purpose Event Monitor-

ing System. In CIDR’07. 412–422.
[17] Michel Dirix. 2013. Awareness in Computer-Supported Collaborative Modelling.

Application to GenMyModel. ECOOP Doctoral Symposium (2013). https://hal.

archives-ouvertes.fr/hal-01251412

[18] B. F. Van Dongen. 2005. A Meta Model for Process Mining Data. In In Proceedings
of the CAiSE WORKSHOPS. 309–320.

[19] Françoise Fabret, H. Arno Jacobsen, François Llirbat, Joăo Pereira, Kenneth A.

Ross, and Dennis Shasha. 2001. Filtering Algorithms and Implementation for

Very Fast Publish/Subscribe Systems. SIGMOD Rec. 30, 2 (May 2001), 115–126.

https://doi.org/10.1145/376284.375677

[20] Jean-Rémy Falleri, Marianne Huchard, and Clémentine Nebut. 2006. Towards a

Traceability Framework for Model Transformations in Kermeta. In ECMDA-
TW’06: ECMDA Traceability Workshop, J. Oldevik J. Aagedal, T. Neple (Ed.).

Sintef ICT, Norway, Bilbao (Spain), 31–40. https://hal-lirmm.ccsd.cnrs.fr/

lirmm-00102855

[21] Jacqueline Floch, Svein Hallsteinsen, Erlend Stav, Frank Eliassen, Ketil Lund, and

Eli Gjorven. 2006. Using Architecture Models for Runtime Adaptability. IEEE
Softw. 23, 2 (March 2006), 62–70. https://doi.org/10.1109/MS.2006.61

[22] François Fouquet, Grégory Nain, Brice Morin, Erwan Daubert, Olivier Barais,

Noël Plouzeau, and Jean-Marc Jézéquel. 2012. An eclipse modelling framework

alternative to meet the models@runtime requirements. In Proceedings of the
15th international conference on Model Driven Engineering Languages and Systems
(MODELS’12). Springer-Verlag, Berlin, Heidelberg, 87–101. https://doi.org/10.

1007/978-3-642-33666-9_7

[23] Lidia Fuentes and Pablo Sánchez. 2009. Transactions onAspect-Oriented Software

Development VI. Springer-Verlag, Berlin, Heidelberg, Chapter Dynamic Weaving

of Aspect-Oriented Executable UML Models, 1–38. https://doi.org/10.1007/

978-3-642-03764-1_1

[24] Nadia Gamez, Lidia Fuentes, and Miguel A. Aragüez. 2011. Autonomic computing

driven by feature models and architecture in FamiWare. In Proceedings of the 5th
European conference on Software architecture (ECSA’11). Springer-Verlag, Berlin,
Heidelberg, 164–179. http://dl.acm.org/citation.cfm?id=2041790.2041811

[25] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1995. Design
Patterns: Elements of Reusable Object-oriented Software. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA.

[26] D Garlan, B Schmerl, and J Chang. 2001. Using Gauges for Architecture-Based

Monitoring and Adaptation. In Proc. of the Working Conference on Complex and
Dynamic Systems Architecture. Brisbane, Australia.

[27] Sandro Rodriguez Garzon and Michael Cebulla. 2010. Model-Based Personaliza-

tion within an Adaptable Human-Machine Interface Environment that is Capable

of Learning from User Interactions. In Proceedings of the 2010 Third International
Conference on Advances in Computer-Human Interactions (ACHI ’10). IEEE Com-

puter Society, Washington, DC, USA, 191–198. https://doi.org/10.1109/ACHI.

