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Abstract—Software-Defined Networks (SDNs) are typically
designed and operated under the assumption that the underlying
routers (and switches) are trustworthy. Recent incidents, however,
suggest that this assumption is questionable. The possibility of
incorrect or even malicious router behavior introduces a wide
range of security problems. The problem is exacerbated by the
fact that governments and companies do not have the expertise
nor budget to build their own trusted high-performance routing
hardware.

This paper presents NetCo, an approach to build secure
routing using insecure routers. NetCo is inspired by the robust
combiner concept known from cryptography, and leverages
redundancy to compile a secure whole from insecure parts. We
present the basic design of NetCo, and report on a small proto-
type implementation in OpenFlow. We also sketch a virtualized
version of NetCo which, by leveraging SDN traffic engineering
flexibilities, can significantly reduce the hardware costs involved
in implementing NetCo.

I. INTRODUCTION

Modern computer networks have become a critical infras-
tructure. Enterprise and datacenter networks as well as the
Internet carry an increasing amount of critical and confidential
traffic: from private users, companies, but also governments.
This introduces strict requirements in terms of availability and
security.

Software-Defined Networks (SDN) introduce interesting op-
portunities for designing more dependable computer networks,
which meet these new requirements. In a nutshell, in an SDN,
the control over the routers (resp. switches) is outsourced and
consolidated to a logically centralized software, called the
controller. The separation of control plane and data plane not
only promises faster innovations, but also allows to radically
simplify the required functionality in the data plane. This
facilitates a formal reasoning about the function provided by
the network and its correctness: a crucial prerquisite of any
reliable network. For example, OpenFlow, the de facto SDN
standard today, is based on a match action paradigm: the logic
of the switch is defined by a set of match-action rules, where
each match packet is processed according to the corresponding
action.

While software-defined networks and in particular Open-
Flow introduce a more verifiable and hence secure network,
the paradigm critically depends on the correctness of the un-
derlying hardware. However, the assumption of reliable routers
and switches is questionable. Over the last years, attackers
have repeatedly demonstrated their ability to compromise
switches and routers [1], [2], [3], thousands of compromised
access and core routers are being traded underground [4],
networking vendors have left backdoors open [5], [6], national

security agencies can bug network equipment [7], hacker tools
to scan and eventually exploit routers with weak passwords,
default settings are openly available on the Web, etc. As SDN
is moving into production networks, it is naive to assume that
similar issues will not arise for OpenFlow switches.

The problem is a fundamental one: even large enterprises or
national security agencies often cannot afford and do not have
the expertise to develop their own trusted, high-performance
network hardware. Rather, they need to rely on untrusted
hardware from untrusted vendors.

An unreliable routing system introduces several threats: for
instance, wrongfully forwarded packets, i.e., packets following
incorrect routes, may bypass security-critical components such
as firewalls or intrusion detection/prevention systems, and may
be able to enter or leave security critical zones. Forwarding or
mirroring packets wrongfully can also be used to violate iso-
lation requirements in multi-tenant datacenters, and generally,
to exfiltrate sensitive information [8]. Moreover, a malicious
router may also simply seek to overload the network, using a
Denial-of-Service (DoS) attack.

While encryption may be used to mitigate some of these
problems, cryptographic approaches require an additional in-
frastructure, and also come with overheads at runtime. This is
undesirable especially in high-performance networks. More-
over, even encrypted traffic may leak sensitive information,
e.g., about the times and frequency of communications. Fi-
nally, cryptographic solutions cannot deal with the DoS threat.

A. Our Contributions

Today, we lack tools to verify and enforce correct router (or,
equivalently in this paper: switch) behavior. This paper is
motivated by the question whether Software-Defined Networks
(SDNs) providing reliable routing can be built even in scenar-
ios where individual components (routers and switches) are
untrusted.

Our approach relies on the observation that even in com-
pletely untrusted environments, it may be reasonable to rely
on some minimal non-cooperation assumptions: routers from
different vendors, or routers manifactored in different coun-
tries, may be unlikely to cooperate and exhibit the same
misbehavior. Accordingly, the natural idea explored in this
paper is whether inherent router diversity can be leveraged
to detect or even prevent attacks.

In particular, we present the NetCo (robust network com-
biner) system, which is inspired by the robust combiner
concept [9], [10] known from cryptography, and which applies
this concept to networks. While our approach is applicable



more generally, we in this paper focus on a software-defined
networks.

