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Abstract Flexible process management systems store information about
conducted process change operations in change logs. Change log analysis
can provide users who are responsible for planning and executing up-
coming adaptations with valuable information. Change trees represent
change logs emphasizing the temporal relation between change opera-
tions such that users can immediately see which change sequences have
been applied in the past. Similar to most process mining approaches,
change trees currently build upon label equivalence. However, labels only
provide restricted information about a change operation. Hence this pa-
per investigates how process change similarity can be employed to com-
pare changes, i.e., similar change operations are aggregated in the tree
as they appear in a change sequence. A user experiment shows the in-
creased efficiency of the aggregated change sequences: users find relevant
information faster than in a change tree based on label equivalence.

1 Introduction

Flexible business process management systems allow users to change their pro-
cesses according to the current requirements [1]. Information about the con-
ducted change operations are stored in a change log, which can be used to
analyze past change operations.

For analyzing change logs, different approaches have been developed: While
change processes [2] focus on causal dependencies between process change oper-
ations, the change tree [3] focuses on temporal relations between change oper-
ations, i.e. the inherent change sequences. Using a change tree, one can see in
which ways a certain kind of process instance has evolved, and which evolution
paths are more frequently used than others. Analyzing change sequences can pro-
vide valuable information: Imagine a nursing home with hundreds of patients,
where each patient’s therapy plan is represented by a process instance. Each task
in this process instance represents an activity which has to be completed in order
to improve the health status of a patient. Whenever an adaptation to a therapy
instance is required (e.g., because the patient feels sick), his process instance has
to be adapted, thus generating a new change in his change sequence. Information
about the change sequence of a specific patient can be used to analyze what has
been done, e.g., when evaluating the effectiveness of a patient’s therapy plan.
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Following, it can be analyzed whether the patient’s treatment was unique, or
similar to other, comparable situations.

Change trees are a data structure based on process change logs which empha-
size such change sequences. They are constructed by aggregating equal change
operations on the same position of change sequences in a single node, and gener-
ating sibling nodes for different change operations. However, change trees com-
pare process change operations based on their label only. If two change operations
have the same label, they are considered to be equal. For many situations, such
an assumption proves to be too general. Depending on the analysis question at
hand, for example, it could be more interesting to compare process change oper-
ations based on the required resources, temporal constraints, or other attributes
of the change operation. In other words, comparing change operations shall be
shifted from label equivalence towards comparing their semantics.

The idea behind is to replace label equivalence with change similarity mea-
sures (cf. [4]). They calculate the similarity of two process change operations
from different change perspectives [4], e.g., change attributes or change effects
on the adapted process instance. This enables to compare change operations
regarding, e.g., the required resources, time constraints, or affected control and
data flow.

For example, the Change Resource Similarity (CRS) [4] calculates the simi-
larity of the required resources of two change operations which insert activities
into a process instance in an interval between 0 and 1: If two inserted process
fragments require e.g. 3 nurses each, CRS returns 1, if they require totally differ-
ent resources, it returns 0. If a nurse wants to know which resources are usually
required for the treatment of a specific disease, she could investigate the change
tree where similar change operations regarding CRS are aggregated in one node.

Replacing label equivalence by change similarity measures poses several chal-
lenges. If changes are similar, different options for merging them in the resulting
change tree become possible. This necessitates theoretical considerations on how
a change tree can be built in this case. Moreover, the interpretation of a change
tree based on similarity measures is different from one based on label equiv-
alence. Finally, it has to be investigated which benefits arise from employing
change similarity instead of label equivalence for change trees. This leads to the
following research questions:

RQ1: How can change sequences be analyzed in a semantic way? Which measures
can be used? How do these measures have to be applied to a set of change
sequences?

RQ2: Does the aggregation of change operations in change trees help the user to
find relevant information faster than in change trees based on label equiva-
lence?

In this paper, we first analyze how similarity measures for process change
operations can be applied to sets of change sequences as they can be found in a
change log, thus allowing us to answer different questions about change sequences
(→ RQ1). This is followed by an evaluation with potential users of the change
tree (→ RQ2).



