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Abstract—Computer networks today typically do not provide
any mechanisms to the users to learn, in a reliable manner,
which paths have (and have not!) been taken by their packets.
Rather, it seems inevitable that as soon as a packet leaves the
network card, the user is forced to trust the network provider
to forward the packets as expected or agreed upon. This can be
undesirable, especially in the light of today’s trend toward more
programmable networks: after a successful cyber attack on the
network management system or Software-Defined Network (SDN)
control plane, an adversary in principle has complete control over
the network.

This paper presents a low-cost and efficient solution to detect
misbehaviors and ensure trustworthy routing over untrusted or
insecure providers, in particular providers whose management
system or control plane has been compromised (e.g., using a cyber
attack). We propose Routing-Verification-as-a-Service (RVaaS):
RVaaS offers clients a flexible interface to query information
relevant to their traffic, while respecting the autonomy of the net-
work provider. RVaaS leverages key features of OpenFlow-based
SDNs to combine (passive and active) configuration monitoring,
logical data plane verification and actual in-band tests, in a novel
manner.

I. INTRODUCTION

While improving the security of the Internet routing system

has been a prime concern for many years already, the interface

between Internet users (including companies) and the network

provider (e.g., the carrier or datacenter operator) has received

little attention. Today, the user typically does not even have

any means to specify desired and undesired routing paths (e.g.,

using white or black lists), and even less is supported in terms

of verification. Rather, it is often implicitly assumed that the

user needs to trust its network provider, including its network

management system software, unconditionally.

While traceroute and trajectory sampling tools may be

sufficient to verify routes in regular networks [6], [8], and may

still perform well in the context of faulty and heterogeneous

networks [7], [38], they are insufficient in non-cooperative and

adversarial environments: an unreliable network operator may

simply not reply with the correct information, also breaking

any scheme based on packet labeling or tagging [30], [46].

Even more challenging than verifying the used paths, is to test

avoidance, i.e., verifying that certain paths have not been taken

and certain destinations have not been reached [22].

The threats introduced by untrusted providers are manifold.

In particular, routing can be compromised even in scenarios

where the provider itself is in principle benign. For example,

over the last years, numerous flaws have been found in network

management systems [27]. The problem is exarcerbated in

Software-Defined Networks (SDNs) [14]: A new SDN control

plane may be vulnerable to cyber attacks, which, given the

important role the SDN controller plays compared to more

distributed legacy network protocols, is particularly worrying:

an adversary with access to the control plane can in principle

arbitrarily change the network forwarding behavior, and violate

security policies (e.g., breaking logical isolation domains

between health care providers [17]) or exfiltrate confidential

traffic. Today, clients do not have a means to reliably verify

the data plane configuration.

At first sight, the problem seems to be an inherent one:

as soon as the packet enters the provider network, its fate is

inevitably decided by the provider and its network management

system and software control plane. While a (possibly signed)

acknowledgment from the receiver may eventually confirm

to the sender that the packet has successfully arrived, this

is insufficient as it does not provide any information about

which paths have been taken and which (possibly additional)

destinations have been reached. The problem is particularly

cumbersome in the context of high-performance networks

where cryptographic per-packet operations (like encryption,

signatures, etc.) are out of question.

This paper is motivated by the question whether it is possible

to reduce the seemingly inevitable trust assumptions in the

network provider, and to empower the user to verify the

routes taken and destinations reached by its packets. Ideally,

the resulting solution should also not introduce significant

computational overheads, and also respect the autonomy of the

network operator: security and business critical details of the

underlying topology should not be revealed.

A. Our Contributions

This paper presents Routing-Verification-as-a-

Service (RVaaS), a novel network service which allows

users (or more generally: clients) to query and verify relevant

properties of the network routes installed on their behalf.

RVaaS removes the need for users to unconditionally trust

the network providers to forward their packets according to

the agreed upon routing policies, and also accounts for the

possibility that operators or control software is compromised,

e.g., due to a cyber attack.

