
From Instance Spanning Models
To Instance Spanning Rules

Manuel Gall, Stefanie Rinderle-Ma

University of Vienna, Faculty of Computer Science, Vienna, Austria
manuel.gall@univie.ac.at, stefanie.rinderle-ma@univie.ac.at

Abstract. Instance Spanning Constraints (ISCs) allow to control the
behavior of multiple business processes and their instances which is cru-
cial in many application domains (e.g., for process synchronization). The
modeling and visualization of ISCs hence constitutes an essential brick
in process compliance management. Currently, no approach exists for
representing a set of Instance Spanning Rules (ISRs) based on an ISC.
Existing work rather focuses on visualizing ISCs at the more abstract In-
stance Spanning Model (ISM) level. However, the gap between the ISM
and the ISR level must be bridged in order to enable the enactment of
an ISC at process level. Hence, this paper collects requirements for the
implementation of ISRs through an ISM, e.g., by specification of data el-
ements. Based on the requirements an existing visual modeling language
is tailored towards the modeling of ISRs and the corresponding XML
specifications are provided. Both, visual modeling and XML representa-
tion are prototypically implemented and illustrated by means of a set of
use cases. Finally, an algorithm for deriving the common ISM of a set of
ISRs is introduced and evaluated based on a given test set.

Keywords: Instance Spanning Constraints, Instance Spanning Rules,
Compliance, Rule Visualization, Instantiable Constraint, Process-Aware
Information Systems

1 Introduction

Business processes compliance deals with the enforcement of constraints such
as new laws and regulations. Over time business process compliance became a
billion dollar market [6]. Nowadays compliance rules tend to incorporate more
and more business knowledge. Recent studies show that constraints spanning
multiple instances and or processes are omnipresent [4]. Some approaches to
deal with instance spanning constraints (ISCs) exist, e.g., [14,4,7]. However, the
development life cycle from extracting, modeling, and implementing ISCs is not
fully supported yet.

Contrary, for intra instance compliance the development life cycle has been
established and starts with a constraint definition, e.g., a new law or regulation,
followed by creating a non-executable model mainly for communication purposes
[3]. This model is refined into instantiable rules which can be checked for process
instances [11].

“The final authenticated version is available online at https://doi.org/10.1007/978-3-319-91704-7_9."

Establishing the development life cycle for ISCs requires a visual model-
ing notation in order to create instance spanning models (ISM). For this, for
example, the visual notation ISC Viz [5] can be used. However, ISMs are not
executable. Hence, an ISM has to be instantiated and specified into executable
instance spanning rules (ISRs), but an approach for this is missing.

This work aims at bridging the gap between ISM and ISRs and vice versa
based on the following questions: “(1) How to go from an ISM towards a set
of instance spanning rules (ISRs) – visually and at the implementation level?”
and “(2) How to merge a set of ISRs into an ISM again?”. The second question
is important particularly in large, living systems where for a given set of ISRs
the common schema would be important for validation. In order to answer these
questions we use design science research [17]. A set of requirements is gathered
from literature. Based on these requirements we build the following artifacts:
a visual notation for ISRs, a corresponding XML representation, and a merge
algorithm. We evaluate the applicability on a set of real world examples and
compare the merge results against previous research.

The paper is structured as follows: Sect. 2 provides a motivating example.
Sect. 3 discusses related approaches. Requirements are collected in Sect. 4. Our
proposed solution for ISRs is discussed in Sect. 5. Sect. 6 introduces a merge
algorithm for ISRs. The applicability of our approach is discussed in Sect. 7 and
Sect. 8 concludes with a summary.

2 Motivating example

We lay out the basic concepts of the constraint development life cycle and man-

agement by means of an example. A vial has to be examined. Figure 1 jA shows
the process in BPMN notation. The process consists of three activities PreTest,
Centrifugation and PostTest. In the PreTest the vial is examined. In the Cen-
trifugation activity the vial is put into the centrifuge and the centrifuge is started
and stopped when centrifugation is finished. Afterwards the vial is taken out of
the centrifuge. In the last activity a post examination is performed.

Figure 1 jB shows an example for an intra-instance instantiable rule mod-
eled with BPMN-Q [2]. It states that the PreTest has to precede the PostTest.
Furthermore the figure shows two instances 1 and 2. Instance 1 complies to the
constraint while 2 violates it. The decision on compliance or violation can be
made for each instance in a separate manner. What we cannot see in the visual-
ization is that in order to perform such a compliance check each task has to be
linked to a task within the process.

