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Abstract—To provide high availability and fault-tolerance,
SDN control planes should be distributed. However, distributed
control planes are challenging to design and bootstrap, especially
if to be done in-band, without dedicated control network, and
without relying on legacy protocols. This paper promotes a
distributed systems approach to build and maintain connectivity
between a distributed control plane and the data plane. In
particular, we make the case for a self-stabilizing distributed
control plane, where from any initial configuration, controllers
self-organize, and quickly establish a communication channel
among themselves. Given the resulting managed control plane,
arbitrary network services can be implemented on top.

This paper presents a model for the design of such self-
stabilizing control planes, and identifies fundamental challenges.
Subsequently, we present techniques which can be used to solve
these challenges, and implement a plug & play distributed control
plane which supports automatic topology discovery and manage-
ment, as well as flexible controller membership: controllers can
be added and removed dynamically. Interestingly, we argue that
our approach can readily be implemented in today’s OpenFlow
protocol. Moreover, our approach comes with interesting security
features.

I. INTRODUCTION

In traditional networks, the control software is distributed
across all devices, which run routing protocols to compute
forwarding state. An advantage of this design is that legacy
networks can use in-band control: that is, control plane packets
are carried over the same data plane network as with the
regular traffic. Because legacy routing protocols are designed
to exchange data between neighboring routers and do not
require global state, they are self-stabilizing in the sense that
they can automatically bootstrap the network and converge to
a valid operating state from any initial conditions.

In contrast, Software Defined Networking (SDN) advocates
for software-based control of a network based on a logically-
centralized global network view. A number of research and
development efforts have illustrated that this approach pro-
vides several benefits in terms of improved flexibility and
performance, easy of management and decreased operational
complexity, and lower costs [1]–[5]. While the literature has
well articulated several benefits of the separation between con-
trol and data planes, the question of how connectivity between
these planes is maintained – that is, paths for supporting
switch-controller or controller to controller communication
– has not received much attention. In practice, most SDN
deployments [4]–[6] use out-of-band control, where control
plane packets are carried by a dedicated management network.
The management network runs its own routing system, which

typically is realized using traditional routing protocols such as
STP or OSPF.

In-band control is desirable for several reasons including its
economical benefits (in certain contexts, such as carrier net-
works, out-of-band control would be prohibitively expensive).
In essence, with in-band control there is no reason to build,
operate, and ensure the reliability of a separate network. Also,
out-of-band networks are typically underprovisioned and have
limited redundancy. In these conditions, congestion losses are
possible and link failures can lead to a partitioned SDN control
plane even though the data plane network is not disconnected.
This raises several concerns regarding the availability of the
SDN architecture — for instance, can we guarantee that, if
the data plane network is a connected graph, the SDN control
plane will always establish a route between every pair of nodes
in the network?

Moreover, in-band control in SDN is an appealing prospec-
tive for transitioning from legacy networks [7]. However it is
also a challenging one, as others have noted, “by extricating
the control plane out of network devices and implementing it
using a distributed system, SDN inherits the weaknesses asso-
ciated with reliable distributed services” [8]. These challenges
are further amplified by the fact that the logically-centralized
SDN control plane actually means physically distributed, for
a plethora of reasons, including reliability, availability, scala-
bility and latency [9]–[11].

This paper makes a first step towards the design of a fault-
tolerant (namely self-stabilizing), distributed SDN control
plane. We first present a model that captures the underlying
fundamental challenges of self-stabilizing control networks.
We then build upon this model to reason about and develop
basic self-stabilizing mechanisms. Our main contribution is
the design of an in-band control system that coordinates
distributed controllers in a self-organizing manner, to bootstrap
a connectivity service between controllers and switches. Our
approach is based on a plug & play paradigm: it supports
a dynamic membership of controllers, in the sense that new
controllers can be added to the network, or old controllers
removed from the network, at any time and without explicit
notice; despite these changes, our approach will ensure that
every unmanaged switch is assigned to one controller, and that
a communication network between controllers is established.
Once this “bootstrap problem” has been solved, SDN control
planes can be realized on top of our system. We note that our
approach, unlike prior work [12], is self-reliant and represents
an “SDN-only” approach: it is based on OpenFlow only, and
does not depend on any legacy protocols.