RVaaS is based on passively and actively monitoring network

configurations, and on the in-band interception of user request

messages (e.g., using OpenFlow Packet-ins). Upon a query

request, RVaaS performes a static packet trajectory analysis

(identifying relevant endpoints), and actively issues verfication



packets and client authentication tests (e.g., the verify that

endpoints are legitimate).

RVaaS features the following properties:

1) Verifiable routing properties: Users can learn about and

verify, through a flexible interface, relevant information

related to the routes taken by their packets, such as

the set of destinations, or whether fairness conditions

are fulfilled (e.g., regarding bandwidth allocations). For

example, users can verify that their traffic is not routed

in a way which violates privacy, e.g., is not exfiltrated

or routed through certain geographic regions.

2) Confidentiality: The autonomy of the provider is pre-

served, and security or business critical topological details

can be kept confidential.

One attractive feature of our approach is that it allows users to

issue very general queries, which are not limited to connectivity

alone, but may also include geographic, performance and

fairness aspects. Another feature is the provided modularity:

queries may not be limited to a single provider but may

recursively span consecutive networks along a route.

To provide the RVaaS service, it is sufficient to deploy a

single secure server, somewhere in the network; additional (in-

dependent) servers can increase the security further. These

servers do not have to inspect live traffic, and have low resource

requirements; they also does not come with strict latency

requirements.

B. Paper Scope and Novelty

We emphasize that the goal of our approach is to empower

the users to detect misbehavior, as opposed to prevent misbe-

havior. In other words, alone, our approach is unable to ensure a

user’s packets will not traverse certain network regions or reach

certain destinations. However, we believe that the possibility to

detect misbehavior can often be a strong disincentive to deviate

from the correct behavior. Moreover, we in this paper do not

consider the orthogonal question of how a user should specify

its desired and undesired routes to the network provider.

Generally, we believe that our work assumes an interesting

position in the secure routing space. While there has been

much interest in securing the inter-domain routing protocol or

in dealing with unreliable data plane components, we study

how to reduce trust assumptions in the entity installing the rules

on the routers in a single administrative domain. Moreover,

we make the case for marrying verification mechanisms in

the “logical space” (e.g., which routes exist?), with physical

verification mechanisms in the data plane (e.g., which host

destinations are actually reached?).

We also note that while for RV aaS, any secure server is

in principle sufficient, our architecture can also benefit from

the advent of novel hardware developed in the context of Intel

SGX [9], [16], [23], [36]. In this respect, we see our work also

as an interesting case study demonstrating a new application

of this technology in the context of secure routing.

C. Organzation

The remainder of this paper is organized as follows. Sec-

tion II provides necessary background on SDN/OpenFlow. Sec-

tion III introduces our model together with some terminology.

RVaaS is described in detail in Section IV. After reviewing

related work in Section V, we conclude our contribution in

Section VI.

II. BACKGROUND

The solution proposed in this paper is tailored for Software-

Defined Networks (SDNs), and we will provide the necessary

background accordingly in this section.

In a nutshell, Software-Defined Networks (SDNs) outsource

and consolidate the control over the data plane devices (the

switches or routers) to a logically centralized software controller.

This decoupling introduces flexibilities and innovation oppor-

tunities, as the control plane can now evolve independently

from the constraints of the data plane [11]. OpenFlow is the

de facto SDN protocol standard today. OpenFlow is based on a

match-action concept: OpenFlow switches store rules a.k.a. flow

entries (installed by the controller) consisting of a match and

an action part. A packet matched by a certain rule will be

subject to the associated action. For example, an action can

define a port to which the matched packet should be forwarded,

or add or change a tag (a certain part in the packet header).

In OpenFlow networks, the distinction between switches and

routers disappears: an OpenFlow switch can match (and apply

actions to) not only layer-2 but also layer-3 and layer-4 header

fields.

An OpenFlow switch can (and should) be connected to

one or multiple controllers via an authenticated and secure

communication channel (e.g., SSL/TLS).1 Thus, only legitimate

controllers can send rule updates to the switch.