2010.12

[28] John C. Georgas, André van der Hoek, and Richard N. Taylor. 2009. Using

Architectural Models to Manage and Visualize Runtime Adaptation. Computer

https://doi.org/10.1007/978-3-642-33666-9_6
https://doi.org/10.1007/978-3-642-33666-9_6
https://doi.org/10.1007/978-3-642-35362-8_22
https://doi.org/10.1109/CSMR.2011.14
https://doi.org/10.1016/j.jss.2012.05.033
https://doi.org/10.1016/j.jss.2012.05.033
https://doi.org/10.1007/978-3-642-29860-8_17
https://doi.org/10.1007/978-3-642-29860-8_17
https://doi.org/10.1109/SERVICES-I.2009.103
https://doi.org/10.1093/comjnl/bxq042
https://doi.org/10.1093/comjnl/bxq042
https://doi.org/10.1109/MISE.2009.5069899
http://dl.acm.org/citation.cfm?id=2045537.2045557
https://doi.org/10.1109/MC.2009.326
https://doi.org/10.1007/s11761-010-0062-7
https://doi.org/10.1145/1247480.1247620
https://www.safaribooksonline.com/library/view/pattern-oriented-software-architecture/9780470059029/
https://www.safaribooksonline.com/library/view/pattern-oriented-software-architecture/9780470059029/
https://doi.org/10.1016/j.jss.2006.07.039
https://doi.org/10.1145/1071021.1071028
https://hal.archives-ouvertes.fr/hal-01251412
https://hal.archives-ouvertes.fr/hal-01251412
https://doi.org/10.1145/376284.375677
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00102855
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00102855
https://doi.org/10.1109/MS.2006.61
https://doi.org/10.1007/978-3-642-33666-9_7
https://doi.org/10.1007/978-3-642-33666-9_7
https://doi.org/10.1007/978-3-642-03764-1_1
https://doi.org/10.1007/978-3-642-03764-1_1
http://dl.acm.org/citation.cfm?id=2041790.2041811
https://doi.org/10.1109/ACHI.2010.12
https://doi.org/10.1109/ACHI.2010.12

EuroPLoP ’18, July 4–8, 2018, Irsee, Germany Michael Szvetits and Uwe Zdun

42, 10 (Oct. 2009), 52–60. https://doi.org/10.1109/MC.2009.335

[29] C. Ghezzi. 2011. The Fading Boundary between Development Time and Run

Time. InWeb Services (ECOWS), 2011 Ninth IEEE European Conference on. Lugano,
Switzerland, 11–11. https://doi.org/10.1109/ECOWS.2011.33

[30] Tony Gjerlufsen, Mads Ingstrup, Jesper Wolff, and Olsen Olsen. 2009. Mirrors of

Meaning: Supporting Inspectable Runtime Models. Computer 42, 10 (Oct. 2009),
61–68. https://doi.org/10.1109/MC.2009.325

[31] H.J. Goldsby, P. Sawyer, N. Bencomo, B. H C Cheng, and D. Hughes. 2008. Goal-

Based Modeling of Dynamically Adaptive System Requirements. In Engineering
of Computer Based Systems, 2008. ECBS 2008. 15th Annual IEEE International
Conference and Workshop on the. 36–45. https://doi.org/10.1109/ECBS.2008.22

[32] P. Grace, Gordon S. Blair, and S. Samuel. 2003. ReMMoC: A Reflective Middleware

to Support Mobile Client Interoperability. 1170–1187.

[33] P. Graf, M. Hubner, K.D. Müller-Glaser, and J. Becker. 2007. A Graphical Model-

Level Debugger for Heterogenous Reconfigurable Architectures. In Field Pro-
grammable Logic and Applications, 2007. FPL 2007. International Conference on.
722–725. https://doi.org/10.1109/FPL.2007.4380754

[34] Philipp Graf and Klaus D. Müller-Glaser. 2006. Dynamic Mapping of Runtime

Information Models for Debugging Embedded Software. In Proceedings of the
Seventeenth IEEE International Workshop on Rapid System Prototyping (RSP ’06).
IEEE Computer Society, Washington, DC, USA, 3–9. https://doi.org/10.1109/

RSP.2006.15

[35] Zonghua Gu, Shige Wang, Sharath Kodase, and Kang G. Shin. 2004. Multi-view

modeling and analysis of embedded real-time software with meta-modeling and

model transformation. In Proceedings of the Eighth IEEE international conference
on High assurance systems engineering (HASE’04). IEEE Computer Society, Wash-

ington, DC, USA, 32–41. http://dl.acm.org/citation.cfm?id=1890580.1890584

[36] Wolfgang Haberl, Markus Herrmannsdoerfer, Jan Birke, and Uwe Baumgarten.

2010. Model-Level Debugging of Embedded Real-Time Systems. In Proceedings
of the 2010 10th IEEE International Conference on Computer and Information
Technology (CIT ’10). IEEE Computer Society, Washington, DC, USA, 1887–1894.

https://doi.org/10.1109/CIT.2010.323

[37] Lars Hamann, Martin Gogolla, and Mirco Kuhlmann. 2011. OCL-based Runtime

Monitoring of JVM hosted Applications. Electronic Communications of the EASST
44 (2011).