II. MOTIVATION

The SDN control plane, that is, a collection of network-
attached servers, must have connectivity to the data plane.
The question we explore in this paper can be stated as: is
it possible to rely on the same and already existing primitives
by which SDN applications govern the network to bootstrap
and provide connectivity between control and data planes? We
find a positive answer by building upon the concept of self-
stabilization. A distributed system that is self-stabilizing will
end up in a correct state independently of its initial state [13],
[14]. That correct state is reached after a finite number of steps
(the convergence time).

We advocate for a software-driven, in-band control mecha-
nism to support the broader goal of building distributed SDN
control planes. To make this case, let us consider what services
are required by SDN controllers such as Onix [9] or STN [10].
Connectivity: To allow communication between controllers
and switches, and between controllers.
Controller discovery: To allow individual controllers dis-
cover other existing controllers and detect when some are no
longer reachable.
Switch discovery: To detect switches that are not yet asso-
ciated with a controller and establish a control channel with
them. Also, to re-establish communication with switches in
case of link failure, network partitions, or controller failures.
Security: To ensure controller and switch authentication as
well as encryption of control traffic. In addition to a secure
bootstrap, control traffic may have to be given priority over
other traffic, e.g., to prevent some types of DoS attacks.

Self-stabilization is a natural approach to meet these goals
while coping with dynamic conditions, such as arrival and de-
parture of controllers [15], arbitrary topology changes (switch
or link failures), and communication errors (packet losses or
delays). We emphasize that, as usual in the framework of self-
stabilizing algorithms, anytime before, during, and after a self-
stabilization, additional changes may occur: the system will
simply reconverge starting from the current state.

III. MODEL AND CHALLENGES

The design of a self-stabilizing mechanism to build and
maintain connectivity between a distributed control plane
and the data plane raises some fundamental challenges. This
section introduces a model that captures some of the partic-
ularities of such a system, and which serves as a basis for
reasoning about self-stabilizing mechanisms. As we will see,
the postulated mechanisms can be implemented in today’s
OpenFlow protocol, and lie at the heart of our control plane,
which instantiates the principles presented in this paper.

We consider a network connecting two kinds of compo-
nents, controllers and switches, henceforth also called nodes:

1) Controllers: must be able to communicate and co-
ordinate. To enable these, we assume each controller
has a unique address, but controllers also respond to
a virtual anycast address. Controllers must be able to
solve consensus. In principle, a controller can perform
arbitrary local computations (i.e., it is a Turing machine).

2) Switches: to communicate, they also have unique ad-
dresses. Switches are simple and “passive” devices:
they cannot perform any computations on their own.
In principle, a switch can be in one of two possible
states: managed or unmanaged. When unmanaged, a
switch periodically attempts to connect with a controller
using a pre-configured remote controller address, i.e., the
virtual anycast address. The configuration of a switch is
defined by a list of match-action rules with priorities and
(possibly infinite) timeout values. The configuration can
be changed either (1) by a controller or (2) through a
timeout.

The fundamental problem arises from the tension of what
a (passive) switch needs and what an (active) controller can
do. Concretely, we identify the following challenges for the
design of a self-stabilizing distributed control plane:

C1) Fault-Tolerance: The system should tolerate any fail-
ures which may lead one or multiple switches to become
unmanaged: link failures, controller failures, TCP time-
outs, congestion, etc. A central challenge here regards
the detection of inactivity: a switch must notice when
it is unmanaged. This is difficult in our model where
switches are passive.

C2) Consensus: Without consensus, a control plane protocol
may never converge: A switch must eventually be man-
aged by exactly one controller. Accordingly, a coordina-
tion problem needs to be solved by the controllers, and
a unique controller elected for each unmanaged switch.

C3) Establishing In-Band Connectivity: A controller may
not only have to manage switches to which it is directly
(physically) connected, but also “remote switches”. Ac-
cordingly, communication paths need to be established
between controllers and switches. As switches are pas-
sive, the responsibility to establish communication paths
to switches must lie at the controller.

C4) Interference: As a consequence of the need to establish
in-band connectivity, a controller must be able to install
forwarding rules on “relay switches”. Switches relaying
the control traffic to remote switches must be able
to classify traffic, e.g., differentiating between regular
traffic, control traffic from or to different controllers, etc.
More importantly, the rules installed by the controller to
establish the in-band management should not interfere
with the existing rules used for controlling the regular
production traffic in the data plane.