Figure 1 jD depicts all modeling elements from the ISM language used in
this paper. Dataelements and Resources represent values specified during design
or run-time and either within the rule or the process model. A Conditional -
Trigger uses Dataelements and Resources to validate a business rule. The Timer
- Trigger extends a Conditional with time related information. If a business rule
within a trigger is true the action part is executed, i.e., Start the execution of a

Fig. 1. Centrifugation process with intra-instance constraints and ISM.

task or Wait before a task is executed. Instance spanning tasks are represented
with a green border while process spanning tasks with a blue one.

Figure 1 jC depicts an example ISC ”Wait until centrifuge is filled.” [15].
What differentiates an ISC from an intra-instance constraint is that the ISC
involves multiple instances and/or processes. In this example the centrifuge offers
a maximum load capacity of 4 vials and shall only be started when the maximum
load capacity is reached. We used ISC Viz to model the corresponding ISM. The
visualization shows a trigger which performs a check resulting in a boolean value.
A data element that stores a numeric value. Two actions wait and start and a
task. What we cannot see is that the task is currently not linked to a process
or instance. Based on the color green we know that the task has to be linked
to one process in order to be executable. In its current state this model is not
executable, the trigger does not state a condition, the data element and task are
represented only by a label and the execution order of the actions is unclear.

3 Related Work

Most studies on constraints focus on modeling intra-instance constraints [3] or
instantiating constraints [6,10,12] rather than widening the view towards ISCs.
However, recent approaches such as [4,7,8] concentrate more and more on con-
straints spanning across instances and processes. Batching of multiple instances
[14] is a common scenario when dealing with ISCs, however the work focuses on
integrating batching regions into the process rather then separating the logic. At
a formal level recent work even deals with going towards instantiation [16,9,4,8].
Also first steps are taken towards the discovery of ISCs from process logs [18].
Current approaches for visualizing constraints focus on intra-instance constraints
[1,11]. These approaches can not be used when dealing with spanning constraints

due to more data and the involvement of multiple instances and or processes.
ISC Viz [5] is a visual notion for modeling ISMs. However, the language is limited
to visually represent models for communication purpose only. The created mod-
els are not instantiable. With our research we want to extend ISC Viz towards
the modeling of ISRs.

4 Requirements for ISR Representation

This section states the requirements for the specification of ISRs based on an
ISM. The requirements are derived from literature on instantiation of intra-
instance compliance rules [11], instance-spanning constraints in general [4], and
the visualization of ISMs [5]. This selection of approaches is feasible as the clas-
sification and visualization of instance-spanning constraints yields the necessary
ingredients to go from their abstract and process-independent representation
to an executable form. The related work on intra-instance constraints confirms
these specification steps going from process-independent to process-specific rules.
However, as ISCs contain additional, runtime related information such as trigger
and actions when compared to intra-instance constraints, the approach in [11]
cannot be directly applied to ISCs.

Nonetheless, when specifying executable rules the runtime-related parts of
ISCs have to be specified, i.e., the data, the resources, and the linkage, leading
to the following set of requirements:

Requirements derived from intra-instance constraints

1. Data specification: When an ISM is transformed into a rule all data elements
have to be specified. For example, an ISM states that a loan amount is
needed. In case of this example a rule either assigns a specific value to the
variable or links to a source where to read the variables value.

2. Resource specification: While an ISM gives an overview of involved resources,
a rule has to have a link to the resource and allow for e.g., checking if the
resource is available.

3. Linkage: An ISM only states activity names. A rule has to specify a link
between each activity of the rule and an activity within a process. An ex-
ception of this behavior are activities that link to no specific process, in this
case the activity links to a repository of activities. An example rule that
demonstrates this behaviour can be found in Section 7.

As mentioned before instance-spanning constraints contain additional infor-
mation when compared to intra-instance constraints [4] which is necessary to
define their scope (spanning instances or processes), their trigger (when do they
become activated), and their actions, e.g., waiting.

Requirements derived from instance-spanning constraints

4. Execution data: Requirement 1 already handles that data elements are to be
specified before a rule can be created. Execution data needs special treatment
as this data is generated during process execution and thus is a specification
of ISMs and not part of an intra-instance constraint.