[38] Lars Hamann, Oliver Hofrichter, and Martin Gogolla. 2012. OCL-based run-

time monitoring of applications with protocol state machines. In Proceed-
ings of the 8th European conference on Modelling Foundations and Applications
(ECMFA’12). Springer-Verlag, Berlin, Heidelberg, 384–399. https://doi.org/10.

1007/978-3-642-31491-9_29

[39] L. Hamann, L. Vidacs, M. Gogolla, and M. Kuhlmann. 2012. Abstract Runtime

Monitoring with USE. In 16th European Conference on Software Maintenance and
Reengineering (CSMR). Szeged, Hungary, 549–552. https://doi.org/10.1109/CSMR.

2012.73

[40] Gregor Hohpe and Bobby Woolf. 2003. Enterprise Integration Patterns: Design-
ing, Building, and Deploying Messaging Solutions. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA.

[41] Ta’id Holmes, Uwe Zdun, Florian Daniel, and Schahram Dustdar. 2010. Mon-

itoring and analyzing service-based internet systems through a model-aware

service environment. In Proceedings of the 22nd International Conference on Ad-
vanced Information Systems Engineering (CAiSE’10). Hammamet, Tunisia, 98–112.

http://dl.acm.org/citation.cfm?id=1883784.1883797

[42] J. Hutchinson, J. Whittle, Mark Rouncefield, and Steinar Kristoffersen. 2011. Em-

pirical assessment of MDE in industry. In Software Engineering (ICSE), 2011 33rd
International Conference on. 471–480. https://doi.org/10.1145/1985793.1985858

[43] Mads Ingstrup and Klaus Marius Hansen. 2005. A Declarative Approach to

Architectural Reflection. In Proceedings of the 5th Working IEEE/IFIP Conference
on Software Architecture (WICSA ’05). IEEE Computer Society, Washington, DC,

USA, 149–158. https://doi.org/10.1109/WICSA.2005.6

[44] Edgar Jakumeit, Sebastian Buchwald, Dennis Wagelaar, Li Dan, Ábel Hegedüs,

Markus Herrmannsdörfer, Tassilo Horn, Elina Kalnina, Christian Krause, Kevin

Lano, Markus Lepper, Arend Rensink, Louis Rose, SebastianWätzoldt, and Steffen

Mazanek. 2014. A Survey and Comparison of Transformation Tools Based on

the Transformation Tool Contest. Sci. Comput. Program. 85 (June 2014), 41–99.
https://doi.org/10.1016/j.scico.2013.10.009

[45] D. Jayathilake. 2012. Towards structured log analysis. In Computer Science and
Software Engineering (JCSSE), 2012 International Joint Conference on. 259–264.
https://doi.org/10.1109/JCSSE.2012.6261962

[46] Frédéric Jouault. 2005. Loosely Coupled Traceability for ATL. In European Confer-
ence on Model Driven Architecture (ECMDA) Workshop on Traceability. Germany,

29–37. https://hal.archives-ouvertes.fr/hal-00448118 ISBN=82-14-03813-8.

[47] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina

Lopes, Jean-Marc Loingtier, and John Irwin. 1997. Aspect-oriented program-
ming. Springer Berlin Heidelberg, Berlin, Heidelberg, 220–242. https://doi.org/

10.1007/BFb0053381

[48] Ingolf H. Krüger, Michael Meisinger, and Massimiliano Menarini. 2010.

Interaction-based Runtime Verification for Systems of Systems Integration. J. Log.

and Comput. 20, 3 (June 2010), 725–742. https://doi.org/10.1093/logcom/exn079

[49] Tanja Mayerhofer, Philip Langer, and Gerti Kappel. 2012. A runtime model for

fUML. In Proceedings of the 7th Workshop on Models@run.time (MRT ’12). ACM,

New York, NY, USA, 53–58. https://doi.org/10.1145/2422518.2422527

[50] Brice Morin, Olivier Barais, Jean-Marc Jezequel, Franck Fleurey, and Arnor Sol-

berg. 2009. Models@ Run.time to Support Dynamic Adaptation. Computer 42,
10 (Oct. 2009), 44–51. https://doi.org/10.1109/MC.2009.327

[51] Rajeev Motwani, Jennifer Widom, Arvind Arasu, Brian Babcock, Shivnath Babu,

Mayur Datar, Gurmeet Manku, Chris Olston, Justin Rosenstein, and Rohit Varma.