We first introduce a basic version of NetCo and discuss
different architectual variants. We report on a proof-of-concept
implementation in C (and Mininet) which demonstrates the
feasibility of our approach. We show that NetCo can scale to
relatively high throughputs both for UDP and TCP traffic, and
can constrain the effects of malicious behavior. Subsequently,
we initiate the discussion of an interesting virtualized version
of NetCo. This virtualized version comes with significantly
lower hardware requirements and leverages the inherent traffic-
engineering flexibilities introduced by the software-defined
networking paradigm.

B. Background

The software-defined networking paradigm introduces inno-
vative and flexible ways to define routing paths in the network.
At the heart of a software-defined network operating system
lies a control software, running on a set of servers. These
controllers receive information and statistics from routers, and
depending on this information as well as the policies they
seek to implement, issue instructions to the routers/switches.
OpenFlow follows a match-action paradigm: The controllers
install (flow) rules on the routers which consist of a match
and an action part; the packets (i.e., flows) matching a rule
are subject to the corresponding action. That is, each router
stores a set of tables which are managed by the controllers,
and each table consists of a set of flow entries which specify
expressions that need to be matched against the packet headers,
as well as actions that are applied to the packet when a given
expression is satisfied. Possible actions include dropping the
packet, sending it to a given egress port, or modifying it, e.g.,
adding a tag. The match-action paradigm is attractive as it
simplifies formal reasoning and enables policy verification.

By default, if a packet arrives at a router and does not
match an existing rule, the packet (usually without payload
if the router supports packet buffering) is forwarded to the
controller. This event is called a Packet-in. Upon a Packet-
in event, the controller can decide how to react to packets
of the corresponding type, and add/delete/modify flow rules
accordingly issuing Flow-mod messages to the router (and
maybe to other routers proactively on this occasion as well).
A controller can also decide to send out a packet explicitly
from a router, issuing a so-called Packet-out command to the
router.

We remark that throughout this paper, we will use the terms
SDN and OpenFlow interchangeably, and also emphasize that
there exist different and not always backward compatible
OpenFlow versions. Our prototype is based on the OpenFlow
1.0 standard.

C. Organization

The remainder of this paper is organized as follows. Sec-
tion II presents our threat model. Section III presents the main
concepts underlying NetCo, Section IV describes an early
prototype implementation, Section V reports on a performance

evaluation, and Section VI discusses a case study: a routing
attack in the datacenter. Section VII initiates the discussion of
a more cost-effective version of NetCo based on SDN traffic
engineering flexibilities. After reviewing related literature in
Section VIII, we conclude our work in Section IX.

II. THREAT MODEL

We consider a network consisting of a set of routers (for
the purpose of this paper, usually: OpenFlow switches) R,
connected by a set of links E, and managed by a logically
centralized SDN controller.. We assume a scenario where a
network provider or user (e.g., a government) cannot trust
the routing hardware. In particular, designing and in-house
fabrication of own trusted routers is impossible (e.g., due
to the excessively high costs entailed by such a solution).
Accordingly, we consider a strongly adversarial model where
routers (resp. router vendors) can behave arbitrarily, e.g.,
completely ignore the installed OpenFlow match-action rules
installed by the controller: That is, we do not place any re-
strictions on what an adversarial router can and cannot do. For
example, a adversarial router can fabricate and transmit any
type of message. In particular, routers may contain (hardware
and software) backdoors.

For example, in an environment where traffic is not nec-
essarily encrypted or integrity-protected, e.g., in a high-
performance environment, a malicious router can manipulate
packets in many ways, e.g., by changing VLAN identifiers,
isolation properties can be violated. But also in a scenario
where traffic is encrypted and protected, e.g., in a transport
network, a malicious router may still attack the availability
of the network: by dropping packets or duplicating packets, a
Denial-of-Service (DoS) attack can be performed. See Figure 1
for an illustration of two example scenarios.

In general, an adversarial router may perform the following
attacks.

1) Rerouting: An adversarial router can forward a packet
to the wrong port (e.g., breaking logical isolations).

2) Mirroring: An adversarial router can duplicate a packet,
and e.g., send one to the correct and one to an incorrect
port.

3) Packet Modification: An adversarial router can also
delete packets, generate new packets, or modify the
header or payload of packets (e.g., changing the VLAN
field to break isolation domains).