C5) No Prior Knowledge: Controllers and switches can be
added and removed at runtime, and switches should not
have to be pre-configured with any specific controller
addresses. Rather, the control plane should be fully “plug
& play”.

IV. SELF-STABILIZING CONTROL PLANE

This section first presents our main ideas to design a dis-
tributed control plane which addresses the challenges identified
before. In particular, we note that OpenFlow readily provides
the features we postulate for our solution.



A. Overview and Building Blocks
Our goal is to place each switch in the network under

the control of a single controller and to establish routes that
support connectivity to the switches and connectivity between
controllers. To do so, each controller runs the same algorithm
continuously, reacting to any change in the network (e.g., due
to failures or additions of switches, links, or controllers) in a
self-stabilizing manner.

First, we introduce a pre-configured anycast controller
address at the switches: a logical IP address shared by all
controllers. This solves Challenge C5: in contrast, relying on
statically pre-configured controller IP addresses would violate
the controller plug-and-play requirement.

However, anycast addresses come with a problem in that
they may lead to ambiguity and collisions. Accordingly, we
require each controller to try to manage a switch exclusively,
and configure it to accept connections only from it: A con-
troller takes over control of a switch in an atomic operation
(cf. [16]): the consensus challenge (Challenge C2) is solved
using an in-band, “first-come-first-served” approach.

To achieve fault tolerance (Challenge C1), when a switch
is disconnected from its controller, it needs to detect the
controller inactivity and transition to the unmanaged state,
allowing other controllers to connect and re-establish the in-
band control plane. To detect inactivity, we leverage rule
timeouts at the switches. In particular, when rules time out, a
switch falls back to a set of “safe a priori rules”: these rules can
be implemented as low priority rules, which are hidden as long
as other, managed rules are installed (and regularly refreshed)
by a controller. Timeouts combined with low priority rules
are the main mechanism to realize fault tolerance: these low
priority rules will eventually appear once all other rules time
out, and prevent the switch from being permanently cut off
from the network.

Concretely, we can define an unmanaged switch configura-
tion with a set of a priori rules that make sure that neighboring
switches learn about the unmanaged switch. While the switch
is not able to take actions toward finding and reconnecting to
a controller, by informing the neighboring, managed switches,
a controller will eventually learn about unmanaged switches.

To manage a remote switch (Challenge C3), the controller
installs rules on its neighboring switches, which can then be
used to install rules on switches two hops away, etc., iter-
atively expanding the controller domain. Moreover, the relay
mechanism described above and the use of special VLANs for
controller traffic solves Challenge C4: our approach ensures
that the in-band rules installed to provide controller connectiv-
ity never conflict with the rules for regular data plane traffic.

A standard and efficient approach to provide connectivity
between nodes in a network are spanning trees. And indeed,
spanning trees are a useful tool also in our settings, to connect
controllers and managed switches. However, in our case, it is
not sufficient to use standard Layer-2 STP, since such trees
do not give us control to match switches to controllers, and
moreover would require more functionality at the switches.
In fact, as we will see, for our self-stabilizing algorithm we
even use two kinds of trees: the first tree type is used by
each controller to communicate with its switches, and the

second type is constructed by each controller to allow all other
controllers to reach it.

B. Mechanisms

With these concepts in mind, we can now provide more
details on the internals of our control plane. As discussed, we
establish connectivity in the control network by creating and
maintaining two distinct spanning trees:

1) A per-region spanning tree (Figure 1a): a bi-directional
spanning tree that spans over the region owned by
the controller. The region owned by a controller is a
connected graph containing the controller and switches
it controls.

2) A network-wide spanning tree (Figure 1b): a spanning
tree directed and rooted at the controller that spans
over the whole network. This second tree supplies each
switch and all other controllers with a path to reach
the controller. The aim of this second spanning tree is
precisely to enable each controller to reach any other
controller.

At any moment in time, a switch is either managed or
unmanaged. When a switch is unmanaged, it broadcasts (only)
its connection attempts (i.e., ARP requests for the controller
anycast address) to all ports. Controller responses are for-
warded from all ports to the switch management stack.

