
Efficient Service Graph Embedding:
A Practical Approach

Balázs Németh, Balázs Sonkoly
Budapest University of Technology and Economics,

Budapest, Hungary
e-mail: {balazs.nemeth,balazs.sonkoly}@tmit.bme.hu

Matthias Rost
Technische Universität Berlin,

Berlin, Germany
e-mail: mrost@inet.tu-berlin.de

Stefan Schmid
Aalborg University,
Aalborg, Denmark

e-mail: schmiste@cs.aau.dk

Abstract—Future network services and applications, such as
coordinated remote driving or remote surgery, pose serious
challenges on the underlying networks. In order to fulfill the
extremely low latency requirement in combination with ultra-
high availability and reliability, we need novel approaches,
for example to dynamically move network “capabilities” close
to the users. This requires more flexibility, automation and
adaptability to be added to the networks at different levels and
operation planes. The key enabler of the novel features is network
softwarization provided by NFV and SDN techniques. In this
paper, we focus on a central component of the orchestration plane
which is responsible for mapping the building blocks of services
to available resources. Our main contribution is twofold. First,
we propose a novel service graph embedding algorithm which is
able to jointly control and optimize the usage of compute and
network resources efficiently based on greedy heuristics. Besides,
the algorithm can be configured extensively to obtain different
optimization goals and trade-off running time with the search
space. Second, we report on our implementation and integration
with our proof-of-concept orchestration framework ESCAPE.
Several experiments confirmed its practical applicability.

I. INTRODUCTION

The recent paradigm shift in networking has been driven by
Software Defined Networking (SDN) and Network Function
Virtualization (NFV). SDN addresses the softwarization of the
control plane, while the main goal of NFV is the softwariza-
tion of the data plane and of middleboxes (special purpose
network elements). The combination of these techniques will
provide benefits for the different stakeholders of the network-
ing ecosystem in terms of flexibility, scalability, and costs
(CAPEX and OPEX). Moreover, this softwarization approach
is expected to be the enabler of future network services and
e.g. 5G applications [1]. For example, the extremely low
latency bound of the Tactile Internet – as small as 1ms
round-trip time – will require novel further innovations in
the orchestration of services as well as changes of the data
planes. A typical network service consists of a series of service
functions and is traditionally implemented by middleboxes,
which have to be traversed in a given order by traffic flows.
Due to the networking revolution driven by SDN/NFV and
the evolution of cloud technologies, the concept of Service
Function Chaining (SFC) has received much attention lately
by both research and industry communities. SFC considers
service chains (or more generally service graphs) as an ab-

straction to describe high level services in a generic way and
to assemble processing flows for a given traffic.

According to the SFC approach, network services are virtu-
alized on top of the underlying physical resources. Within any
SFC architecture, the Orchestrator is the core component aim-
ing at provisioning the shared resources of the infrastructure
optimally while safeguarding the required high level service
agreements [2]. The core of the resource orchestration lies in
i) finding suitable locations to host network functions while
ii) optimizing the overall resource allocations. The underlying
mathematical optimization problem is closely related to the
problem of Virtual Network Embedding (VNE), which is
strongly NP-hard [3]. In comparison to the VNE literature
[4], we consider additional requirements which can be tricky
to realize. In particular, we consider the definition of multiple
delay requirements between end points for a single service
chain and the sharing of virtualized network functions.

Algorithms for service orchestration can be categorized as
either offline or online. Offline algorithms optimize over a
large set of requests and seek optimal or near-optimal solu-
tions, which typically comes at the expense of long runtimes.
On the other hand, online algorithms process single requests
arriving over time one after another providing solutions in-
stantaneously and, hence they are typically implemented via
heuristics.

In this paper, we propose a novel algorithm for service graph
embedding which can jointly control and optimize cloud and
networking resources focusing on modifiable objectives. Its
runtime scales polynomially with the input size and we show
that the obtained results are comparable to optimal solutions.
It inherently supports network function sharing, making use
of a simple resource model, i.e., network functions of new
requests can be mapped to already instantiated ones, only
slightly increasing resource consumption. As an important step
from theory to practice, we have implemented the algorithm in
our proof of concept orchestration framework called ESCAPE
[5] and conducted several experiments.