4) Denial-of-Service (DoS): An adversarial router may
also generate a very large number of packets in order
to overload the network: both the link resources as well
as the (CPU or TCAM) resources of nearby network
elements. A DoS attack can also be performed by
dropping packets.

Moreover, we do not only make no assumptions about the
behavior of malicious routers, but also not on the number of
malicious routers. In principle, all routers may misbehave.

However, we assume bounds on the degree of malicious
router collusion. In particular, we assume a certain degree of
heterogeneity or diversity: routers fall into different categories,
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Fig. 1. Illustration of two possible scenarios and attacks on the routing protocol. Left: High-Performance Datacenter Scenario. The figure shows a typical
fat-tree topology where servers are organized in racks, which are in turn organized in pods, interconnected by core routers. In this scenario, rack 1 contains
security-critical equipment such as firewalls, and rack 2 contains different virtual machines (e.g., implementing a web service). A correct communication
channel is indicated in green (using three tunnels): a virtual machine vm1 communicates to vm2, which in turn communicates to a client in the Internet via
the firewall fw1 located in rack 1. However, a malicious aggregation router (depicted with red horns) may aim to manipulate unprotected packet headers
such that confidential information can be exfiltrated by bypassing the firewall (route in red). Right: Crypto Transport Scenario. In this scenario, a transport
network is shown where all traffic is encrypted at the edge (indicated by red-black diamonds). Due to the cryptographic protection, an attacker (red horns)
cannot easily manipulate the correctness of routing. However, it can target the availability of the network, e.g., by launching a Denial-of-Service attack.

and are unlikely to cooperate across category boundaries
(the adversarial strategy is not synchronized). For example, a
natural category could be the vendor type: switches and routers
from different vendors may be unlikely to exhibit the same
bugs or misbehaviors. In the context of hardware backdoors,
a reasonable category may concern the locations and countries
where the hardware were actually fabricated.

Moreover, while we assume that developing own trusted
high-performance routing hardware is too costly, we argue
that designing simple trusted components can be feasible. In
other words, trusted components can be introduced as long
as their functionality is simple enough to facilitate a cheap
production. This is a reasonable and interesting assumption:
if a government can increase the availability and security of
the network by introducing a small number of cheap trusted
hardware boxes, it is likely to do so.

III. THE NETCO APPROACH

Can we build a reliable routing system based on untrusted
routing hardware, even if all routers are adversarial? Perhaps
surprisingly at first sight, the answer is yes, and the approach
proposed in this paper is based on two key concepts:

1) Leverage redundancy and diversity: Given a certain
hardware heterogeneity which renders collusion among
different routers unlikely, we can assemble and connect
these routers in a manner which allows us to detect and
prevent misbehaviors.

2) Trusted but simple components: While high-peformance
routers are complex and an in-house production often
out-of-question, the design of simpler and trusted com-
ponents may be feasible at low costs.

Our approach is inspired by the robust combiner concept
known from cryptography [9]. Concretely, we show that with
two simple trusted components, a so-called hub and a so-called

compare, a trusted router can be emulated based on untrusted
routers.

The basic idea of our proposed NetCo approach is to apply
the robust combiner approach to networks: we replace each
router r in the network by a number k of different routers,
say k = 3: {r1, r2, r3}. These three routers are organized
in a parallel circuit: the traffic originally input entering r is
now forwarded by the hub, to each of the three routers ri,
i ∈ {1, 2, 3}. After the routers processed the packets and
forwarded them to their outports, they reach the compare: the
logic which lies at the heart of NetCo. In the most simple case,
the compare can simply perform a majority decision: a packet
is only forwarded if it is received by at least two routers (in
general: by more than bk/2c routers). Moreover, depending
on the threat model, packets may be compared bit-by-bit, or
just based on the header, or hashing can be used.

Figure 2 provides a rough overview of the NetCo concept.
In general, we observe that the number of required parallel
routers depends on the required protection: for detecting
misbehavior, two are enough, for prevention, we need three.

IV. AN EARLY PROTOTYPE

While our approach can in principle be used to improve the
security of any network based on switches and routers, in our
prototype implementation, we so far focus on networks based
on OpenFlow switches. In the following, we first describe the
general design and then discuss our Mininet implementation
(in C) in more details.