In order for the controller to learn about newly arriving flows,

OpenFlow switches can forward packets to the controller by

sending them within so-called Packet-In messages. Similarly

other events (link failures, switch errors, etc.) are reported as

well to the controller using dedicated OpenFlow messages.

As a reaction to such events, a controller may want to change

the installed flow on the switch (using Flow-Mod commands) or

explicitly send packets out from the switch (using Packet-Out).

Moreover, to stay informed about the current configuration of

a switch (the existing flow entries), the controller should use

the OpenFlow add flow monitor command.

III. MODEL AND THREAT

We consider a software-defined network servicing multiple

clients which are geo-spatially distributed. The client and

provider roles are defined as follows:

1) The Clients (or Users): We will refer to the users

or communication endpoints of the network as the

clients. Each client may be connected to the network

infrastructure at multiple access points (switch ports),

1We note however that according to a 2013 study, only 2 out of 8 OpenFlow
switches and 1 out of 8 (popular) OpenFlow controllers fully support. [2]



and request connectivity and routing services (regarding

his access points) from the provider.

2) The Provider: The provider running the software-

defined network consists of two parts:

a) Network management system and control plane: A

software in charge of defining and installing the

device configuration (e.g., routing policies), within

the constraints defined by the clients.

b) Infrastructure: Routers (resp. OpenFlow switches)

and links.

We consider a threat model motivated by cyber attacks: an

external attacker which compromised the network management

or control plane (e.g., using a Trojan or a remote cyber attack)

aims to change the data plane configuration, e.g., to divert

client traffic to unsupervised access points or through undesired

jurisdiction, thereby putting the security of the network and the

traffic privacy at risk. However, while the network management

system and control plane may be hacked, we assume the

infrastructure to be secure: The question of what security

properties can be guaranteed in scenarios where control planes

can be compromised and malicious while the data plane is

correct, is scientifically interesting on its own right. However,

we argue that the question is also a practically relevant one,

in three respects:

• While a cyber attacker (not an insider!) may be able to

hack the management and control plane, it is impossible

to change physical configurations from remote locations.

• In the context of network virtualization, the physical

infrastructure provider and the virtual network operator

are often considered two different roles. In this respect,

our model can be understood as a case study of how to

deal with a malicious virtual network operator.

• Our model can also be motivated by the current trend

toward more trusted hardware (see, e.g., Intel SGX).

The clients can also be untrusted in our model, and may for

example not inform the sender about having received packets,

or may try to infer confidential details about the network

topology.

Our objective is to enable a trustworthy routing, by empow-

ering a client to find out about and verify relevant properties

of the routing applied to its packets (e.g., the set of reached

destinations). Moreover, the autonomy of the provider should

be preserved. In particular, clients should not be able to infer the

topology or critical features (like bottlenecks) of the network

itself. Finally, details of the client should not leak: the provider

should not learn about their queries (whose content is somewhat

confidential).

In general, we assume a high-speed network (e.g., Internet

backbone or datacenter), where per-packet encryptions or

public key operations are hardly used due to the high costs

of deploying and maintaining them. Concretely, we rule out

signed logs in every packet, per-flow state in forwarders (which

stymies fail-over), and ideally not even per-flow public key

operations.

In summary:

• Switches are trusted (e.g., bought from a trusted vendor),

and are initially configured correctly.

• Internal network ports are known, and follow a well-

defined wiring plan.

• Links are trusted: no physical taps are installed.

• Switch to RVaaS controller sessions are secured, using

encrypted OpenFlow sessions and apriori configured

switch certificates for authentication.

IV. TRUSTWORTHY ROUTING

We will first discuss the main ideas and concepts behind

Routing-Verification-as-a-Service (RVaaS). Subsequently, we

give an example and discuss extensions and limitations.

A. Main Concepts

At the heart of RVaaS lies a flexible interface which allows

the clients to query relevant information related to how their

packets are being forwarded in the network. The interface

allows clients to ask questions such as:

• Which destinations (resp. other clients and hosts) can

be reached by the traffic leaving my network card? This

question may also be made more specific, e.g., constrained

to traffic within a certain header space.