This paper is structured as follows: Section 2 introduces the basic notations
which are required for the remainder of the paper. This is followed by a general
introduction to the application of process change operation similarity to change
trees (Section 3). In Section 4, we show how similar and equal change operations
can be aggregated. In our evaluation (Section 5) we present an experiment con-
ducted with over 60 users who analyzed change sequences using our approach.
The paper concludes with related work (Section 6) and a summary (Section 7).

2 Fundamentals

This paper focuses on the control flow aspects of process changes and defines
process schema S as S := (N,E), where N denotes the set of nodes (activities
and gateways), and E denotes the set of control flow edges (c.f. [5]). A change
operation ∆ transforms process schema S into adapted schema S’, formally:

Definition 1 (Process Change Operation). A process change operation ∆
is defined as a tupel ∆ := (t, f, p, S) where

– t denotes the type of the change operation
– f denotes the process fragment which is used by the change operation.
– p denotes the position of the change operation.
– S denotes the process schema or instance the change operation is applied to.

During runtime changes are applied to a set of process instances I running
on a schema S. These changes are stored in a change log C. Specifically, for each
i ∈ I, C stores the temporally ordered set of change operations that have been
applied to i. An example of a change log is given in the left pane of Figure 1.

A change tree is a data structure representing change log information and is
defined as follows:

Definition 2 (Change Tree, based on [3]). Let C be a change log and D be
the set of all change operations contained in C. Then the change tree T is defined
as a rooted multiway tree T := (r, V,E) with

1. r := ∅ is the unique root node
2. V ⊆ D × N0 (vertices)
3. E ⊆ V × V (edges)
4. ∀ paths p from root r to node v = (∆, n) ∈ V with n > 0: p corresponds to

the change traces of n changed process instances in C.
5. ∀ leaf nodes v = (∆,n) ∈ V: n > 0

The change tree is constructed from a process change log. The root node
represents the unchanged process schema. Each change operation which has
been applied on a process instance is represented by a node in the tree. The
traces in the change tree from the root nodes to the leaf nodes represent the
temporal relationships between the applied change operations: If ∆1 has been
applied before ∆2, it is closer to the root node.



Figure 1 shows an example for a change tree based on a process change
log that consists of six traces t1, t2, . . . , t6. There are only two ways in which the
process instances have been adapted in the beginning, i.e., ∆1 and ∆3. Following
∆1, there is one trace where ∆2 has been applied, and two traces where ∆1 has
been applied again. Both traces end at this point. Each node in a change tree
contains two values: The first value is the label of the change operation which
has been applied at this point in the change traces, the second value represents
the number of change sequences which terminate at this change operation. This
can be checked by consulting the change log, where indeed two change traces
contain two applications of ∆1, and one trace contains ∆1 followed only by ∆2.
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Figure 1. Change tree representation of an example change log

The structure of the change tree emphasizes multiple features of the change
log it is based on: The breadth of the change tree is an indicator for the diversity
of the applied process change operations. The broader the change tree, the more
diverse the change operations have been. The height of the change tree indicates
how many change operations have been applied to one or more change traces.
The number of change traces in a certain branch in relation to the total number
of change traces in the log shows which change operation paths have been used
more frequently. The diversity of the change operations which have been applied
on a certain level can be seen from the number of sibling nodes.

So far, in a change tree, two (potentially sibling) change operations have
only been aggregated in one node they were equivalent regarding their labels;
the attributes and effects of the change operations were not considered at all.
Using label equivalence has been discussed as a potential limitation in the area of
process mining (cf. e.g., [6]). For example, it would be possible that two activities
have equal labels, but launch different actions based on the context they are
executed in, or that two activities with different labels are actually semantically
equivalent (i.e., the launched actions are the same). Hence, for certain analysis
questions, using an equivalence notion that refers to the semantics of activities
would be useful [7]. The same holds for comparing change operations.