5. Trigger specification: In order to allow validation of both trigger types Con-
ditional and Timer a condition and behaviour have to be specified. A condi-
tion for the Conditional is specified by using data and resources in order to
create a boolean condition, e.g., instance counter == load capacity. A Timer
condition allows for modeling the same condition as a Conditional with the
addition of a time event, e.g., lastExecution >1 hour && instance counter
== load capacity. The behaviour of a trigger is executed only if the condition
is evaluated as true and enables modeling of data and resource manipulation.

6. Action specification: Some actions need to be specified in more detail when
handling an ISR e.g. an Alert consists of a message, video, sound, or service
that shall be executed.

An additional goal of this paper is to automatically create an ISM based on
ISRs. This necessitates the following technical requirements.

Requirements for automatic ISR creation

7. Unique ISM identifier: Every set of ISRs has to store an ISM ID in order to
enable grouping of ISRs e.g. a set of 3 ISRs stores the ISM ID of its corre-
sponding ISM. If there is no corresponding ISM a unique value is created.

8. Unique ISR identifier: Every ISR is identified by an unique ID.

Current approaches for visualizing an ISM will be used to visualize ISRs. To
allow the user to understand both, ISM and ISRs, we will follow a set of strict
requirements on the visualization. Those requirements are based on Moodys
principles [13] and ensure that users who are familiar with ISM modeling will
have no problem in understanding and modeling ISRs.

Requirements on ISR visualization

9. Principle of graphic economy: The complexity of the constraint visualization
shall not be changed. Therefore it is not allowed to add additional elements
to the visualization, e.g., new symbols.

10. Semiotic Clarity: Avoid the definition of multiple semantics for a visual
element.

5 ISR Representations

This section provides a visual as well as an XML-based representation for ISRs
following the requirements as set out in Section 4. As ISRs are typically specified
based on an ISM the visual ISR representation has to be designed in accordance
with the visual ISM representation. ISC Viz [5] is currently the only visual mod-
eling language for ISMs. Thus ISC Viz will serve as basis for the visual ISR
modeling language. It will be discussed which of the ISC-related information is
visualized, and which is only contained within the xml representation.

5.1 Visual ISR representation

Our focus for developing a visual ISR representation are Requirements 9 and 10
as stated in Section 4: 9 – no further visual elements when compared to ISC Viz
– and 10 – avoid multiple semantics per visual element. In order to meet these
requirements we use the principle of complexity management and the principle
of dual coding as proposed by Moody [13].

Fig. 2. Representing an ISM as a set of ISRs (example).

Dual coding Dual coding uses text in order to complement graphics. We will
use this principle to add text to visual elements of an ISM, i.e., data, resource,
task, and trigger, in order to meet Requirements 1 – 4 and partly 5. As text is
already used within ISMs this is not considered as adding a new visual element
and thus does not violate Requirement 9.

Applying dual coding on the ISM running example of Figure 2 j1 results in

the ISR j2 . During the creation process, local data element Counter, a link to
a task within a process as well as a condition and behaviour are specified.

While the specification of ISRs with respect to data, resources, and tasks at
the visual level is sufficient using text, at the implementation level, the modeler
has to specify either a link to a certain data element, resource and task within
a process or repository and/or create a local variable within the rules. To avoid
visual overload [13] we decided to not include URLs within the visual notion.
Specifying URLs and values allows the rule execution engine access to values used
within process instances and thus be used for evaluating conditions. Conditions
and their behaviour have to be specified by the modeller. A condition is either
true and the behaviour is executed or false and nothing else happens. As far as
visualizing the condition and behaviour we opted to visualize the condition of a
trigger and specify the details of the behaviour within the XML representation.

Dual coding enables the specification of several ISM elements such as data,
but is not yet sufficient to realize executable ISRs. What is missing is the spec-
ification of the behavioural parts, i.e., the actions, that are triggered based on

the specified conditions. In Figure 2 j2 , for example, we cannot decide what
happens when the Counter reaches a value of four or greater. Shall the wait or
start action be executed?

In addition, using dual coding only does not enable the specification of dif-
ferent conditions, i.e., the creation of ISRs that possess different conditions, but
follow the same ISM. To tackle the specification of actions and multiple condi-
tions, the visual representation of ISRs has to be further refined.

Complexity management The ISRs shall include a mechanism to allow for
complexity management. Moody suggests two ways of dealing with complexity,
modularization and hierarchy. Modularization divides a problem into multiple
smaller problems. Hierarchy allows to represent a problem at different levels
of detail. We will use this principle to refine the ISR visualization and tackle
Requirement 5. We split one ISM into multiple rules. Each rule consists of one
trigger and task, and zero to multiple resources, data elements, and actions. This
allows the rule execution engine to know what behaviour and what action shall
be executed in case a condition is true. A special type of trigger is a trigger
without a condition such a trigger is always true.