The rest of the paper is organized as follows. Section II
presents an application environment, in Section III, we in-
troduce the problem of service graph embedding and main
approaches for related problems. Section IV presents our
algorithm in details. In Section V, the evaluation of the
proposed mechanism is given, and Section VI concludes the
paper.978-1-5090-0933-6/16/$31.00 c©2016 IEEE

Figure 1: High-level view of the UNIFY architecture

II. OUR BACKGROUND: UNIFY

In UNIFY1, an EU-funded FP7 project, we proposed a novel
SFC control plane architecture with a joint virtualization and
resource programming interface unifying cloud and network
resources [9]. Our SGE algorithm internally builds upon the
UNIFY hierarchical resource abstraction, namely the “Big
Switch with Big Software” (BiS-BiS) nodes, which generalizes
the common Big Switch model used for topology abstraction
by additionally indicating available resources. Hence, a BiS-
BiS node may either represent a single physical node or a
whole data center, hence providing a unified resource and
capability model. Generally, a BiS-BiS may run any supported
NFs and allows for arbitrary forwarding between infrastructure
ports or NF ports and is the central component in our substrate
representation. This approach allows recursive orchestration,
i.e. a BiS-BiS node may have an internal orchestrator which
handles its hidden resources to improve scalability.

The multi-layer hierarchy of the architecture is shown by
Figure 1. The lowest level Infrastructure Layer encompasses
the resources (both compute and network resources) from
different technological domains. An abstract BiS-BiS based
resource view is exposed by each infrastructure domain. These
information is gathered by the Orchestration Layer and a
multi-domain abstract resource view is constructed and pe-
riodically updated. The core component of this level is the
orchestration algorithm including the task of service graph
embedding. The service requests with predefined requirements
come from the users via a dedicated Service Layer. The main
goal of the Orchestration Layer is to map these requests to
currently available (virtual) resources in an optimal way, and
to initiate the deployment of the service.

Besides the architecture proposal, we have implemented
a proof of concept prototype called ESCAPE [5]. It is a
multi-domain orchestrator realizing the relevant parts of the

1http://www.fp7-unify.eu

Table I: Mathematical notations used in this paper.

Notation Description
V(G),E(G) Vertices and edges of G
P(G) All simple paths of G

PS(G)
Simple paths of G starting
and ending in SAPs

T Set of possible NF types
s : V(RG) 7→ P(T) Supported NF types
t : V(SG) 7→ T Function type of an NF
R(RG) Set of node resource types
reqr : V(SG)×V(RG) 7→ R+

0 Required and available
capr : V(RG) 7→ R+

0 resources of type r ∈ R(RG)

lb, ld : E(SG) 7→ R+
0

Bandwidth and delay
requirement of links

ab, ad : E(RG) 7→ R+
0

Available bandwidth
and delay of links

d : V(RG)×V(RG) 7→ R+
0 Delay measured between hosts

Ψ(SG) = {cp|p ∈ PS(SG)} Set of E2E chains
cp = (Bp, Dp, p), E2E bandwidth and delay
Bp, Dp ∈ R+

0 requirement on path p

Figure 2: Illustration of Service Graph Embedding

UNIFY control plane architecture. The key component of
the resource orchestration process is our proposed service
graph embedding algorithm. Moreover, ESCAPE is capable
of handling real-world domains abstracting physical resources,
such as OpenStack and Docker or experimental infrastructure,
such as Mininet. The inter-domain network resources are
virtualized using VXLAN technology. ESCAPE was used in
several demonstrations showcasing real use-cases with on-
demand service creation and resource orchestration [10].

III. PROBLEM DEFINITION

In this section we formally define the resource alloca-
tion problem – called the Service Graph Embedding (SGE)
problem – considered in this paper. Concretely, similar to
approaches in the VNE literature [4], services are modeled
as graphs, where the network functions are modeled as nodes
and communication between network functions are modeled
using links. The overall goal is to find a mapping of the
(virtual) nodes and edges of service graphs onto the shared
physical substrate network, such that the cumulative resource
allocations on any physical node or edge does obey capacity
(and other) requirements. In the following, we formally define
the model attended to in this paper.