Hence, this work proposes the aggregation of nodes in change trees based
on process change similarity instead of using label equivalence. In the following,



we denote the similarity of two change operations ∆1 and ∆2 as sim(∆1, ∆2) ∈
[l, 1]. For some similarity measures, l = 0 holds, for others l = −1 is defined.
Which similarity measure is of interest, depends on the question at hand. When
resources required to complete activities are sparse (e.g., nurses in the nursing
domain, or professionals in the production domain), a resource-based view on the
change log might be of interest. Using such a resource-based view, one can see
more easily which resources have been required, and based on this information,
it might be possible to optimize future process adaptations. For such a situation,
the Change Resource Similarity (CRS) [4] can be used: It compares the resources
used by the fragments of two change operations ∆1 and ∆2, which are inserted
into or deleted from a process schema. If the resources are exactly the same, and
both change operations insert or delete, it returns 1. If the resources are exactly
the same, but one change operation inserts, and the other deletes, it returns
-1. If the required resources are different, it returns a value between (-)1 and
0. Contrary, the attribute based similarity measure simattr(∆1, ∆2) returns a
value in the range of [0, 1] [4]. It is calculated by defining the similarity for each
attribute of the two process change operations (fragments, positions, operation
types and schemas), and weighing the results. Using weights enables to prefer
certain attributes when comparing the change operations. Attributes can be even
ignored by assigning a weight of 0 to them.

Definition 3 (Process Change Operation Similarity Measure). Let ∆1

and ∆2 be two change operations as defined in Definition 1. Further, let l ∈ R,
l < 1. Then, the similarity measure is defined as sim(∆1, ∆2) ∈ [l, 1].

Which process change operation similarity measure is used highly depends
on the analysis question: If resources are of interest, a resource-based similarity
metric such as CRS may be useful; if control-flow related features are of inter-
est, a more attribute-based measure might be favorable. However, the approach
presented in this paper abstracts from the implementation of concrete similarity
measures. Thus, any measure which calculates a similarity sim(∆1, ∆2) ∈ [l, 1]
can be used as a basis for creating the aggregated change tree.

3 Applying Similarity Measures to Change Logs

To discriminate between traditional change trees (based on label equivalence)
and the change trees based on similarity measures as presented in this paper,
we will refer to the latter by the term aggregated change tree. The term stems
from the fact that multiple similar change operations will be aggregated in a
single node. Figure 2 depicts an example of a change log, a change tree and
an aggregated change tree. The middle pane shows a change tree according to
Definition 2 based on the change log in the left pane: It consists of two levels,
where the first level contains the four change operations ∆1, ∆2, ∆3 and ∆4.
The change traces t2 and t3 additionally contain a second change operation, ∆1.
The right pane depicts the aggregated change tree. In the following sections, we
will discuss how this aggregated change tree is created.
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Figure 2. Basic Example

To preserve the change sequences of a change log, which are represented in a
change tree, only change operations are considered for aggregation which would
be on the same level of the change tree. While it would be possible to aggre-
gate change operations in an aggregated change tree vertically (by aggregating
change operations which happened consecutively), the horizontal aggregation as
presented in this paper preserves the basic properties of the change tree: As the
change tree, the aggregated change tree should, when read from the root to the
leafs, represent the set of change sequences from a process log. If consecutive
change operations would be aggregated as well, this property would be lost.

The only difference between the aggregated change tree lies within the struc-
ture of the nodes. Instead of a node V containing a single change operation (as
defined in Definition 2), V now contains a set of similar change operations:

Definition 4 (Aggregated Change Tree). Let D be a set of change opera-
tions as defined in Definition 2. An aggregated change tree ACT := (r, V,E) is
a change tree T := (r, V,E) where V ⊆ 2D × N0.

There are two border cases for the number of nodes present in the aggregated
change tree (ACT) compared to the change tree: Due to the horizontal aggre-
gation, the minimum number of nodes equals the depth of the original change
tree, since the ACT contains only one node for each level of the change tree. If
however no nodes can be aggregated, the ACT contains exactly as many nodes
as the change tree.

In order to decide whether two change operations ∆1 and ∆2 should be
aggregated in a single node, a similarity threshold value τ ∈ [l, 1] is specified
where l corresponds to the lower bound of the similarity measure of interest. If
the similarity measure sim(∆1, ∆2) ≥ τ , ∆1 and ∆2 are aggregated in a single
node; else, two separate nodes are created. In the next section, we will present
two approaches for generating aggregated change trees based on a similarity
measure, a threshold τ , and a change log.