When the switch becomes managed, the controller atomi-
cally installs a set of match-action rules binding the commu-
nication to the controller tree. This configuration has higher
priority than the unmanaged configuration but it has timeouts,
so in case the switch becomes unmanaged, the managed
configuration expires.

Note that when a switch becomes unmanaged, it no longer
forwards any packets of other switches along the region tree,
thereby causing them to become unmanaged as well. While
this may seem suboptimal, many failures (e.g., link failures)
on the path between the controller and a switch will also affect
the children and descendants of that switch (with respect to
the tree topology). Allowing an unmanaged switch to serve
other switches, conflicts with the natural desire to provide
contiguous and rooted management trees, and renders it hard
to ensure self stabilization.

Algorithm 1 presents a pseudo-code version of the algorithm
run by each controller. This algorithm – in combination with
the switch behavior defined by the OpenFlow forwarding
model – seeks to create two spanning trees to support connec-
tivity for two classes of communications: (1) between switches
and controllers, and (2) among controllers.
Example. Figure 1 illustrates at a high level an example.
Figure 1 (a) shows the region’s spanning trees of two con-
trollers A and B. A’s region comprises switches S1 − S4,
and B’s region all other switches except S6. S6 has yet to
connect to a controller, as denoted by the fact that this switch is
broadcasting an ARP packet to its neighbors in order to resolve
the virtual controller IP. Figure 1 (b) shows the two fully
established network-wide spanning trees as colored arrows that
indicate the path towards the two color-coded controllers.
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control over unmanaged switches (a) and building per-controller
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name match output prio
flood mgmt in port = MGMT PORT ALL 1
all to us mac dst = MACS MGMT PORT 1
port probe ip dst = PORT PROBE CTRL 1
path probe ip dst = PATH PROBE CTRL 1
net wide probe ip dst = NET PROBE CTRL 1

TABLE I: A priori rules. These rules are installed on every
switch MGMT PORT is the switch’s management port, out of
which the control traffic is sent. CTRL is a special OpenFlow
port that sends the packet to the controller as packet-in. The
other constants designate pre-defined global IP addresses used
to tag special packets used in our algorithm.

A Priori Configuration. Each switch is pre-configured with
a unique management MAC address, a unique IP address, and
a set of OpenFlow rules (called the a priori rules). These
rules are identical for all switches, except for where they refer
to the switch’s unique MAC or IP address. Table I illustrates
the a priori rules.

The OpenFlow specifications [17] state that switches are
responsible for connecting to their controller, given its IP
address; however, it does not specify the mechanism to do
so. In practice, switches have a special management port that
they use to communicate with the controller. We assume that
OpenFlow switches can be configured to ensure that control
traffic passes through the flow tables.1 We refer to the switch
port that processes switch-local control traffic according to
OpenFlow rules as mgmt port.
Building the Region Spanning Tree. Initially, the region
of each controller only includes the controller itself. At this
point, the switches that are directly connected to the controller
can be added to that controller’s region. When this is done,
switches that are 1-hop away can be added to the controller’s
region, etc.

A switch initiates a connection to a controller by resolving
the pre-configured controller IP address via an ARP request

1A practical way to achieve this despite current vendors’ limitations, is to
patch the management port back to a regular switch port.

1 process event at ctrl :
// Region Spanning Tree Events

2 on ARP request from directly-connected switch S:
3 - send ARP reply to S
4 - accept the TCP connection initiated by S

5 on ARP request from switch S (via packet-in):
6 - save S’s anchor switch R and anchor port
7 - configure all packets from / to S to be relayed

through packet-in / packet-out messages via R
8 - send ARP reply to S
9 - accept the TCP connection initiated by S

10 on OpenFlow session established with switch S:
11 - send a port probe packet to S
12 - install the ctrl → S path by sending downstream

rules to every switch on the path
13 - periodically send a path probe packet to S – but not

via packet-out – until a packet-in with the probe is
received

14 on port probe answer from S:
15 - send the ownership rules to S

16 on path probe answer from S:
17 - configure all packets from / to S to use the normal

path (don not tunnel using packet-in and packet-out
messages)

18 on OpenFlow session terminated with switch S:
19 - remove downstream rules from switches on the

ctrl → S path

// Network-Wide Spanning Tree Events

20 on C’s network-wide probe as packet-in from S:
21 - install network-wide spanning tree rules for C on S

22 on C’s network-wide probe:
23 - periodically attempt establishing a connection with