2002. Query Processing, Resource Management, and Approximation in a Data
Stream Management System. Technical Report 2002-41. Stanford InfoLab. http:

//ilpubs.stanford.edu:8090/549/

[52] Gøran K. Olsen and Jon Oldevik. 2007. Scenarios of Traceability in Model to
Text Transformations. Springer Berlin Heidelberg, Berlin, Heidelberg, 144–156.

https://doi.org/10.1007/978-3-540-72901-3_11

[53] Ivan Perez, Manuel Bärenz, and Henrik Nilsson. 2016. Functional Reactive

Programming, Refactored. In Proceedings of the 9th International Symposium on
Haskell (Haskell 2016). ACM, New York, NY, USA, 33–44. https://doi.org/10.1145/

2976002.2976010

[54] Marian Petre. 2013. UML in Practice. In Proceedings of the 2013 International
Conference on Software Engineering (ICSE ’13). IEEE Press, Piscataway, NJ, USA,

722–731. http://dl.acm.org/citation.cfm?id=2486788.2486883

[55] M. Spieker, A. Noyer, P. Iyenghar, G. Bikker, J. Wuebbelmann, and C. Westerkamp.

2012. Model based debugging and testing of embedded systems without affecting

the runtime behaviour. In Emerging Technologies Factory Automation (ETFA), 2012
IEEE 17th Conference on. 1–6. https://doi.org/10.1109/ETFA.2012.6489656

[56] Michael Szvetits and Uwe Zdun. 2015. Reusable event types for models at runtime

to support the examination of runtime phenomena. In 2015 ACM/IEEE 18th
International Conference on Model Driven Engineering Languages and Systems
(MODELS). 4–13. https://doi.org/10.1109/MODELS.2015.7338230

[57] Michael Szvetits and Uwe Zdun. 2016. Controlled Experiment on the Com-

prehension of Runtime Phenomena Using Models Created at Design Time. In

Proceedings of the ACM/IEEE 19th International Conference on Model Driven Engi-
neering Languages and Systems (MODELS ’16). ACM, New York, NY, USA, 151–161.

https://doi.org/10.1145/2976767.2976768

[58] Michael Szvetits and Uwe Zdun. 2016. Systematic Literature Review of the

Objectives, Techniques, Kinds, and Architectures of Models at Runtime. Softw.
Syst. Model. 15, 1 (Feb. 2016), 31–69. https://doi.org/10.1007/s10270-013-0394-9

[59] Andrew S. Tanenbaum and Maarten van Steen. 2006. Distributed Systems: Prin-
ciples and Paradigms (2Nd Edition). Prentice-Hall, Inc., Upper Saddle River, NJ,
USA.

[60] N. Tax, N. Sidorova, R. Haakma, andW. van der Aalst. 2018. Mining Process Model

Descriptions of Daily Life Through Event Abstraction. In Intelligent Systems
and Applications, Yaxin Bi, Supriya Kapoor, and Rahul Bhatia (Eds.). Springer

International Publishing, Cham, 83–104.

[61] André van Hoorn, Matthias Rohr, Wilhelm Hasselbring, Jan Waller, Jens Ehlers,

Sören Frey, and Dennis Kieselhorst. 2009. Continuous Monitoring of Software
Services: Design and Application of the Kieker Framework. Research Report. Kiel

University. http://eprints.uni-kiel.de/14459/

[62] J. M. Vara, V. A. Bollati, ÃĄ. JimÃľnez, and E. Marcos. 2014. Dealing with

Traceability in the MDDof Model Transformations. IEEE Transactions on Software
Engineering 40, 6 (June 2014), 555–583. https://doi.org/10.1109/TSE.2014.2316132

[63] Mira Vrbaski, Gunter Mussbacher, Dorina Petriu, and Daniel Amyot. 2012. Goal

models as run-time entities in context-aware systems. In Proceedings of the
7th Workshop on Models@run.time (MRT ’12). ACM, New York, NY, USA, 3–8.