4 Generating the Aggregated Change Tree

Depending on the chosen similarity threshold τ , the aggregated change tree can
be created in different ways. Section 4.1 presents the algorithms for τ < 1.0 and
Section 4.2 follows up with an illustration for τ = 1.0.



4.1 Aggregation for Similar Process Change Operations

When aggregating similar change operations in one node, the similarity threshold
τ has to be reached for all similarity measures between the change operations
in the aggregation node. Figure 3 shows an example of such an aggregation: In
pane 1, a change log is depicted which contains three change traces consisting of
the process change operations ∆1, ∆2 and ∆3. Pane 2 shows the similarity of the
three change operations: sim(∆1, ∆2) = 0.75, sim(∆2, ∆3) = 0.8 and sim(∆1,
∆3) = 0.6. Pane 5 shows the change tree which would be generated based on label
equivalence (c.f. [3]). Depending on the chosen similarity threshold τ , different
change operations can be aggregated in one node: If τ = 0.6, all three change
operations can be aggregated in one node (c.f. aggregated change tree depicted
in pane 6). If τ = 0.7, only change operations ∆1 and ∆2, or change operations
∆2 and ∆3 can be aggregated in one node, but not ∆1, ∆2 and ∆3, since the
similarity between∆1 and∆3 is below τ . The similarity measure is not transitive.
Thus, for τ = 0.7, two aggregated change trees are possible (c.f. panes 7 and 8).
These two change trees are the results of two different aggregation strategies,
which are explained at the end of this section.
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Figure 3. Transitivity Example

The similarity measures between all change operations which can be aggre-
gated in one node need to be above the threshold τ . In order to find the subset
of change operations for which this condition holds, we introduce the change
similarity graph. (c.f. Definition 5).

Definition 5 (Change Similarity Graph). Let D be a set of change opera-
tions, sim(∆i, ∆j) be a similarity measure, and τ the similarity threshold. The
Change Similarity Graph Γ := (D, E) is an undirected graph where E ⊆ D ×D
denotes the set of edges. There exists an edge between change operations
∆i, ∆j ∈ D, iff sim(∆i, ∆j) ≥ τ .



Pane 3 and 4 of Figure 3 show the similarity graphs for two thresholds τ1 =
0.7 and τ2 = 0.6 for the process change operations ∆1, ∆2 and ∆3 from the
example given above. In the similarity graph for τ1 = 0.7, there exist only edges
between change operations ∆1 and ∆2, and between ∆2 and ∆3. There is no
edge between ∆1 and ∆3, since its value lies below the threshold at 0.6.

Δ₄

Δ₃

Δ₂

Δ₄

Δ₃

Δ₂

Δ₁

Δ₄

Δ₃

Δ₂

Δ₁

Δ₄

Δ₃

Δ₂

Δ₁
Δ₃

Δ₂

Δ₁

Similarity Graph Maximal Clique 1 Maximal Clique 2 Clique Set 1 Clique Set 2

1 2 3 54

Figure 4. Set of maximal cliques in a change similarity graph

Using the similarity graph as a basis, the problem of finding the subset of
change operations where the similarity of all change operations exceeds the
threshold τ can be seen as the problem of finding all maximal cliques in the
graph. A maximal clique in an undirected graph is a maximal complete subgraph
[8], that is a set of nodes and edges from that graph, where there exists an edge
between each node. Using a set of cliques as a basis, one could aggregate all
change operations which are in the same clique, since the similarity of those
change operations exceeds τ .

The graph depicted in the third pane of Figure 3 (τ = 0.7), contains two
cliques: One contains change operations ∆1 and ∆2, the other contains change
operations ∆2 and ∆3. In the graph in the fourth pane (τ = 0.6), there exists one
clique which contains all three change operations. The Bron-Kerbosch algorithm
[8] takes an undirected graph such as the change similarity graph as input, and
returns all maximal cliques of this graph. Figure 4 shows an example for a set
of maximal cliques in a change similarity graph. Pane 1 shows the similarity
graph which contains four different process change operations. By applying the
Bron-Kerbosch algorithm [8], two maximal cliques (depicted in panes 2 and 3)
are generated. Obviously, ∆2 and ∆3 appear in more than one clique. If both
cliques were used directly to generate the nodes of the aggregated change tree,
∆2 and ∆3 would appear in more than one node.