An illustrative example for the SGE problem is given in
Figure 2. A service request is given as a Service Graph (SG),

consisting of arbitrary logical connections between service
elements, called Network Functions (NF). A request can
optionally include Service Chains (SC), which define QoS
requirements, such as maximal allowed latency, on specific
end-to-end paths of the Service Graphs. In Figure 2, SCs
are denoted by red continuous lines and yellow dashed lines.
The computing and networking resources are described by
another graph, namely the Resource Graph (RG). In Figure 2,
a mapping of the SG to the RG is shown, e.g. nf1 and nf2
are collocated on host2. Users or other domains are connected
by Service Access Points (SAPs). The notations used in the
subsequent sections are summarized in Table I. A mapping
of an SG to the RG solving the SGE is a tuple of node and
link mappings, denoted by µ and λ respectively, such that the
requirements (1)-(7) are satisfied.

The mapped path of an SG link must start at the host of its
source NF and end in the host of its destination NF (2), and
all NF types requested in the SG have to be supported by the
host node of the infrastructure (3). The capacity constraints on
node resources (4) and on link resources (6) must be satisfied
by the mapping, respectively. Link-wise latency requirements
must be respected along the mapped path, as (5) indicates2.
Service Chains (their collection is denoted by Ψ(SG)) are
defined on paths between the endpoints (SAPs) of a SG, and
their end-to-end (E2E) bandwidth requirements are handled
in addition to link-wise bandwidth requirements, as shown by
(6). The goal of the SGE is to minimize network resource
utilization and maximize the number of embedded SGs.

µ :V(SG) 7→ V(RG) and λ : E(SG) 7→ P(RG) (1)
∀e = (n1, n2) ∈ E(SG) : (2)
µ(n1) = λ(e).first and µ(n2) = λ(e).last

∀n ∈ V(SG) : t(n) ∈ s(µ(n)) (3)
∀h ∈ V(RG),∀r ∈ R(RG) : (4)∑
{n|µ(n)=h|n∈V(SG)}

reqr(n, h) ≤ capr(h)

∀e ∈ E(SG) :
∑

li∈λ(e)

ad(li) ≤ ld(e) (5)

∀l ∈ E(RG),M(l) := {ei|l ∈ λ(ei) ∧ ei ∈ V(SG)} : (6)∑
ei∈M(l)

lb(ei) +
∑

{Bp|cp∈Ψ(SG)∧ei∈p}

Bp

 ≤ ab(l)
∀cp ∈ Ψ(SG) :

∑
ej∈p

∑
li∈λ(ej)

ad(li) ≤ Dp (7)

Some existing VNE graph algorithms can be used to par-
tially solve an SGE problem [6] ((1), (2) and (4) are also
required by VNE), but generally, there are some aspects of
SGE which are not supported by any VNE algorithm. Contrary
to VNE, SGE considers the functional types of logical nodes

2We note that the delay contribution of nodes on the mapped path is also
considered in the actual implementation but is not considered in this paper to
ease notation.

and maps them according to substrate network capabilities (3).
More importantly, the maximal allowed latency requirement
on individual SG links or on E2E paths are considered ((7) in
SGE definition), which is getting more attention from current
research of service orchestration [1], [2], but is not yet well
studied by most VNE algorithm so far [7].

As a generalization of VNE, SGE is also NP-hard [3], [7].

IV. PROPOSED ALGORITHM

To solve the problem of SGE, we have designed and im-
plemented an algorithm making use of a greedy backtracking
approach with coordinated node-link mapping. In other words,
the mapping of nodes and links of service graph happens
at the same time. Our algorithm offers many orchestration
parameters and metrics to provide scalability and may hence
be customized or tuned for other applications as well.