• For which sources (e.g., other clients, hosts) currently

exist routing paths which can reach my network card?

Again, the question can be made more specific.

• Is my traffic forwarded fairly, e.g., according to network

neutrality principles?

Generally, queries related to connectivity, path lengths

optimality, traversed geographic regions, traffic shaping, quality-

of-service (e.g., dedicated bandwith), etc. are supported. A

client may also request a compact representation of the transfer

function of its offered routing service.

Through attestation, the client can verify that RV aaS is

the one that securely responds to its queries. Moreover, the

provider makes sure that the correct RV aaS application is

operating on the server, and not a fake one that may leak

sensitive information regarding the infrastructure or clients.

RVaaS is based on a passive-active approach: events in

the data plane are monitored, and analyzed in the control

plane; upon a client request, endpoints are actively tested

and authenticated. RVaaS can be realized using a stand-alone

OpenFlow controller, henceforth called RVaaS controller, which

monitors the configurations of all the switches, and which

may send and receive (resp. intercept and inject) specific

messages in-band, in order to communicate with the clients.

This controller is different from possibly additional controllers

used by the network provider to manage the network, and

should be trusted. Also, while a single one is in principle

enough, different entities (e.g., a certification authority) may

provide different independent controllers, reducing the attack

surface further.

In order to provide its service, the RVaaS controller per-

forms three different functions: passive or active configuration

monitoring, logical data plane verification, and actual in-band

testing using client interaction.





access points, the server issues a Packet-Out message at the

corresponding outgress ports of the network. The hosts behind

these ports respond, with authenticated messages, which are

intercepted and reported to the server. The collection of these

authenticated messages are then forwarded to the querying

client, which can verify the correctness and authenticity of

these destinations.

Note that the server also forwards to the client the total

number of authentication requests that were made, such that it

can detect cases where some access points did not respond.

2) Geo-Location Checks: As a second case study, we present

a query made by a client to discover the locations where

its traffic passes through. This is relevant, e.g., in scenarios

where different jurisdictions exercise different privacy policies

regarding user data. First we require that the locations of all

the switches (and preferably also the links) are known to the

RVaaS controller. These locations can be revealed/estimated

in each of the following ways: (1) either disclosed by the

infrastructure provider; (2) collected from the clients themselves

in a crowd-sourcing manner: clients can e.g., report their

geographical locations which allows RV aaS to guess the

location of nearby switches; (3) or passively inferred from

clients traffic, e.g., using geo-IP mappings, domain name

records information, time zone estimations, etc.

Given a client geo-location request, the RVaaS controller

uses header space analysis to find out all the intermediate and

end point switch (and link) of any possible route for the client.

Then using the locations of the network provider components,

the set of locations exposed to the client traffic is computed

and sent to the client.

C. Extensions and Discussion

This section provides a discussion of our approach, and

identifies limitations and extensions.

a) Multi-Provider Settings: While we have described

our architecture for a single-provider setting, in principle,

our approach can also be used across multiple providers.

In this case, queries need to be propagated between the

RV aaS servers of the respective providers. Clearly, the trust

assumptions then need to be extended accordingly, to those

servers as well.

b) Supported Queries: In principle, a wide range of

queries can be supported within our framework, beyond simply

identifying reachable clients. For example, given the up-to-date

network view, performance and fairness related queries by

clients may be answered. Moreover, RV aaS could be used to

check whether allocated routes and meter tables meet network

neutrality requirements. Moreover, a slightly more complex

service may also maintain some history of the recent past,

allowing RV aaS for example to traceback the ingress port of

an attack.

V. RELATED WORK

Our paper assumes an interesting new position in the

secure routing space. Arguably the most intensively-studied

problem in the secure routing literature regards how to ensure

authenticity and correctness of topology propagation and route

computation across multiple untrusted and insecure domains,

e.g., by extending [18], [31] or redesigning [20], [45] the

Border Gateway Protocol (BGP). Moreover, the problem of

how to design secure routing protocols which allow to deal

with untrusted and insecure switches and routers currently

experiences a rennaissance [28], [29], [34]. In contrast, we in

this paper investigate mechanisms which empower the user to

deal with untrusted or insecure operators, subject to a cyber

attack (from an external adversary without physical access).