Figure 2 j3 depicts the application of complexity management and dual

coding on the ISM j1 . ISR jA shows a rule without a condition and action
wait. A rule engine will stop all instances before centrifugation is executed.
The visualization does not show the default value of the counter (0) and the
behaviour that every time this rule is true the counter is increased by 1. ISRjB depicts a condition counter >= 4 and a start action. This means that if an
execution engine evaluates this rule as true the following task (i.e., centrifugation

in the example) will be started. ISR jC does not state a condition but we can
see that the counter is used again. This rule can be seen as a clean up. Within
the behaviour we decrease the counter by one for each instance that finished the
centrifugation task. If the process engine supports instance counting the counter
of the engine can be used. In this case increasing and decreasing the counter
within the rule engine is not needed.

In comparison to the ISM the ISRs show more information. When looking at
the ISRs we know that we always stop the execution of the instances before the
task centrifugation. We know that we start the instances when we reached the
fourth instance. Specifying URLs and/or values for all elements creates a set of
executable rules. The following XML representation details information that is
not shown within the visual representation, e.g., URLs, behaviour and IDs.

5.2 XML representation

When transforming an ISM to ISRs there is more information needed than shown
in the visualization, i.e., URLs, IDs, and behaviour. We use XML as file format
to store all the necessary information for communication with our execution
and rule engine as both support XML files as input and output. Furthermore

we opted for XML as it allows for validation against a schema. The schema
describes all necessary information we know from the visualization as well as
some ”hidden” information. We will highlight this hidden information through
the following discussion. The following code snippets are a short excerpt from
the detailed Relax NG schema available here1.

The visualization of data elements only visualizes their label, but to satisfy
Requirements 1 and 4, we have to store additional information. Every data ele-
ment consists of a type, e.g., data and execution data, a label and either content
or an url and an id. Data elements that specify a value, e.g., MaximumNumber
of concurrent instances in centrifuge, will most likely use the element content
and specify the value. A more dynamic approach allows to link a value to the
process itself by specifying the element url and id. Linking a value to a pro-
cess allows access to process data and the possibility to use this data for trigger
conditions and behaviour.

Listing 1.1. Relax NG data elements representation

1 <d e f i n e name=” datae lements ”>
2 <element name=” datae lements ”>
3 <zeroOrMore>
4 <element name=”data”>
5 <element name=” type ”><cho i c e>
6 <value>data</ value><value>execut ion</ value>
7 </ cho i c e></ element>
8 <element name=” l a b e l ”><t ext /></ element>
9 <cho i c e>

10 <element name=” content ”><t ext /></ element>
11 <group><element name=” u r l ”><t ext /></ element><element name=

” id ”><t ext /></ element></group>
12 <cho i c e> </ element> </zeroOrMore> </ element> </ d e f i n e>

From a visual and XML perspective resources and data are nearly handled
the same. As stated in Requirement 2 – a resource always links to a process or
repository – we have to represent this behaviour within the XML representation.
To do so we use an URL and ID pointing to a resource. The idea is that every
resource is represented with a web interface i.e., all printer ”/printer/id” are
represented as rest services and to get data from this device one uses the URL
and ID to for example determine the current ink level ”/printer/id/inklevel”.

We assume that most of the instantiable rules consist of one action. But
there might be cases where multiple actions are possible, e.g., execute an alert
and then perform the action wait. To satisfy Requirement 6 an optional URL
can be used for user notifications. An alert can show a message to a user, but
one can think of further use cases like playing a sound or opening a service.

The trigger visualization is a bit different compared to other visualizations.
A trigger can be represented in two ways by a conditional or a timer. This
representation depends on what is stated within the XML element type shown in
Listing 1.2. A type is specified either as conditional or timer. While the condition
is visualized a trigger stores a behavioural part that is not visualized, but needed
to meet Requirement 5. Additionally all previous defined elements data, resources
and actions are included in the trigger.