The implementation of the hubs is simple and can be
realized in the datapath: the logic boils down to multiplying
the packets, in a stateless manner. The compare logic however
is more complex. For the sake of our prototype, we use
a single, centralized server process for the compare. The
compare is connected to the data plane akin of an OpenFlow
controller, using packet-in and packet-out messages. However,
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Fig. 2. NetCo Overview: On the left, an excerpt of the original network is shown. On the right, the corresponding robust combiner is shown: Each router
is replaced by a hub, followed by three redundant routers in parallel, followed by a compare. The trusted components are colored blue (and with halo), the
untrusted in black. The influence of a malicious router (with red horns) can be limited.
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Fig. 3. Topology used for performance testing.

the compare is not running as an SDN application: obviously,
and as we will see, this results in a poor performance. Rather,
the compare is implemented directly and in C. Alternatively,
the compare could also be implemented inband, e.g., as a mid-
dlebox, or in the context of Network Function Virtualization
(NFV), as a virtualized network function.

Let us consider the example in Figure 3: it will also be our
reference testing topology. In this k = 3 combiner architecture,
h1 and h2 are benign hosts, and h3 is the (trusted) server
running our combining module. The routers are untrusted
components. Components s1 and s2 act either as hub or
manage the traffic to and from the compare, depending on
the direction in which a packet flows. In our prototype, they
are implemented as OpenFlow switches as well, but their
functionality can be much simpler, and hence realized as a
trusted component.

The topology is created within the Mininet network emula-
tion environment. Components s1 and s2 have a very simple
set of flow rules: Every packet entering NetCo is forwarded
to each ri. Every packet received from any ri is forwarded to
the compare, after ensuring its ingress port number matches its
MAC source address. Every packet received from the compare
is to be forwarded based on the switches MAC table.

The compare program itself runs on a dedicated host (e.g.,
as a virtual network function). Each packet entering the com-
pare is received by an Ethernet socket (an OpenFlow Packet-
in) and saved in a structure containing the full packet as well as
the ingress port number. In order to prevent resource attacks

on this structure, the different buffers should be (logically)
isolated. Using memcmp() the packet is then compared (bit-by-
bit) to the packets already cached by the compare. If a match
is found, the appropriate ingress port number of the cached
element is incremented. Once a packet has been received on
the majority of the possible ingress ports, the compare releases
it immediately: A single copy of the packet is sent back to
the switch (an OpenFlow Packet-out), which then forwards
it according to the decision the majority of the ri made; if
additional packets (beyond the majority, e.g., if all switches
are benign) arrive later, they are ignored.

In an ideal world, a packet arrives at each ingress port once.
However, in the presence of malicious routers, we have to
accommodate for the following cases as well:

1) Packet received on one ingress port only: This can
happen, for example, if a malicious router rewrites the
packet header field to send it on a path for exfiltration.
We also see this behavior if a router starts crafting
packets unsolicited. NetCo deals with this case by keep-
ing the unique packet in the buffer for some time, and
eventually deleting it (it is not sent out).

2) Packet received on one ingress port multiple times:
This is the case, for example, if a router aims to
launch a denial-of-service attack, striving to overwhelm
a network component. As descriped in the above case,
packets only arriving on one ingress port will not travel
past the compare. Moreover, in the case of a denial-of-
service attack, the compare may advice the correspond-
ing switch to block the appropriate port for some time.

3) Packets are not received on a particular ingress port:
If a number of consecutive packets were not received on
a particular ingress port, the compare assumes that the
router connected to that port is unavailable. This raises
an alarm to the network administrator.

Note that our construction should bound the waiting time
for the majority of the packets to arrive, otherwise it is exposed
to denial-of-service attacks. The time a packet should be kept
in the buffer is a function of the latencies of all the connected
devices and the links.



We conclude by noting that our prototype implementation is
based on OpenFlow 1.0. The only matched header field is the
MAC destination address, and the only written header field is
the MAC source address.

V. PERFORMANCE EVALUATION

Based on our prototype, we conducted a first study of the
achievable performance of NetCo.