Following, the similarity graph has to be split up into a unique clique set,
containing several cliques where each node is present in exactly one clique. This
can be done in a straightforward fashion: We start with a similarity graph G
and an empty unique clique set U . In the first step, the cliques of G are created,
all nodes contained in the biggest maximal clique in G are removed from the
graph, and this biggest maximal clique is added to U . This step is now repeated
with the remaining nodes of the graph, until no nodes are left in the graph. If
there exist multiple biggest maximal clique sets, multiple solutions are possible,
as seen in the following example:

Applying this procedure to the example given in Figure 4 yields the following
results: We start with an empty unique clique set U = ∅. If we start with the
first maximal clique {∆1, ∆2, ∆3} (depicted in pane 2) this clique is added to U ,



and these nodes are removed from the similarity graph. Following, the similarity
graph now only contains {∆4}, which is the last maximal clique left in the graph;
thus, it is added to U , resulting in the unique clique set depicted in pane 4. If
we start with the second maximal clique set {∆2, ∆3, ∆4} (depicted in pane 3),
{∆1} would be the second clique, and we would end up with the unique clique
set depicted in pane 5. Thus, two unique clique sets are created.

These two unique clique sets can now be used to generate the change tree
nodes. Depending on the which set is chosen, either ∆1, ∆2 and ∆3 are aggre-
gated in one node, and ∆4 is in the other node, or ∆2, ∆3 and ∆4 are aggregated
in a node, and ∆1 is in its own node. Two distinct features can be used as a basis
for deciding which process change operation should be aggregated in a node: (a)
the most similar change operations should be aggregated or (b) the number of
nodes in the tree should be minimized.

Figure 5 shows a change log with four change operations ∆1 to ∆4. Pane 2
depicts the similarity relations between them. In the remainder of this section,
this example will be used to explain the different aggregation strategies.

Aggregating the most similar change operations Algorithm 1 shows the
strategy which can be used to aggregate the most similar change operations on
one level into an aggregated change tree node. It is based on the creation for
change trees as defined in [3] and starts with the first level of change operations
in the log, containing ∆1 to ∆4 (c.f. example from Figure 5).
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Figure 5. Example Change Tree for different strategies

First, the unique clique sets are created. For a τ = 0.3, two unique clique
sets are created: {{∆1}, {∆2, ∆3}, {∆4}} and {{∆1, ∆2}, {∆3, ∆4}}. The opti-
mal clique set is defined as the unique clique set where the overall similarity of
the contained nodes is maximal. This is calculated and compared to the simi-
larity of other unique clique sets in the function get-optimal-cliqueset. Initially,
it iterates over a set of unique clique sets. For each unique clique set, if a clique
contains more than one ∆, the similarity of all change operations in this clique is
calculated, and its sum is divided by the number of total nodes in the clique. For
the first clique set containing 3 cliques, the similarity of ∆2 and ∆3 is 1.0, which
results in an overall similarity of 1

3 . For the second unique clique set containing 2
cliques, the similarity is 0.3 for both cliques, thus, the resulting similarity is also
0.3. Since 1

3 > 0.3, the first clique set {{∆1}, {∆2, ∆3}, {∆4}} is chosen. Based



on this clique set, for each clique, a node is created and the traces are added for
creating the child nodes with the change operations in the next recursive itera-
tions. For each change operation in the clique, the corresponding change trace
is checked: If the change operation is the last change operation of this trace,
the node’s counter is incremented; else, the trace is added to the traces, which
will be considered in the next recursive call. Thus, all relevant traces and change
operations will be considered for the child level. The resulting aggregated change
tree is presented in pane 3 of Figure 5.