Our problem is also different from the recently introduced and

interesting malicious administrator problem [25], [37]: in that

problem, it is assumed that a network is redundantly managed

by multiple administrators or controllers, out of which only a

minority can be malicious. This allows for simple (yet crypto

intensive) secure solutions based on threshold objects and

majority decisions. In the context of operator networks, such a

redundancy is not available, and to the best of our knowledge,

the threats introduced by a malicious network operator have

not been studied before.

We are not the first to identify new security-related op-

portunities and challenges introduced by the software-defined

networking paradigm [14], [21], [32], also regarding traffic

monitoring [13], [41], [43]. While the static logic of RV aaS

can be implemented using Header Space Analysis (HSA) [17],

over the last years many alternative tools have emerged [19],

[24], [39]. These tools in turn rely on early works on

reachability by Xie et al. [42], and are not limited to switches

and routers but can also be employed, e.g., in the context

of firewalls [1], [10], [26], [44]. Our work is orthogonal

in the sense that RVaaS can benefit from such systems in

order to implement its query interface, while performing the

required authentication requests in the data plane. That is,

RVaaS in some sense combines data plane [3], [5], [12], [33]

and control plane [4], [15], [40] query systems, and issues

a minimal amount of requests in the data plane (e.g., to

collect information about attached clients). In this sense, our

work is also orthogonal to recent literature aiming to improve

the latency at which network monitoring information can be

retrieved [35].

VI. DISCUSSION AND CONCLUSION

This paper initiated the study of trustworthy routing ar-

chitectures in the context of hacked and untrusted network

management systems and control planes, as well as malicious

virtual network operators. We have identified different require-

ments and different roles in such a setting, and provided a first

solution which, based on a secure but simple hardware, allows

to decouple the roles and empower clients to verify routing

properties while preserving the autonomy of the operator, e.g.,

by respecting the confidentiality of topological details.

While the underlying concepts may be more general, RV aaS

is particularly well-suited for SDNs based on OpenFlow: Open-

Flow’s match-action interface provides an ideal technological

basis for our approach. In particular, OpenFlow enables a

simplified monitoring of different equipment, the interception



and injection of packets in order to communicate with the

clients, without affecting existing services, and the centralized

view and analysis of the collected configuration.

Clearly, at least initially, RV aaS targets power users, but in

the longer run, may also be incorporated into security/privacy

products directly, and made available to end users. Our work

also raises the question why an operator would be willing to

install RV aaS. Besides the possibility to consolidate logical

network view and physical configuration (e.g., in scenarios

where the operators does not necessarily trust the SDN con-

troller software to be perfectly correct), we also see economic

incentives: a telco hosting one or multiple (independent)

RV aaS servers may appear to be more trustworthy to their

customers, which can constitute a business advantage. For

instance, customers relying on security-critical networks, such

as governmental networks, are likely to prefer certified telcos,

which offer an independent means of verification.

In general, we believe that our work assumes an interesting

new perspective on the classic topic of secure routing, in

several respects. For example, we believe that our distinction

of network operator from physical infrastructure provider is

an interesting and timely one, beyond the considered cyber

attack threat model: in the context of network virtualization and

with the ongoing infrastructure liberalization trend, network

operators are more and more seen as a business role which

may be independent from the infrastructure owner. Moreover,

while our assumption of trusted infrastructure is a strong one,

we believe that it constitutes more than an academic exercise:

given today’s trend toward trusted hardware, our work is timely

and provides an interesting new look on this trend from a

networking perspective.

We understand our work as a first step. In particular, while

we show the potential for a more trusted routing in less trusted

environments, much more research is required to understand

the minimal assumptions required to implement such an

architecture, as well as to understand the fundamental tradeoffs

in terms of security and performance. It is also clear that there

are inherent limitations to such a solution. For example, it

seems impossible to deal with untrusted network operators

who also have physical access to the network, at least in the

classical, non-quantum physics world.
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