A. Evaluation Methodology

We evaluate the performance of our NetCo prototype
through a series of different scenarios. In particular, we are
interested in the tradeoff between performance and security.
On one end of the spectrum, we consider a completely insecure
network (called Linespeed) without robust combiner, which
however also avoids the overheads introduced by the combiner.
We then consider a weak, k = 3-parallel combiner (tolerating
a single malicious switch) and a strong, k = 5-parallel
combiner (tolerating two malicious switches); the former is
called Central3, the latter Central5. For comparison, we com-
pare the performance of our C-based compare to a compare
implemented as a POX controller application POX. Finally,
to study the impact of combining, we also consider reduced
robust combiner designs where packets are only split, but not
properly combined (Dup3 for k = 3 and Dup5 for k = 5).
All scenarios are derived from Figure 3. In summary:

1) Linespeed: The simplest abstraction of our testing
topology features only h1, s1, r3, s2 and h2. A bench-
mark for the ideal performance, which informs our
expectations.

2) Central3: The full prototype implementation described
in Figure 3, featuring k = 3 test routers.

3) Central5: The full prototype implementation described
in Figure 3, featuring k = 5 test routers.

4) POX3: A reference implementation of NetCo as a SDN
application running on the POX controller instead of h3
and testing three routers.

5) Dup3: Nodes s1 and s2 act as hubs, duplicate packets
are not removed. Three test routers are put in a parallel
circuit.

6) Dup5: Nodes s1 and s2 act as hubs, duplicate packets
are not removed. Five test routers are put in a parallel
circuit.

Our measurements are obtained using iperf. For the first 10
measurements, h1 acts as client and h2 as the server. These
roles are reversed in the following 10 test runs. Each test
run lasts 10 seconds. We usually present the average over 10
test runs for each scenario, when setting the iperf -u flag and
adjusting the -b flag value until a maximum is reached.

B. Results

Let us first give an overview of the plots and then discuss
the observed results in detail. The TCP throughput for the
six scenarios is shown in Figure 4. The maximum UDP
throughput for loss rates below 0.5% is depicted in Figure 5.
For our reference scenario Central3, we explore the connection
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between UDP throughput and loss rate. Figure 6 shows this
relationship. Figure 7 shows the results of pings between h1
and h2. Each bar represents the average of three sequences
of 50 consecutive ICMP request response cycles. Table I
provides an overview of the averages measured for each
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Fig. 6. Correlation of throughput and loss rate, in Central3 scenario.

scenario. Finally, we also examine the jitter each scenario
exhibits for varying UDP packet sizes. Figure 8 shows the
corresponding results, each bar representing the average of
five measurements.

TABLE I
AVERAGE MEASUREMENT RESULTS

Linespeed Dup3 Dup5 Central3 Central5
avg tcp bandwidth 474 122 72 145 78in Mbits/s
avg udp bandwidth 278 266 149 245 156in Mbits/s

avg RTT in ms 0.181 0.189 0.26 0.319 0.415

A first general observation we can make is that security
comes at a price: Compared to the Linespeed scenario, the
robust combiner scenarios show lower performance indicators.
Both the Round-Trip-Time (RTT) increases and TCP as well as
UDP throughput decreases, when moving from the Linespeed
scenario to k = 3, and from k = 3 to k = 5. Therefore, the
security benefits must be weighted against their performance
implications. In the following, we offer some insights into this
performance tradeoff.

Figure 4, 5 and 7 confirm our expectation, that the more
untrusted routers NetCo contains, the lower the bandwidth and
the higher the different RTT stats become: More packets are
in flight in Dup5 and Central5 than in Dup3 and Central3;
thus packets spend more time buffered on exiting the NetCo
design and the destination host. We however also observe
that removing the duplicate packets (by combining) increases
the throughput visibly. Combining also improves latency: the
benefit we gain from lower buffering times at the destination

Linespeed Dup3 Dup5 Central3 Central5

Scenarios

rt
t [

m
s]

0.
0

0.
5

1.
0

1.
5 min

avg
max
mdev

Fig. 7. Ping round-trip-time for five different scenarios.

Linespeed Dup3 Dup5 Central3 Central5

Scenarios

Ji
tte

r 
[m

s]

0.
00

0.
02

0.
04

0.
06

0.
08

200 Byte
1000 Byte
1400 Byte

Fig. 8. Jitter for varying packet sizes.

host seems to outweigh the transmission delay added by the
extra link and the processing delay added by the compare.