1 http://gruppe.wst.univie.ac.at/projects/crisp/index.php?t=visualization

http://gruppe.wst.univie.ac.at/projects/crisp/index.php?t=visualization

Listing 1.2. Relax NG trigger representation

1 <d e f i n e name=” t r i g g e r ”>
2 <opt i ona l>
3 <element name=” t r i g g e r ”>
4 <element name=” type ”><cho i c e>
5 <value>c o n d i t i o n a l</ value><value>t imer</ value>
6 </ cho i c e></ element>
7 <r e f name=” datae lements ”/>
8 <r e f name=” r e s o u r c e s ”/>
9 <element name=” cond i t i on ”><t ext /></ element>

10 <element name=” behaviour ”><t ext /></ element>
11 <r e f name=” ac t i on s ”/>
12 </ element> </ opt i ona l> </ d e f i n e>

Listings 1.1 – 1.2 are combined within one rule definition shown in Listing 1.3.
As specified in Requirement 7 and 8 every rule consists of an ID that groups all
rules under a single ID. Additionally we allow for naming and describing a set of
rules. Every rule set consists of one or more rules. To allow for identifying a single
rule we again use a unique id for every rule within a set of rules. Furthermore rules
consist of elements for name, description, and priority. The priority is needed
within the rule engine to determine in which order rules shall be evaluated. A
trigger before the task signals that the trigger is evaluated before the execution
of a task while a trigger after a task is evaluated afterwards. As Requirement
3 states that a task within a rule has to be linked to a either a process or a
repository. Within the XML file this linking is expressed by an element spanning
with two values single for an URL to a process and multi for an URL to a
repository. The url element specifies under which link the corresponding process
or repository can be found. Within the process or repository an ID is used to
narrow it down to a specific activity. One could argue that we do not store a
label within the task, but the visualization of a rule shows a label within the
task. To be consistent between the linked process or repository and the rule we
use the label from the linkage. In some cases a task might not be needed, e.g.,

cleaning variables as shown in Section 7, Table 1 j1 .
The key differences between the XML and visual representation are that

IDs, URLs and priority and some element specifics, e.g., types, behaviour are
not visualized, but stated within the XML file. To the contrary the label of a task
is visualized but it is only indirectly stored within the XML file by specifying a
url and an id.

Listing 1.3. Relax NG combination of all parts

1 <element name=” r u l e s ”>
2 <element name=” id ”><t ext /></ element>
3 <element name=”name”><t ext /></ element>
4 <element name=” d e s c r i p t i o n ”><t ext /></ element>
5 <oneOrMore>
6 <element name=” r u l e ”>
7 <element name=” id ”><t ext /></ element>
8 <element name=”name”><t ext /></ element>
9 <element name=” d e s c r i p t i o n ”><t ext /></ element>

10 <element name=” p r i o r i t y ”><data type=” i n t e g e r ”/></ element>
11 <r e f name=” t r i g g e r ”/>
12 <element name=” task ”>
13 <opt i ona l>
14 <element name=” spanning ”><cho i c e>

15 <value>s i n g l e</ value><value>mult i</ value>
16 </ cho i c e></ element>
17 <element name=” u r l ”><t ext /></ element>
18 <element name=” a c t i v i t y i d ”><t ext /></ element>
19 </ opt i ona l> </ element>
20 <r e f name=” t r i g g e r ”/>
21 </ element> </oneOrMore> </ element>

6 Automatic creation of an ISM from a set of ISRs

The specification of ISRs based on an ISM is necessary in order to create exe-
cutable rules. In addition, the other way round – deriving and ISM from a set
of ISRs – is also of interest. Reasons include displaying common elements and
structure as well as providing a schema for further ISRs. Creating the ISM from
a set of ISRs should be done automatically in order to not burden the user with
this task. A precondition for the automatic creation of an ISM from an ISR is
that the ISR is valid with the schema set out in Section 5.22. It should be possi-
ble to select ISRs from a given set for ISM creation. The reason is that the user
might not be interested in a fully detailed ISM. This is achieved by selecting a
priority value. Only rules with an higher priority will be merged to an ISM.

Algorithm 1 merges a given set of ISRs into an ISM by sorting all rules based
on their priority. Then every rule that has a higher priority than a given value
is considered for merging. All rule elements such as trigger, data elements, and
tasks that are not represented within the generated ISM yet, will be added and
simplified. Simplifying means to omit information that an ISM does not contain,
i.e., links, conditions, and behavior. The implementation of Algorithm 1 as well
as an illustrating example are provided as part of the evaluation in Section 7.2.