C, until it succeeds or network-wide probes are no
longer seen for a certain amount of time

24 on timeout of rule net wide flood on switch S:
25 - remove rule net wide block from S

// Periodic Events

26 on periodically:
27 refresh the ownership rules and downstream rules on

the switches we control

28 on periodically:
29 send a network-wide probe to all directly-connected

switches we control

Algorithm 1: Pseudo-code executed by controller ctrl. C and S

refer to a controller and switch, respectively.

that is broadcast to all ports, except the mgmt port (rule
flood mgmt). In the absence of failures, and with common
ARP table cache implementations, the switch connects to the
first controller whose ARP reply it receives. When the switch
connects to a controller, we say that the switch becomes
connected. Informally, the switch becomes managed once the
controller has taken ownership of it (see details below). A
switch is unmanaged if it is neither connected nor managed.

Once the controller establishes the OpenFlow session (a
TCP connection) with the switch (see details below), the
controller proceeds as a first step to install into the connected
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Fig. 2: (a) The management process of newly detected switch S
through already managed switch R. (b) The creation of network
wide spanning trees and controller to controller channels.

switch the ownership rules described in Table II. These rules
override the a priori ones and are associated with an activity
timeout; upon timer expiration (e.g., due to failures) the switch
returns to the a priori configuration from which the region
spanning tree can be reconstructed. We discuss failures below.

Note how this mechanism maps to region growth: initially,
controllers can only answer the ARP request of switches
directly connected to them. After taking ownership of a switch
S, a controller installs rules on the switch. In particular, these
rules enable ARP requests of switches connected to S to reach
the controller.

To establish its region spanning tree, a controller needs to
discover how switches in the tree are connected to one another,
down to the port numbers being used. When a controller takes
ownership of a switch, the arp to ctrl rule installed on the
switch instructs it to send any ARP request it receives to the
controller encapsulated in an OpenFlow packet-in message.
The packet-in meta-data contains the input port number on
which the ARP packet was received.

When an unmanaged switch attempts to connect to a
controller, we call anchor switch the first switch of each
controller’s region that receives the ARP request of the con-
necting switch. Hence, there is at most one anchor switch per
switch-controller pair. Unless an unmanaged switch is directly
connected to the controller (Lines 2-4), it is always the anchor
switch that forwards the ARP request to the controller via a
packet-in message. When a controller receives an ARP request
via an anchor switch, the ARP reply is then delivered to the
unmanaged switch via an OpenFlow packet-out message sent
to the anchor switch (Lines 5-9).

At this point, the controller still does not have a direct
path to send traffic to the unmanaged switch, i.e., it must
send all packets intended for the switch through the anchor
switch’s OpenFlow session. In the reverse direction (switch
to controller), a path exists between the anchor switch and
the controller, but the control traffic sent by the switch is still
flooded on all its ports.

Note that even though the flooding is still ongoing, all
switches other than those in the controller’s region will drop
these packets, as they carry the virtual controller IP address
and the unique MAC address of the controller, and only

switches in the controller’s region can match on this combi-
nation. It is possible, however, that the packet will be relayed
by multiple switches in the region, but this will be handled
properly by the controller, using the TCP sequence number.

To complete the setup and make that switch part of the
controller’s region (hence allowing that switch to serve as
anchor switch itself), the controller must perform two steps.
First, to stop relaying traffic over the anchor switch, the
controller must establish a path from itself to the switch. It
does so by installing a rule on every switch on its path to the
connecting switch in the region’s spanning tree (Line 12). This
rule, called forward to owned switch, is shown in Table III.

To confirm that all such rules have been installed properly,
the controller sends a path probe packet on the path to the
switch, and makes the switch to this path once it receives
an answer from the switch (Lines 13 and 16-17). The an-
swer from the switch is simply a packet-in encapsulating the
original probe packet, resulting from the a priori rule called
path probe.

Second, to stop the now-managed switch from flooding all
its control packets, the controller must learn the upstream
port of the switch: the port number through which the con-
necting switch is connected to its anchor switch. Once this
number is known, it can be used to route all packets going
from the switch to the controller via the anchor switch (rule
us to controller).