Algorithm 1: Aggregating the most similar change operations

Input:
– Change log C
– Similarity measure sim(∆1, ∆2)
– change similarity graph Γ := (D, E)

Output: Aggregated Change Tree ACT

1 Begin root = create-node(null,null);
2 create-children(root, C, 0); return ACT
3 function create-children(parent,traces,position)
4 nodes = ∅, deltas = ∅, cliquesets = ∅
5 foreach trace ∈ traces do
6 deltas = deltas ∪ {trace.get-changeoperation(position)}
7 generate-cliqueset(D, ∅, cliquesets)
8 //variable cliquesets now holds the set of clique sets
9 optimal-cliqueset = get-optimal-cliqueset(cliquesets)

10 //variable optimal-clique set now holds the optimal clique set
11 foreach clique ∈ optimal-cliqueset do
12 //creates a new node containing the change operations and links it to the

parent node
13 node = create-node(clique.changeoperations, parent)
14 nodes = nodes ∪ {node}
15 foreach delta ∈ clique do
16 //get-trace-of(delta) finds the trace this change operation is contained in
17 trace = get-trace-of(delta)
18 if trace.get-changeoperation(position+1)==null then
19 node.count++

20 else
21 node.nexttraces = node.nextraces ∪{trace}

22 foreach node in nodes do
23 create-children(node,node.nexttraces,position+1)

24 function get-optimal-cliqueset(cliquesets)
25 highest-sim = 0, optimal-set = ∅
26 foreach cliqueset ∈ cliquesets do
27 sim = 0
28 foreach clique ∈ cliqueset do
29 if |clique| > 1 then
30 //calculate similarity in clique

31 sim =
∑

i,j∈clique,i 6=j sim(i,j)

|clique|

32 if optimal-set == ∅∨ sim > highest-sim then
33 highest-sim = sim, optimal-set = cliqueset

Minimizing the number of nodes The second strategy minimizes the number
of nodes in each level of the aggregated change tree. Algorithm 2 shows this



strategy. It replaces the function get-optimal-cliqueset with a different algorithm
which prefers the unique clique set with the minimum number of cliques. Since
each clique is represented by a node in the aggregated change tree, this results
in the lowest number of nodes per level. For the first call of the function in the
example given in Figure 5, this would return the clique set {{∆1, ∆2}, {∆3, ∆4}},
thus resulting in the aggregated change tree depicted in pane 4.

Algorithm 2: Generating the minimum amount of nodes per level

1 function get-optimal-cliqueset(cliquesets)
2 min-count = 0, optimal-set = ∅
3 foreach cliqueset ∈ cliquesets do
4 if optimal-set == ∅∨ min-count < |cliqueset| then
5 min-count = |cliqueset|, optimal-set = cliqueset

Discussion: We have presented two strategies for aggregating similar change
operations in change tree nodes. Which one should be used highly depends on
the structure of the change log: For most situations, aggregating the most similar
change operations in one node seems logical. In the nursing home, for example,
one could aggregate the most similar therapy adaptations in a single change tree
node. If however the resulting number of nodes would become very large due
to the structure of the change log, minimizing the number of change tree nodes
instead can enhance the tree’s readability, thus simplifying further analysis of
the change log.

4.2 Aggregation for Equal Process Change Operations

For the aggregation of equal change operations (τ = 1.0), no change similarity
graph is required, since the equality relation is transitive (sim(∆1, ∆2) = 1.0
∧ sim(∆2, ∆3) = 1.0 =⇒ sim(∆1, ∆3) = 1.0). The example we use to ex-
plain the aggregation of equal change operations is based on the change log as
presented in Figure 21. While the middle pane shows the change tree based on
label equivalence as defined in [3], the right pane shows the resulting aggregated
change tree. Assume that sim(∆1, ∆2) = 1.0, sim(∆3, ∆4) = 1.0, and all other
similarities < 1.0. The aggregated change tree is created as follows: First, an
empty root node with no label and no parent is created. Next, each “column”
in the change log is iterated over: The first column contains change operations
∆1, ∆2, ∆3 and ∆4. The second column contains ∆1 (following ∆2 respectively
∆3). For the first column, the similarities between all change operations are
checked: If sim(∆i, ∆j) = 1.0, the change operations are aggregated in one node
- if not, they are split up in two nodes. In this example sim(∆1, ∆2) = 1.0 and
sim(∆3, ∆4) = 1.0. All other similarities are smaller than 1. The same is done
for the second column. Note that the ∆1 of the second column cannot be aggre-
gated in one node, since they have distinct parent nodes (one containing ∆1, ∆2,

1 The full version of the algorithm can be found on our project homepage
https://cs.univie.ac.at/project/APES



and one containing ∆3, ∆4). Ultimately the aggregated change tree depicted in
pane 3 of Figure 2 is created.