Algorithm 1 Merging ISRs to create an ISM.
rules = all ISRs from the XML input
priority = value from input
model = null
rules.sort()
while rules do

if rules[i].priority > priority then
while each element from rules[i] do

if !model.contains(rules[i].element[k]) then
model.add(rules[i].element[k])

end if
end while

end if
end while
model = model.simplify()

2 ISM schema: http://gruppe.wst.univie.ac.at/projects/crisp/index.php?t=

visualization

http://gruppe.wst.univie.ac.at/projects/crisp/index.php?t=visualization
http://gruppe.wst.univie.ac.at/projects/crisp/index.php?t=visualization

7 Evaluation

Roughly, the evaluation is conducted in a circle where we start with an ISC and
an ISM. We visually specify ISRs based on the ISM. This visual specification of
ISRs has been prototypically realized in the modeling tool ISR modeler3 based
on the principles introduced in Sect. 5.1. We export and validate these rules
with the schema described in Sect. 5.2. Finally we apply Alg. 1 from Sect. 6 and
create an ISM again. We visualize the created ISM with the ISC Viz4 modeling
tool and compare the visual and XML representation with the original model.

7.1 Creating ISR visual models and XML representations

To show the applicability of the approach, four ISMs are visually specified as
ISRs, one for each of the categories of the classification introduced by [4]. In a
nutshell, the classification has two dimensions, i.e., requirement and context. Re-
quirement comprises categories single (only one modeling perspective) and multi
(multiple perspectives, e.g., data and time) the ISC can be built of. Dimension
context refers to single if the ISC is defined for multiple instances of one processes
and multi for ISCs spanning multiple processes. The examples depicted in Table
1 are picked from a set of ISC examples [15]. Our visual language is complete
in a sense that we can model all 114 of these examples with our language. The
corresponding ISMs have been created in our previous work [5]. These ISMs will
help to verify the results of merging the created ISRs with Alg. 1. One has to
bear in mind that multiple interpretations of the text are possible as the descrip-
tion is not precise. However Table 1 also comprises specification details of the
examples to give more details on how we interpret the rule and what is special
about this rule.

Figure 3 shows the visualization of the example ISRs. In the following we
discuss how the visualization realizes the requirements set out in Section 4.

– Requirement 1 is shown in rule j2 and specifies a data element as kwp
connections.

– Requirement 2 is visualized in rule j1 and sets a link to a repository where
the role user is selected.

– Requirement 3 is the linkage of a task which is represented in all rules by

either selecting a repository j1 j2 or a link to a specific task of one processj3 j4 . We want to point out that this represents the classification of context

multi j1 j2 and single j3 j4 .

– Requirement 4, execution data, is represented in rule j4 as counter that
counts all instances.

– Requirement 5, specification of a trigger, is shown in every rule. Some rules

do not have a condition e.g. j2 jC , j4 jA .
– Requirement 6, actions, are visualized in nearly all examples.

3 ISR visualization: http://gruppe.wst.univie.ac.at/~gallm6/ISC_Viz/ISR/
4 ISM visualization: http://gruppe.wst.univie.ac.at/~gallm6/ISC_Viz/ISM/

http://gruppe.wst.univie.ac.at/~gallm6/ISC_Viz/ISR/
http://gruppe.wst.univie.ac.at/~gallm6/ISC_Viz/ISM/

Rule Context Requ. ISC Specification detailsg1 Multi Multi A user is not allowed to execute
more than 100 tasks (of any work-
flow) in a day

For the cleanup g1 gC we specify a rule with-
out a task. This rule triggers every day even
when no task is executed.g2 Multi Single Maximal KWP-2000 Connections

The number of connections to
KWP2000 should not exceed 10.

In this case the KWP (communication pro-
tocol) allows for a maximum of 10 concur-
rent connections. The example shows that
a set of rules can consist of different trigger
positions before and after a task.g3 Single Multi There should not exist more than

one instance of W such that the
input parameters (say loan cus-
tomer) is the same and the loan
amount sums up to $100K during
a period of one month.

Each customer is allowed to have multiple
loans but in total their loan amount shall
not exceed $100K per month. This rule set
shows a timer and that multiple data ele-
ments can be used within a trigger.g4 Single Single Wait until centrifuge is filled. We set a limit that the centrifuge is filled
when 4 instances arrive. In this case we per-
form the action wait for all instances before
the task centrifugation. After finishing the
task we use a trigger without condition to
perform a cleanup i.e. change variable val-
ues.