To learn the upstream port, the controller send a port probe
packet to the switch, via the anchor port of the anchor switch
(Line 11). The a priori rule port probe ensures this packet is
sent back to the controller via packet-in. The controller can
determine the upstream port by the in-port in the packet-in
meta-data. Once the upstream port is known, the controller
installs the ownership rules on the switch (Lines 14-15 of
the algorithm). These rules enable the switch to serve as an
anchor switch itself (rule arp to virtual controller); enable it
to forward packets towards the controller (all to controller),
and directs its control traffic towards the controller instead of
flooding (us to controller).
Building the Network-Wide Spanning Tree. With the
region’s spanning tree, a controller can communicate with all
the switches it controls. In order to be able to communicate
with all other controllers, we make use of a per-controller
network-wide spanning tree. Each controller constructs its
network-wide spanning tree concurrently with the region’s
spanning tree.

A controller A constructs its network-wide spanning tree
by periodically sending out a special packet: network-wide
probe (Lines 28-29). When a managed switch receives con-
troller A’s network-probe for the first time, it will encapsulate
it in a packet-in message and send it to its owning controller
(rule net wide probe, say B. Note that A and B can be the
same controller. B will then install A’s network-wide spanning
tree rules (Table IV) on the switch.

The network-wide spanning tree rules ensure that further
probes received from A on the same port as the first probe will
be flooded to all other ports (rule net wide flood). Further-
more, any probe received from A on any other port is dropped
(rule net wide block) — effectively, this prevents loops in the



name match output prio overrides
arp to ctrl eth type = ARP

target = CTRL IP
CTRL 2 /

us to ctrl in port = MGMT PORT S’s upstream port 3 flood mgmt
all to ctrl in port = MACC S’s upstream port 3 /

TABLE II: Ownership rules. These rules are installed by a controller C on a switch S after C and S have established an OpenFlow
session and C has received the port probe answer to learn S’s upstream port (the port of S through which it is attached to C’s
region). CTRL IP is the global virtual controller IP.

name match output prio
forward to owned switch ip dst = IPS2 S2’s anchor port on S1 2

TABLE III: The downstream rule. This rule is installed by a controller C on each switch S1 that lays on the path between C and
a switch S2 with whom C has established an OpenFlow session.

name match output prio overrides
net wide block ip dst = NET PROBE

mac src = MACC2

/ 2 net wide probe (part)

net wide flood in port = parent port
ip dst = NET PROBE
mac src = MACC2

FLOOD 3 net wide block (part)

ctrl to ctrl ip dst = IPC2 parent port 2 /

TABLE IV: Network-wide spanning tree rules. These rules are installed by a controller C1 on a switch S it manages whenever
the first network-wide probe packet from controller C2 is received by S. We call parent port the port of S on which the first
network-wide probe from C2 was received. NET PROBE is the IP address signaling a network-wide probe packet.

topology from causing broadcast storms.
Once these rules are installed, subsequent probes from A

will reach one hop further in the network. Eventually, A’s
network-wide spanning tree will span the entire network.
Whenever the spanning tree of a controller A extends to
another controller, say B, B learns of a path to talk to A.
This path results from all the instances of the ctrl to ctrl
rule installed in the network-wide spanning tree. B will then
periodically attempt to establish a connection with A (e.g.,
TCP) (Lines 22-23). These attempts will succeed as soon the
spanning tree of B reaches A, hence supplying A with a return
path to communicate with B.
Handling Failures. Informally, our failure model considers
all the usual failures that ultimately lead to the termination
of an OpenFlow session. Failure of an OpenFlow session is
detected by failing to receive an answer to an OpenFlow echo-
request message, which are sent periodically. To deal with a
failed OpenFlow session, the affected switch reverts the flow
tables to the a priori rules (using timeouts and rule priorities)
and re-attempts to connect to a controller. By setting the rule
timeout to be larger than the timeout of the echo-request
message, we can ensure that the rules will never be dropped
while the OpenFlow session is live.

Note that the way the switch handles data plane traffic,
depends entirely on the controller. We do not impose a pre-
defined behavior for this. For instance, a controller application
that needs to react to Packet In messages will be unavailable
for a brief period of time. But existing data plane rules will
still match the ongoing traffic.