5 Evaluation

The approach presented in this paper is evaluated in an experiment which aims
at two goals, i.e., to analyze whether (a) the change tree can be used as a basis
for analyzing change sequences and (b) certain questions can be answered faster
by participants using an aggregated change tree, than using a change tree.

Method and Experiment Design The experiment is based upon a proto-
typical implementation of the (aggregated) change tree, working in every mod-
ern browser using HTML, CSS and JavaScript. This implementation serves as a
proof of technical feasability, which can also be accessed without participating
in the experiment2.

The first draft of the experiment was refined using a two stage pretest: During
stage one, the questions of the experiment were discussed with three peers who
are familiar with the concept of process change operations and change trees. In
the second phase, persons from the target audience were asked to participate in
the experiment. The target audience of the aggregated change tree are persons
from different fields of work, who do not necessarily have to be familiar with pro-
cess change operations. Thus, the chosen participants were older than 18 years,
and were not required to have any knowledge regarding process change opera-
tions, or change trees. During the pretest, two major parts of the experiment
were optimized: First, the user interface was optimized to be more intuitive to
users who are not familiar with the setting, second, the wording of two questions
and their explanation was optimized.

The experiment consists of two parts: Part 1 addresses the question whether
the change tree (CT) is a better representation of change logs than their raw
XML format (XML). Specifically, we want to find out if certain questions re-
garding the change log (e.g. How many resources have been used in this change
log? ) can be answered faster using a change tree than an XML based log file.
The participants were split in two groups and had to answer the same questions
based on those two representations. In each question, we measured the time un-
til the (correct) answer was found. The questions for the two representations
were based on different, but similar log files to prevent bias due to the partic-
ipants knowing the correct answer: While group 1 answered questions for the
CT based on log A, and questions for XML based on log B, group 2 received
the CT questions based on log B, and the XML questions based on log A. This
setup also helped us to mitigate the risk of a bias due to different log files: If
there was only one group who answered all CT questions based on log A, and all
XML questions based on log B, the differences in speed and correctness could
be due to the slight differences between those log files, and not due to their rep-
resentation. To mitigate the risk of distortion due to a learning effect, the order

2 The prototype, the experiment including all questions, and all related data can be
found at https://cs.univie.ac.at/project/APES



of the questions and representations was randomized. Part 2 of the experiment
addresses the usability of the aggregated change tree (ACT) in comparison to
the CT. The setup and the participants were the same as in Part 1; however,
two log files C and D (different from those of Part 1) were used.

At the beginning of the experiment, the participants were introduced into the
topics of processes, process adaptations, change logs and (aggregated) change
trees. Following this 10 minute presentation, the participants had the possibility
to ask questions, and received a link to the experiment. They had three days to
participate in the experiment. Such an uncontrolled experiment setup resembles
a realistic setting, in which aggregated change trees would be used, more closely.

Results: In total, 64 participants participated in the experiment. These par-
ticipants were divided in two groups as described above. 31 participated in group
1, and 33 participated in group 2. First, the data set was cleaned for participants
who obviously entered random numbers. The check was based on two parame-
ters: (1) most of the answers were wrong, and (2) all answers were given in less
than two seconds. Answers given that quickly can be seen as an indicator for a
participant entering wrong answers on purpose. These patterns were found for
one participant from group 1, resulting in 30 valid participants in group 1, and
33 valid participants in group 2.