Table 1. ISC examples with specification details

Fig. 3. Rules modeled with our extension to ISC Viz.

– Requirement 7 and Requirement 8 cannot be seen in the visual representa-

tion, but rule numbers j1 , j2 , j3 and j4 could represent unique ISM IDs

and the alpha numeric values jA , jB and jC represent rule IDs

Listing 1.4 shows an excerpt of the XML file exported from our tool ISC Viz.
The exported XML file is valid against the schema introduced in Section 5.2. The

Listing specifies the centrifuge process from Table 1 j4 . Every time three dots
... are shown within the listing there is some information skipped due to space
limitations, this information is available on our website 5. ISM ID (1) is followed

by an ID (1) of the first rule j4 jA . The rule is further specified with a priority
of 11, no condition, a behaviour where the counter gets increased, and a single

spanning task linked with an url and an id. Rule j4 jB starts with an other ID
(2), a different priority value of 7, a condition that checks if the counter is =>4,
and behaviour that starts the first 4 instances if the condition is true. In the
third rule j4 jB the trigger is specified after the task without a condition and
a behaviour that removes the instance from the counter. Our evaluation shows
that we can visually model examples from each category of the classification and
express them as XML.

Listing 1.4. Relax NG combination of all parts

1 . . .<id>1</ id> < !−− ISM ID −−>
2 <r u l e><id>1</ id> . . . < !−− Rule ID −−>
3 <p r i o r i t y>11</ p r i o r i t y> . . .
4 <cond i t i on></ cond i t i on>
5 <behaviour>counter &l t ;& l t ; event</ behaviour> . . .
6 <task>
7 <spanning>s i n g l e</ spanning>
8 <u r l> . . . / CentProcess . xml</ u r l>
9 <a c t i v i t y i d>c e n t r i f u g a t i o n</ a c t i v i t y i d>

10 </ task> . . .
11 <id>2</ id> . . . < !−− Rule ID −−>
12 <p r i o r i t y>7</ p r i o r i t y> . . .
13 <cond i t i on>counter . l ength => ; 4</ cond i t i on>
14 <behaviour>counter [0 . . 3] . each do | event event . cont inue end</

behaviour> . . .
15 <id>3</ id> < !−− Rule ID −−>
16 <p r i o r i t y>3</ p r i o r i t y> . . .
17 <task> . . . </ task> . . .
18 <cond i t i on></ cond i t i on>
19 <behaviour>counter . s h i f t</ behaviour> . . .

7.2 Testing the algorithm

Algorithm 1 is applied to the example from Sect. 7.1 j4 . The algorithm requires
a priority value as input. The values in the XML file are 11, 7, and 3. In the
following, we decided to use the values 10, 5 and 2 as input for the merge
algorithm. The values are chosen to reflect all possible combinations. A value
above 11 would result in an empty model as no rule in Listing 1.4 has a priority
value of 11 or above. A value of 10 merges all rules with a value above 10, in

5 http://gruppe.wst.univie.ac.at/projects/crisp/index.php?t=visualization

http://gruppe.wst.univie.ac.at/projects/crisp/index.php?t=visualization

this case the first rule. A value of 5 merges rule 1 and 2, a value of 2 merges all
rules.

Figure 4 shows the visualization of the ISM from example j4 . jA shows the
ISM taken from our previous work [5]. Based on the selected priority Algorithm

1 creates different ISMs. Figure 4 jB uses priority 10 and includes only Rulej4 jA the visual differences between Rule j4 jA and ISM jB are that the
counter is now represented as execution data. When the priority is reduced to 5

an additional rule is included in the ISM. ISM jC , is identical when compared

to the given ISM jA . If the counter is reduced to value below 3 all three rules

will be incorporated into one ISM. jD depicts an ISM where two triggers are
visualized. Due to space limitations we showcase all four XML files and merged
models on our website6.

Fig. 4. ISM visualization from the files created by Algorithm 1.

ISMs created manually and ISMs created from a set of corresponding rules
can differ in the number of elements depending on the priority set for Algorithm
1. Currently, Algorithm 1 creates ISM models that are complete in the sense
that all visual elements will be used, meaning that all data elements, resources,
trigger, and actions allowed within an ISM will be visualized.