To avoid the overhead of refreshing a large number of rules,
the non-initial rules could be grouped into a separate secondary
flow table.2 Then, a single rule in the first flow table could be
used to pass all matching packets to this secondary table; and

2Flow table pipelining is available since OpenFlow 1.1.

so, only this catch-all rule needs to be refreshed.
Note that a controller failure is just a special case of an

OpenFlow session failure. When that happens, the switch will
try to reconnect to a controller; it just will not be able to
reconnect to the same as before. The OpenFlow specification
does not specify the delay. Assuming we can control it, it
should be set higher than the rule refresh timeout; therefore
ensuring we only try to reconnect after reverting to the a priori
rules. The controller also detects the termination of the session
with a switch S and uninstalls the downstream rules for S from
switches on the controller-S path (Lines 18-19).

Furthermore, due to failures, the network-wide spanning-
tree may need to be altered. Unlike the region’s spanning tree,
we cannot rely on switches reverting to their a priori rules after
a spanning tree experiences a partition. To solve this problem,
we set an idle timeout on the net wide flood rule. As long
as there are probe packets, the rule persists. After the probes
stop, the rule eventually expires. The controller of the switch
will be notified of the rule expiration and will also remove the
net wide block rule from the switch, so that other controllers
have a chance to re-include the switch in their network-wide
spanning trees.

Finally, we note that since the control traffic is sent in-
band, steps should be taken to prevent congestion caused by
regular traffic to negatively impact the control traffic. We have
not implemented this yet; but we believe a solution based on
strict priority queues could be made to work without major
difficulties.

V. RELATED WORK

Closest to our work, is the approach of Sharma et al. [12]
to bootstrap connectivity in an OpenFlow network. However,
their work does not consider how to support multiple con-
trollers nor how to establish the control network. Moreover,



their approach relies on switch support for traditional STP and
requires modifying DHCP on the switches.

Our approach nicely complements ongoing related research.
In particular, our control plane can be used together with and
support distributed systems such as ONIX [9], ElastiCon [15],
Beehive [18], Kandoo [11], STN [10], to just name a few.
Our paper also provides missing links for the interesting work
by Akella and Krishnamurthy [8], whose switch-to-controller
and controller-to-controller communication mechanisms rely
on strong primitives such as consensus protocols, consistent
snapshot and reliable flooding, which are not currently avail-
able in OpenFlow switches.

We also note that our approach is not limited to a specific
technology, but offers flexibilities and can be configured with
additional robustness mechanisms, such as warm backups,
local fast failover [19], or alternatives spanning trees [20], [21].

Our paper also contributes to the active discussion of which
functionality can and should be implemented in OpenFlow.
DevoFlow [22] was one of the first works proposing a modifi-
cation of the OpenFlow model, namely to push responsibility
over most flows to switches and adding efficient statistics
collection mechanisms. SmartSouth [23] shows that in recent
OpenFlow versions, interesting network functions (such as
anycast or network traversals) can readily be implemented in-
band. More closely related to our paper, [16] shows that it
is possible to implement atomic read-modify-write operations
on an OpenFlow switch, which can serve as a powerful
synchronization and coordination primitive also for distributed
control planes; however, such an atomic operation is not
required in our system: a controller can claim a switch with
a simple write operation. In this paper, we presented a first
discussion of how to implement a strong notion of fault-
tolerance, namely self-stabilization [13], [14], [24], in SDN.
Bibliographic Note. Our approach was demoed under the
name Medieval at ACM SOSR 2015 [25].

VI. CONCLUSION

While the benefits of the separation between control and
data planes have been studied intensively in the SDN literature,
the important question of how to connect these planes has
received much less attention.

In this paper, we presented a model and list of challenges
for the design of an in-band distributed control plane. More-
over, we presented techniques that allow us to address these
challenges. While we yet have to work out the full details and
formal proofs, we hope that our work indicates the feasibility
of a self-reliant, self-stabilizing distributed control plane.

We also note that our approach comes with interesting
security features. First, it can be used in parallel with other
security measures (public key infrastructure) to bootstrap
authentication and encrypted communication channels. More-
over, it can be used to give control traffic a higher priority
than other traffic, thereby preventing some types of DoS
attacks. The global spanning trees can allow each switch to
sense and communicate with all controllers in its connected
component, which can be useful to bootstrap more advanced
security protocols, such as SNBI [26], which needs to deliver
encryption keys and NTP packets.

Acknowledgments. We are thankful to Nicolas Laurent for
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