When comparing Figure 4 and Figure 5, we notice that
the test scenarios better approximate the benchmark scenario
Linespeed when packets are exchanged using connectionless
UDP. We attribute this to TCP’s congestion control mech-
anism: Packet loss triggers slow start, thus the more often



packets are lost, the slower the connection becomes. In the
UDP based tests we actively kept the loss rate low for all
scenarios. This leads to a lower throughput in the Linespeed
scenario, but to a higher throughput over all testing scenarios:
the impact of a packet loss on the sending rate is not as severe.

We learn from Figure 8 that bigger packets lead to lower
jitter. NetCo meets that expectation. A flow of many small
packets fill up the packet cache of the compare more quickly
than a flow of fewer, but larger packets. Once the packet
cache is full, a clean up procedure starts, and we see that
the more frequently the cache is cleaned up, the higher the
jitter becomes.

Lastly the comparatively poor performance of the POX3
scenario can be explained by two key factors: (1) The choice
of programming language: precompiled C code is generally
executed much faster than interpreted Python (the language
the POX controller is written in). (2) The controller delay,
as piping every packet through the controller adds significant
processing delay compared to a direct Ethernet socket on the
wire.

VI. CASE STUDY: DATACENTER ROUTTING ATTACK

As a case study for the robustness of NetCo, let us consider
a specific attack. In particular, we revisit the threat model
introduced in Section II, where a malicious router, located at
an aggregation switch in a Clos datacenter, mirrors and drops
packets.

In order to emulate such an attack, we set up the Mininet
network with routing based on MAC destination addresses.
We use ICMP echo requests and responses as test packets that
traverse the path indicated as tunnel 2: An echo request sent
from vm1 to fw1 travels over an edge switch, an aggregation
switch and another edge switch, until reaching its destination.
The response takes the same path in reverse. We call this
path the benign path. Ten ICMP request response cycles were
initiated in each of the following scenarios.

In a baseline scenario, all switches are benign. We observe
at vm1 that all ICMP echo requests are received and answered
correctly. Furthermore, we use two screening methods in par-
allel to ensure, that packets do not stray from the benign path:
Using tcpdump to monitor packet arrivals on all interfaces
adjacent to the benign path, as well as by monitoring the flow
table counters of all switches. We verify that our test packets
travelled the above mentioned benign path and no copies are
received on any other node. Thus we witness 10 perfect cycles.

In a second scenario, to simulate malicious behaviour, we
extend the flow rules in the following way: The aggregation
switch now mirrors packets intended to reach fw1 to a core
switch (following the red path in Figure reffig:scenarios). Also
all packets matching vm1’s destination MAC address are to
be dropped. After starting the ICMP requests in this scenario,
we verify that the mirrored requests arrive at the core switch.
From here, the copies are forwarded to fw1. Firewall fw1
then sends two responses (one to the benign request and one
for the mirrored copy), both of which are dropped at the
aggregation switch. We did not record any other stray packets.

Fig. 9. Illustration of the virtualized NetCo. The robust combiner is emulated
only: leveraging SDN traffic engineering flexibilities or tunneling to steer
flows through a heterogeneous set of devices (e.g., one vendor in black, the
other one in grey), the compare is implemented inband.

To summarize: After 10 requests sent, we witness 20 requests
arriving at fw1 and 0 responses arriving at vm1.

In a third scenario, the malicious aggregation switch is
placed in NetCo along with two benign switches. Repeating
the ICMP echo test, we did not see any packet stray from the
benign path. The most interesting node to monitor, however
was the server running the compare. Indeed, we saw the
mirrored packets arriving, yet none of them left the compare:
As all of them were received from only one of the three
candidates, they could never win the majority decision and
were subsequently dropped. We also noticed, that only two
copies of each response reached the compare. However since
two out of three constitutes a majority, one copy of each
response was released by the compare and forwarded to vm1.
Thus all 10 request response cycles completed successfully.

VII. THE VIRTUALIZED NETCO

A main disadvantage of the NetCo approach described so
far is the need for physical redundancy, which can entail
costly infrastructure investments. However, we argue that
such investments can sometimes be avoided, by virtualizing
the NetCo concept. While the fundamental idea underlying
NetCo is to use redundancy to detect and prevent attacks,
we observe that such redundancy is often readily available or
can be introduced using the natural life cycles of the network
components.