8 Conclusion

Compliance management demands to bridge the gap between models of instance-
spanning constraints (ISM) and their executable rules (ISRs). Visual represen-
tations of constraints are used for reflecting and discussing regulations, but can
be specified in different ways for implementing constraints across multiple in-
stances. This work provides a visual representation including a modeling tool
for the specification of ISRs as well as the export and further specification of
XML representations. Moreover, merging ISRs into an ISM is enabled. In future
work, we will examine the automatic creation of ISMs based on ISRs, i.e., for
creating ISMs without the need of unique IDs. Furthermore we want to evaluate
how to visually model the behaviour part of a trigger.

Acknowledgment This work has been funded by the Vienna Science and Tech-
nology Fund (WWTF) through project ICT15-072.

6 http://gruppe.wst.univie.ac.at/projects/crisp/index.php?t=visualization

http://gruppe.wst.univie.ac.at/projects/crisp/index.php?t=visualization

References

1. Awad, A., Weidlich, M., Weske, M.: Visually specifying compliance rules and ex-
plaining their violations for business processes. J. Vis. Lang. Comput. 22(1), 30–55
(2011)

2. Awad, A.: Bpmn-q: A language to query business processes. In: In Proceedings of
EMISA07. pp. 115–128 (2007)

3. Becker, J., Ahrendt, C., Coners, A., Weiß, B., Winkelmann, A.: Business rule based
extension of a semantic process modeling language for managing business process
compliance in the financial sector. In: GI Jahrestagung (1). pp. 201–206 (2010)

4. Fdhila, W., Gall, M., Rinderle-Ma, S., Mangler, J., Indiono, C.: Classification and
formalization of instance-spanning constraints in process-driven applications. In:
International Conference on Business Process Management 2016 (June 2016)

5. Gall, M., Rinderle-Ma, S.: Visual modeling of instance-spanning constraints in
process-aware information systems. pp. 597–595. Advanced Information Systems
Engineering (May 2017)

6. Ghose, A., Koliadis, G.: Auditing business process compliance. In: Int’l Conf. on
Service-Oriented Computing. pp. 169–180 (2007)

7. Heinlein, C.: Workflow and process synchronization with interaction expressions
and graphs. In: Int’l Conference on Data Engineering. pp. 243–252 (2001)

8. Indiono, C., Mangler, J., Fdhila, W., Rinderle-Ma, S.: Rule-based runtime moni-
toring of instance-spanning constraints in process-aware information systems. In:
On the Move to Meaningful Internet Systems. pp. 381–399 (2016)

9. Leitner, M., Mangler, J., Rinderle-Ma, S.: Definition and enactment of instance-
spanning process constraints. In: Int’l Conf. on Web Information Systems Engi-
neering. pp. 652–658 (2012)

10. Ly, L.T., Maggi, F.M., Montali, M., Rinderle-Ma, S., van der Aalst, W.M.P.: Com-
pliance monitoring in business processes: Functionalities, application, and tool-
support. Information Systems 54, 209–234 (2015)

11. Ly, L., Rinderle-Ma, S., Dadam, P.: Design and verification of instantiable compli-
ance rule graphs in process-aware information systems. In: Conference on Advanced
Information Systems Engineering. pp. 9–23 (2010)

12. Mangler, J., Rinderle-Ma, S.: IUPC: identification and unification of process con-
straints. CoRR abs/1104.3609 (2011), http://arxiv.org/abs/1104.3609

13. Moody, D.: The physics of notations: Toward a scientific basis for constructing vi-
sual notations in software engineering. IEEE Transactions on Software Engineering
35(6), 756–779 (Nov 2009)

14. Pufahl, L., Herzberg, N., Meyer, A., Weske, M.: Flexible batch configuration in
business processes based on events. In: Int’l Conference on Service-Oriented Com-
puting. pp. 63–78 (2014)

15. Rinderle-Ma, S., Gall, M., Fdhila, W., Mangler, J., Indiono, C.: Collecting examples
for instance-spanning constraints. Tech. Rep. abs/1603.01523, CoRR (2016)

16. Warner, J., Atluri, V.: Inter-instance authorization constraints for secure workflow
management. In: Symp. on Access Control Models and Techn. pp. 190–199 (2006)

17. Wieringa, R.: Design Science Methodology for Information Systems and Software
Engineering. Springer (2015)

18. Winter, K., Rinderle-Ma, S.: Discovering instance-spanning constraints from pro-
cess execution logs based on classification techniques. In: 21st IEEE International
Enterprise Distributed Object Computing Conference. pp. 79–88 (2017)

http://arxiv.org/abs/1104.3609

	From Instance Spanning Models To Instance Spanning Rules