The orchestration algorithm greedily maps a Service Graph
node and an adjacent link together in one step and we refer
to these type of pairs as leg. Concretely, a leg is denoted
by (en, n), where en ∈ E(SG) terminates in n ∈ V(SG)
and the respective link is always mapped together with the
node. Mapping a leg is considered as a single greedy step
of the orchestration procedure. If a greedy step does not
find a suitable embedding, then our algorithm backtracks to
explore other possible mappings. The pseudocode of the main
procedure is shown in Algorithm 1. The order in which legs are
mapped is given by the Function DIVIDEINTOSUBCHAINS()
depicted in Algorithm 2.

Concretely, the mapping process iterates over the legs
(en, n) and tries to map these based on customizable pref-
erence parameters using heuristics (detailed in MAPONENF()
shown in Algorithm 3) as indicated in Line 7 of Algorithm 1.
If the embedding step fails, PREVIOUSLEG() is used to
retrieve the previous SG link - SG node pair, both denoted by
primed variables in Line 9. The existing mapping and resource
reservation for (e′n, n

′) is undone. In case of a successful
mapping step, the resources are reserved for (en, n) and the
mapping proceeds until all elements of SG are embedded to
the Resource Graph and the result is returned.

In addition, the backtracking process can be customized
by its depth limit and branching factor, meaning how many
alternative legs should be saved for further exploration. Hence,
our algorithm allows for trade-offs between run time and the
explored search space.

A. Basic Preprocessing Steps

Initially, the PREPROCESS() of Algorithm 1 prepares the
input structures for the embedding process, and a helper
structure is created. The end-to-end bandwidth requirement of
Service Chains are added to link-wise bandwidth requirement
of SG, so from now on bandwidth parameter Bp of all SCs
cp ∈ Ψ(SG) are incorporated by lb functions of SG links on
path p ∈ PS(SG).

Secondly, the mapping of SAPs from the SG can be done
unambiguously to the SAPs of RG, so this is calculated in

Algorithm 1 Core SGE Algorithm
1: procedure MAP(SG,RG,Ψ(SG)) ↪→ µ, λ
2: SG,RG,GRGΨ(SG) ← PREPROCESS(SG,RG,Ψ(SG))
3: Ψdiv(SG)←DIVIDEINTOSUBCHAINS(SG,Ψ(SG))
4: for all q ∈ Ψdiv(SG) do
5: for all (en, n) ∈ q do
6: while λ(en) = ∅ or µ(n) = ∅ do
7: success←MAPONENF(en, n, q)
8: if ¬success then
9: (e′n, n

′)←PREVIOUSLEG()
10: Undo mapping of (e′n, n

′)
11: (en, n)← (e′n, n

′)
12: end if
13: end while
14: end for
15: end for
16: return λ, µ
17: end procedure

the PREPROCESS() method, stored in the µ structure and kept
fixed during the whole orchestration.

The definition of the helper structure, calculated in the
preprocessing stage, is denoted by GRGΨ(SG) and formally in-
troduced in (8). It contains an induced subgraph of the RG
for each Service Chain, that excludes substrate nodes if they
cannot potentially satisfy latency requirements with respect to
the already mapped nodes.

GRGΨ(SG) = {Gcp |Gcp ⊆ RG,∀cp = (Bp, Dp, p) ∈ Ψ(SG), (8)

∀h ∈ V(Gp) : d(µ(p.first), h) + d(h, µ(p.last)) ≤ Dp}

The matrix d, denoting the shortest path distances, is calculated
by Floyd-Warshall algorithm using delay ad as the weight
function for the edges of RG. This computation needs to be
done only once for a substrate network and delay matrix d is
cached for further orchestrations.

B. Division of the Service Graph into Subchains

The goal of DIVIDEINTOSUBCHAINS() procedure is to find
a partition of E(SG) into subchains, and determine an ordering
between the subchains, which will in turn determine the order
in which the legs are mapped. Its pseudo-code is shown in
Algorithm 2.

The iteration on the set of end-to-end SCs lasts until there
are no more SG links in SG′. At least one SG link is removed
in every iteration of the while loop, so the algorithm always
terminates.

The GETSCS() function, used in Line 8, retrieves the set of
end-to-end Service Chains whose path includes the given SG
node or link, or {∅}.