https://doi.org/10.1145/2422518.2422520

[64] Lukas Wegmann and Dominique Wirz. 2013. Modellgetriebene Visualisierung

von Echtzeitsystemen im Browser. https://eprints.hsr.ch/310/

[65] K. Welsh, P. Sawyer, and N. Bencomo. 2011. Towards requirements aware sys-

tems: Run-time resolution of design-time assumptions. In Automated Software
Engineering (ASE), 2011 26th IEEE/ACM International Conference on. 560–563.
https://doi.org/10.1109/ASE.2011.6100125

[66] Eugene Wu, Yanlei Diao, and Shariq Rizvi. 2006. High-performance Complex

Event Processing over Streams. In Proceedings of the 2006 ACM SIGMOD Interna-
tional Conference on Management of Data (SIGMOD ’06). ACM, New York, NY,

USA, 407–418. https://doi.org/10.1145/1142473.1142520

[67] Eric Yu and JohnMylopoulos. 1998. Why goal-oriented requirements engineering.

In Proceedings of the 4th International Workshop on Requirements Engineering:
Foundations of Software Quality. 15–22.

[68] Uwe Zdun and Michael Szvetits. 2017. Automatic Generation of Monitoring Code

for Model Based Analysis of Runtime Behaviour. In 24th Asia-Pacific Software
Engineering Conference (APSEC 2017). http://eprints.cs.univie.ac.at/5313/

[69] Kebin Zeng, Yu Guo, and Christo K. Angelov. 2010. Graphical model debugger

framework for embedded systems. In Proceedings of the Conference on Design,
Automation and Test in Europe (DATE ’10). European Design and Automation

Association, 3001 Leuven, Belgium, Belgium, 87–92. http://dl.acm.org/citation.

cfm?id=1870926.1870949

https://doi.org/10.1109/MC.2009.335
https://doi.org/10.1109/ECOWS.2011.33
https://doi.org/10.1109/MC.2009.325
https://doi.org/10.1109/ECBS.2008.22
https://doi.org/10.1109/FPL.2007.4380754
https://doi.org/10.1109/RSP.2006.15
https://doi.org/10.1109/RSP.2006.15
http://dl.acm.org/citation.cfm?id=1890580.1890584
https://doi.org/10.1109/CIT.2010.323
https://doi.org/10.1007/978-3-642-31491-9_29
https://doi.org/10.1007/978-3-642-31491-9_29
https://doi.org/10.1109/CSMR.2012.73
https://doi.org/10.1109/CSMR.2012.73
http://dl.acm.org/citation.cfm?id=1883784.1883797
https://doi.org/10.1145/1985793.1985858
https://doi.org/10.1109/WICSA.2005.6
https://doi.org/10.1016/j.scico.2013.10.009
https://doi.org/10.1109/JCSSE.2012.6261962
https://hal.archives-ouvertes.fr/hal-00448118
https://doi.org/10.1007/BFb0053381
https://doi.org/10.1007/BFb0053381
https://doi.org/10.1093/logcom/exn079
https://doi.org/10.1145/2422518.2422527
https://doi.org/10.1109/MC.2009.327
http://ilpubs.stanford.edu:8090/549/
http://ilpubs.stanford.edu:8090/549/
https://doi.org/10.1007/978-3-540-72901-3_11
https://doi.org/10.1145/2976002.2976010
https://doi.org/10.1145/2976002.2976010
http://dl.acm.org/citation.cfm?id=2486788.2486883
https://doi.org/10.1109/ETFA.2012.6489656
https://doi.org/10.1109/MODELS.2015.7338230
https://doi.org/10.1145/2976767.2976768
https://doi.org/10.1007/s10270-013-0394-9
http://eprints.uni-kiel.de/14459/
https://doi.org/10.1109/TSE.2014.2316132
https://doi.org/10.1145/2422518.2422520
https://eprints.hsr.ch/310/
https://doi.org/10.1109/ASE.2011.6100125
https://doi.org/10.1145/1142473.1142520
http://eprints.cs.univie.ac.at/5313/
http://dl.acm.org/citation.cfm?id=1870926.1870949
http://dl.acm.org/citation.cfm?id=1870926.1870949

	Abstract
	1 Introduction
	2 Background: Manual Analysis of Runtime Events Using Design Models
	3 Motivating Example
	4 Pattern Language for Manual Analysis of Runtime Events
	4.1 Pattern Language Overview
	4.2 Modeling Patterns
	4.3 Introspection Patterns
	4.4 Traceability Patterns
	4.5 Analysis Patterns

	5 Application to the Motivating Example
	6 Concluding Remarks
	References