Table 1. Results of the experiment

XML Log vs CT Overall Group 1 Group 2

Log CT Log CT Log CT

Correct Answers 61.11% 68.25% 61.67% 68.33% 60.61% 68.18%
Mean Time (sec.) 90.02 35.43 95.28 33.12 83.37 39.97
Median Time (sec.) 58.69 29.2 57.51 27.32 59.43 32.14

CT vs ACT Overall Group 1 Group 2

CT ACT CT ACT CT ACT

Correct Percentage 65.08% 67.46% 71.67% 68.33% 59.09% 66.67%
Mean Time (sec.) 112.54 43.97 138.08 52.84 84.39 35.71
Median Time (sec.) 51.73 22.43 61.82 24.18 48.28 21.4

Table 1 summarizes the results from the experiment. The mean and median
times refer to the amount of time needed by the participants to find the correct
answers. Using a two sample t test, the differences regarding the amount of
correct answers given are not significant (p> 0.05): the correctness of the answers
was not negatively influenced when using CT compared to the XML Log and
ACT compared to CT respectively. However, the time required to find the correct
answer is statistically significant for both parts of the experiment (p < 0.05): In
the first part of the experiment, it can be seen that the mean and median times
required to find the correct answer for the CT is much lower than for the XML;
in the second part, it can be seen that participants using the ACT require even
less time to find the correct answer than participants who use the CT.

Discussion and Threats to Validity: The experiment shows that the (A)CT can
be used as a representation of change logs, since the amount of correct answers is
not statistically different from the amount in the XML Log. This effect may also



be due to the XML Log being very simple: For Part 1 of our experiment we chose
a log with only four change operations in total, in order to not demoralize partic-
ipants who had to work with the XML representations. Thus, the change log was
designed in favor of the XML representation, which may pose a threat to the va-
lidity. However, even in such a setting, the time required for the correct answers
was statistically significantly lower for CT than for XML Log. For the ACT,
the number of correct answers is not statistically significantly different from CT,
but significantly less time is required to find a correct answer. Although the un-
controlled setup of our experiment increases the resemblance of our experiment
to a realistic setting in contrast to a controlled setup, this decision also poses a
threat to validity, since participants have been able to communicate with each
other while participating. However, participants who completed the experiment
did not receive the correct answers to the questions, and such behavior may also
be found in a realistic setting, where users would have to analyze change trees.
Thus, the results can be seen as being more realistic, while the negative impact
of the threat has been kept to a minimum.

6 Related Work

In [9], the authors present an overview over existing approaches to determine
the similarity of two process models. The presented approaches range from label
matching similarity, over feature-based similarity estimations up to comparisons
of common nodes and edges in process model graphs. These approaches can also
be interesting for change operation similarity measures, since they can be used to
compare attributes of change operations, like the schema, the applied fragment,
or the position of the change. Van Dongen et al discuss causal footprints, which
is a collection of the essential behavioral constraints imposed by a process model
[10] as a representation of a process model’s behavior. Using causal footprint’s
look-back and look-ahead links, one could analyze and compare the positions of
process change operations.

The work presented in [11] provides similarity measures for process instances.
To the best of our knowledge, [4] is the only approach dealing with process change
similarity. This work exploits the measures proposed in [4], but any other change
similarity measure can be used as well.

In contrast to change trees, change processes [2] are a different method to
analyze process change logs. Change processes focus on causal relations between
process change operations. If a change operation ∆1 is followed by ∆2, it means
that ∆2 may be caused by ∆1. For parallel change operations, such a condition
cannot be drawn from the change log.

While change logs provide a solid basis for analyzing conducted change op-
erations and their consequences, they may not alwalys be available. Concept
drift [12, 13] focuses on analyzing process execution logs to detect any executed
changes on the basic schema. By analyzing the activities present in the change
log over a long period of time, this approach can estimate if and which changes
have been applied to a process schema.



7 Conclusion and Future Work

In this paper we have discussed how process change operation similarity mea-
sures, which calculate the similarity of two process change operations, can be
extended to sets of change sequences, i.e. change logs. Change trees serve as
a basis, since they provide a compact representation of change sequences. An
analysis of the similarity of change sequences can provide interesting insights
for many situations in different application domains: In the nursing home, for
example, nurses can compare sets of therapies which have been applied to dif-
ferent patients over a long time. Using different similarity measures, different
features of the change sequences can be analyzed, e.g. the diversity of required
personnel, resources or time. The presented approach can be used with any sim-
ilarity measure which returns a numeric value within a certain range; thus, it is
very flexible and extensible. In a practical setting, the choice of the similarity
metric has a huge impact on the information being displayed in a change tree.
Thus, future work will analyze the impact of using different similarity notions
and aggregation strategies in practical settings.
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