After a starting SG node u contained by Service Chain cp of
path p is found, an adjacent SG link (u, v) can be found, which
is also contained in cp. The SC set of link (u, v) is obtained by
GETSCS(u, v), which is used for finding a subchain, starting
from u ∈ V(SG′) and ending in an already used SG node. So
the path q is a subchain whose every link has the same set of

Algorithm 2 SG Division Algorithm
1: procedure DIVIDEINTOSUBCHAINS(SG,Ψ(SG))
2: Sort Ψ(SG) ascending by Dp

3: SG′ ←COPY(SG)

4: used(n)←
{
T , if n ∈ SAPs
F , else

for all n ∈ V(SG)

5: while E(SG′) 6= ∅ do
6: for all cp ∈ Ψ(SG) ∪ {∅} do
7: for all u ∈ ORDERED(V(SG′)) do
8: if cp ∈ GETSCS(u) then
9: choose e = (u, v) ∈ E(SG′), s.t. cp ∈ GETSCS(e)

10: select q ∈ P(SG′), s.t. for all(i, j) ∈ q holds

11:
q.first = u

used(q.last) = T
GETSCS(u, v) = GETSCS(i, j)

12: for all w ∈ q do
13: if used(w) = T then
14: SETHOSTRESTRICTIONS(w, GETSCS(u, v))
15: end if
16: used(w)← T
17: end for
18: Remove all edges of q from E(SG′)
19: Add q to Ψdiv(SG)
20: end if
21: end for
22: end for
23: end while
24: return ORDERED(Ψdiv(SG))
25: end procedure

contained Service Chains as its first SG link (u, v), as shown
in Line 11.

If any SG node of q is already used by a previous iteration
(already included by an earlier subchain), a placement criterion
is set. In other words, Line 14 narrows the set of potential
hosts of the current NF to the intersection of all RG subgraphs
calculated for the involved end-to-end SCs. This way, the
current node u will be mapped in the core process to a
host which satisfies the end-to-end latency requirement of all
involved SCs.

The next few lines maintain the helper structures used, SC ′

and the output subchain set Ψdiv(SG).
If there are elements of SG, which are not in any end-to-

end chain (i.e. GETSCS() returns {∅}), they are also included
in Ψdiv(SG), but have low priority during the mapping
procedure.

The output structure is sorted by a composite key consisting
of the predecessor criterion and secondly by the end-to-
end delay requirement. Concretely, the predecessor criterion
between two subchains cq , cp ∈ Ψdiv(SG) decides the order if,
and only if (q.first ∈ p) XOR (p.first ∈ q) evaluates to true,
i.e. that the start node of one of the service chains lies within
the other service chain, but not vice-versa. In this case, the
service chain containing the other’s start node is prioritized.
On the other hand, if this logical expression is false, then the
ordering between the two subchains is decided by their end-
to-end delay requirement. The chain with the lower end-to-end
delay requirement3 is stricter, so this subchain comes earlier.

3If multiple end-to-end chains contain a given subchain, then the lowest
end-to-end delay requirement is taken into account.

Most importantly, the mapping order of NF and adjacent
SG link pairs defined by Algorithm 2 maps the parts having
the strictest requirements first to provide a less loaded RG for
the greedy mapping. Thanks to the predecessor ordering, the
first and last NF of a subchain will always be mapped (at least
temporarily, which can be undone by backtracking) at the time
of its embedding in Algorithm 1.

C. Metrics for Mapping Decisions
The pseudo-code of a single greedy mapping step is shown

by procedure MAPONENF() in Algorithm 3. Its task is to map
the given SG link - SG node pair to the best hosting RG path
and node, in addition to saving some other good candidates
for backtracking.

The algorithm uses the intersection of those subgraphs of
RG, which correspond to the end-to-end chains involved by
this subchain, and iterates on this Gsub ⊆ RG to find potential
hosts for n and path for en. In other words, Gsub defines the
possible places where the current leg (en, n) can be hosted.
This subgraph calculation is shown in Line 2.

The set of possible hosts is narrowed heuristically, the
neglected RG nodes are considered to be too distant in terms
of latency (GRGΨ(SG) was calculated based on end-to-end latency
requirements), and all the possible hosts of all other NFs of
the current subchain are still in Gsub. So possible solutions
are not lost, but complexity can be reduced dramatically by
this easy step.

The shortest path from the host of the previous NF µ(n1)
to the RG node h under examination, is calculated using the
reciprocal of available bandwidth as weight function on the
edges4.

Firstly, bad hosting paths and nodes are filtered, according
to the SGE definition, in Line 8. Furthermore, the placement
criterion of n is also tested here.

The REMAININGDELAY() function determines how much
delay is left from the delay budget determined by the strictest
involved end-to-end or link-wise delay requirement. Initially,
the mapping budget is the end-to-end requirement itself which
is decremented during the greedy mapping of the SC. The
latency forward checking in Line 8 sorts out some possible
hosts from Gsub to avoid some predictable backtracking step.

The objective function value of a mapping of (en, n) onto
the path p and the host h respectively, is determined by the
following three components:
• %bw – average link and node bandwidth utilization on

path p;
• %lat – the mean of (1) delay used by path p divided by

the remaining delay budget, (2) sum of delay distance
from last used host (d(µ(n1), h)) and delay distance
until the chain end (d(h, µ(q.last))), scaled between
d(µ(n1), µ(q.last)) (i. e. the delay of the shortest path),
and REMAININGDELAY(en, n, q);

• %res – weighted sum of preference values of resource
utilization of type r on host h.

4The available bandwidth of nodes on the shortest path is also considered
in the actual implementation.

Algorithm 3 Mapping of one SG Link and Node
1: procedure MAPONENF(en, n, q)
2: Gsub ←

⋂
sci∈GETSCS(en)Gi where Gi ∈ GRG

Ψ(SG)
3: n1, n2 ← en; best_hosts← ∅ // n2 is always n.
4: if µ(n) = ∅ then
5: for all h ∈ V(Gsub) do
6: p← Shortest path from µ(n1) to h based on 1

ab
7: path_delay ← Σ(x,y)∈pad(x, y)

8:

if Each link on p has lb(en) bandwidth and Each resource
requirement is satisfiable on h and t(n) ∈ s(h) and
h complies to HOSTRESTRICTIONS(n) and d(h, µ(q.last)) ≤
≤ REMAININGDELAY(en, n, q)− path_delay then

9: %bw ← GETAVGLINKNODEBANDWIDTHUTIL(p)

10: %lat ←
1
2
path_delay/REMAININGDELAY(en, n, q)+

1
2

SCALEDDISTANCEFROMSHORTESTPATH(h, q)
11: %res ← Σr∈R(RG)wrφr(NODEUTIL(h, r))
12: Add (p, h, α%bw + β%lat + γ%res) to best_hosts.
13: end if
14: end for
15: best_hosts← ORDERED(best_hosts)
16: λ(en), µ(n)← First element from best_hosts.
17: Save elements from best_hosts for backtracking.
18: else
19: λ(en)← Shortest path from µ(n1) to µ(n) based on 1

ab
20: end if
21: end procedure

Component (1) of %lat ensures that one path does not
consume too much delay, and (2) directs the greedy mapping
towards the subchain end, q.last.

Preference value of resource utilization can be defined by
any real function φr : [0, 1] 7→ [0, 1], which should quantify
how much a utilization state is preferred. The bigger the
preference value, the less the state is preferred. The default
function for all r ∈ V(RG) resource types is shown in (9).

φr(u) =

{
0 , if u ≤ 0.2,
3
4u+ 1

4 , if u > 0.2
(9)

The (p, h) pair with the smallest objective function value is
chosen for mapping, and a few other possible pairs are saved
for backtracking purposes, as shown in Line 17.

The last SG node of the subchain always already mapped
onto a host, i.e. µ(n) 6= ∅, because it is either a SAP or the
predecessor ordering provided by DIVIDEINTOSUBCHAINS()
ensures this SG node is already handled by the greedy map-
ping. So if the execution is here the shortest path between
the two RG nodes is chosen based on the reciprocal available
bandwidth as edge weight, shown in Line 19.

V. EVALUATION

In addition to the presented algorithm, we have implemented
a Mixed-Integer Linear Programming (MILP) based solution
for the SGE problem, which maximizes the number of embed-
ded SGs, while minimizing link bandwidth utilization. MILP
provides a reasonable comparison basis for our evaluation,
because it implements all the constraints (1)-(7) of SGE. Both
orchestration algorithms have been evaluated on a real world
topology taken from SNDlib5 [8], which has 42 nodes and

5The dfn-gwin topology was used with additional network parts (6 nodes
have been attached to an access network) and computing resources (another
6 nodes have been attached to a data center).

Table II: Performance comparison on SC sequences.

Average result 15th %ile 85th %ile
MILP-based algorithm 207.37 200 216
Heuristic algorithm 131.57 119 163

157 edges, representing access, aggregation and core network
parts, equipped with computation resources. All computation
nodes had the same available resources (i.e. 400 units of CPU
each).

Simple Service Chains with 1 to 8 NFs connected between
two SAPs have been generated with a uniform distribution.
Similarly to the other requested resource types, the CPU values
for each NF have been generated independently with uniform
distribution between 1 and 4 units. The SCs had infinite
lifespans and the Service Graphs can be disconnected.

To evaluate the performance of the proposed heuristic, we
compare its embeddings to the optimal solutions of the (non-
polynomial time) MILP. Concretely, our proposed heuristic
tries to embed batches containing 4 service graphs as long as
all requests can be embedded incrementally onto the shared
RG. Hence, the embedding process aborts once a single
request cannot be embedded anymore. Using the MILP as
a baseline we compute the maximal number of successful
consecutive embeddings possible in an offline fashion, i.e.
the MILP may re-embed all previously given requests. The
number of successfully mapped SCs can be used to compare
the performance of the presented algorithm to the MILP-based
solution for SGE.

Firstly, we have executed every evaluation scenario with
100 different Service Chain sequences to provide a reasonable
sample. Having the test cases ordered by the successfully
mapped SCs, the first 15% is below 200 and the top 15% is
above 216 in the case of the MILP-based solution. Similarly,
the results for the heuristic algorithm are shown in Table II.
In conclusion, our online heuristic can embed around the 2

3
(varying between 59-75%) of the optimal, offline calculated
number of requests.

Secondly, the Cumulative Distribution Functions (CDF) of
resource utilizations of the network elements can be used
to compare the quality of the two orchestration approaches.
The goal of the mappings is to maximize the number of
provisioned Service Graphs, and to balance the load on the
network elements. The resource utilization CDFs of fully
loaded states of the two approaches are shown in Figure 3.
Figure 3a shows that the MILP-based approach balances the
load well throughout the network, but as Figure 3b shows the
heuristic algorithm does not fall much behind, especially in
the case of less scarce resource types.

Finally, to evaluate the running time of the heuristic algo-
rithm, we have simulated a scenario, when it had to map the
SC sequence batched together into one big request, just like the
MILP-based algorithm did in the previous examples. This also
demonstrates the presented algorithm’s capability to operate
as an offline or semi-online Orchestrator. The simulation was
conducted on computers with Intel Core i5 processors and
8 GB RAM. The results are shown in Figure 4, where the
error bars represent the minimal and maximal running times

(a) Network state after mapping 212 SCs in one batch by the MILP-
based algorithm.

(b) Network state after napping 180 SCs in batches of four by the
heuristic algorithm.

Figure 3: CDF of resource utilizations after mapping as many
SCs as the orchestration algorithms could.

0

20

40

60

80

100

120

140

4 28 52 76 100 124 148 172 196

R
u

n
n

in
g

ti
m

e
(s

)

Number of SCs to map

MILP-based algorithm

Heuristic algorithm

Figure 4: Comparison of the running times of MILP-based and
heuristic algorithms.

among the 100 independent SC sequences. As we expected,
the heuristic algorithm exhibits the polynomial scaling with
the number of input service chains, while the MILP-based
approach imposes impractical runtimes and exhibits worse
scaling behavior.

VI. CONCLUSION

In this paper, we proposed a fast and flexible algorithm to
solve the newly defined Service Graph Embedding problem.
It supports different operation modes from online to offline
operation with polynomial runtime and provides acceptable
results compared to an MILP-based algorithm. Both the

“mapping quality” and performance results are promising
based on our extensive Service Chain benchmark tests. The
heuristic algorithm is tunable with many parameters to make
the solution customizable in many networking environments.
The algorithm has been integrated with our multi-domain
NFV orchestration framework (ESCAPE) and it is ready to be
deployed above real infrastructure, such as private data centers
and ISP-sized networks.

As a future work, we plan to closely combine this algorithm
with the implemented offline MILP module to realize a two-
phase, hybrid operation. The incoming requests will be em-
bedded on the fly by the online mapper, while the MILP solver
running in the background will be responsible for reoptimizing
the existing embeddings from time to time.

ACKNOWLEDGEMENT

This research was supported by FP7 UNIFY, a research
project partially funded by the European Commission un-
der the Seventh Framework Program (grant agreement no.
619609), by H2020-ICT-2014 project 5GEx (grant agreement
no. 671636), which is partially funded by the European
Commission, by the German BMBF Software Campus grant
01IS1205, and by Aalborg University’s talent project PreLyt-
ics.

REFERENCES

[1] A. Vahdat. (2014). Enter the Andromeda zone, [Online].
Available: https://cloudplatform.googleblog.com/2014/
04 / enter - andromeda - zone - google - cloud - platforms -
latest-networking-stack.html (visited on 07/12/2016).

[2] (2016). 5GEx White Paper, [Online]. Available: http :
//www.5gex.eu/wp/wp-content/uploads/2016/03/5GEx-
White-Paper-v1.pdf (visited on 07/12/2016).

[3] E. Amaldi, S. Coniglio, A. M. Koster, and M. Tieves,
“On the computational complexity of the virtual net-
work embedding problem”, Electronic Notes in Discrete
Mathematics, vol. 52, pp. 213–220, 2016, INOC 2015
– 7th International Network Optimization Conference,
ISSN: 1571-0653.

[4] A. Fischer, M. B. J. Botero, H. D. Meer, and X.
Hesselbach, “Virtual network embedding: A survey”,
IEEE Communications Surveys Tutorials, vol. 15, no.
4, 2013.

[5] B. Sonkoly, J. Czentye, R. Szabó, D. Jocha, J. Elek, S.
Sahhaf, W. Tavernier, and F. Risso, “Multi-domain ser-
vice orchestration over networks and clouds: A unified
approach”, ACM SIGCOMM Computer Communication
Review, vol. 45, no. 4, pp. 377–378, 2015.

[6] C. Fuerst, S. Schmid, and A. Feldmann, “Virtual net-
work embedding with collocation: Benefits and limi-
tations of pre-clustering”, in IEEE 2nd International
Conference on Cloud Networking, CloudNet 2013, San
Francisco, CA, USA, November 11-13, 2013.

[7] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R.
Boutaba, “On orchestrating virtual network functions”,
in 11th International Conference on Network and
Service Management, CNSM 2015, Barcelona, Spain,
November 9-13, 2015, IEEE Computer Society, 2015,
pp. 50–56.

[8] S. Orlowski, M. Pióro, A. Tomaszewski, and R.
Wessäly, “SNDlib 1.0–Survivable Network Design Li-
brary”, in Proceedings of the 3rd International Network
Optimization Conference (INOC 2007), Spa, Belgium,
2007.

[9] B. Sonkoly, R. Szabó, D. Jocha, J. Czentye, M. Kind,
and F.-J. Westphal, “Unifying cloud and carrier network
resources: An architectural view”, in Proc. IEEE Global
Telecommunications Conference (GLOBECOM), 2015.

[10] R. Szabó, “Multi-domain/technology service function
chain orchestration based on sdn and nfv”, in ETSI From
Research to Standardization Workshop, 2016.