Virtualizing here means that the redundant links used in
the NetCo architecture do not necessarily have to be physical
ones, but could be virtual and constitute paths: splitting a
flow into two (for detection) or three (for prevention) copies
along different segments of the path, using tunneling, has a
similar effect as in the physical robust combiner approach:
the resulting hardware diversity allows us to make majority
decisions and filter out undesired behavior. Figure 9 illustrates
the idea of the virtualized NetCo.

We believe that Software-Defined Networks (SDNs) provide
an ideal environment to implement such virtualized combiners.
due to their traffic engineering flexibilities, i.e., in terms of



how flows can be defined and steered through the network:
the match-action rules on an OpenFlow switch enable a
forwarding and routing logic which can depend on layer-2,
layer-3 and layer-4 header fields (and sometimes beyond), and
which is not limited to shortest paths.

VIII. RELATED WORK

Interestingly, while over the last years, much research was
conducted on how to secure routing protocols on the control
plane [11], [12], [13], [14], [15], providing authenticity and
correctness of topology propagation and route computation,
the important question of how to secure the data plane has
received much less attention so far. In fact, until very recently,
researchers did not even know whether it was possible to
build a secure path verification mechanism [16]. Many existing
systems like VeriFlow [17], Anteater [18] and Header Space
Analysis [19] rely either on flow rules installed at routers or on
data plane configuration information to perform their analysis.
This information can easily be manipulated in malicious
settings. While first interesting and more specific solutions
like ICING [16] or Stealth Probing [20] as well as first secure
variants of classic tools such as traceroute [21] are emerging,
providing fundamental properties like path consent and path
compliance [16], but they are usually based on expensive
cryptographic techniques.

SDNs are known to introduce many flexibilities, also in
terms of security. For instance, Yu et al. [22] presented a dis-
tributed traffic monitoring scheme for SDNs, and FleXam [23]
is a sampling extension for monitoring and security appli-
cations in OpenFlow. NetSight [24] leverages SDN to trace
entire packet histories (without sampling), by collecting them
“out-of-band”, and CherryPick [25] uses packets to carry
information of SDN paths “inband” (namely of a subset of
links along the packet trajectory), however, these protocols
are not robust to malicious routers. Bates et al. [26] use SDN
networks (plus some middleboxes) to observe the data plane
behavior, even in the presence of malicious routers. The traffic
engineering flexibilities of SDN have also been exploited to
perform secret sharing [27].

Our approach is inspired by the concept of robust combiners
known from crypto literature [9], [10]. However, except for a
recent parallel work by Achenbach et al. [28] in the context of
firewalls, we are not aware of any applications of the robust
combiner in the network domain.

IX. CONCLUSION

This paper is motivated by the observation that networks
today on the one hand constitute a critical infrastructure, and
on the other hand are vulnerable to an increasing number
of attacks, including hardware backdoors in the routers. We
have have argued that by leveraging diversity, in terms of
vendors or countries where routers have been manufactured,
an opportunity arises to deal with this seemingly inherent
problem.

We understand our work as a first step, and believe that our
model opens an interesting research area. In particular, the

prototype we described in this paper obviously represents a
very early stage of NetCo, and more extensive evaluations are
necessary to optimize future implementations in terms of jitter,
throughput and RTT characteristics. We also need to explore
alternative architectures, which, e.g., implement the compare
function inband, as a middlebox or NFV function. Moreover,
we note that for detection and depending on the threat vector,
the compare element does not necessarily have to be located
in the data plane. An efficient alternative could be to reduce
load on the compare using sampling: a simple logic in the data
plane forwards a random subset of packets to a more thorough
out-of-band compare logic. We also need to explore further the
minimal requirements on the hub and compare functionality,
such that true performance isolation properties are guaranteed
under different attack patterns. Also, while we have so far
focused on building a secure router out of insecure OpenFlow
switches, we believe that our approach can easily be extended
to legacy routers.

More generally, we believe that the main principle under-
lying NetCo, namely that of leveraging heterogeneity, is of
broad interest and can find applications in many other domains.
For example, for cost and performance reasons, our robust
combiner approach could be used only in specific parts of
the network where security is particularly critical or where
other approaches fail (e.g., at the edge of the datacenter).
The robust combiner concept could also implemented on a
more coarse-granular level: for instance, a security critical
transport network could be duplicated entirely, splitting and
combining traffic only at the ingress and outgress, respectively.
Moreover, we in this paper have started investigating the
possibility to implement a robust combiner logically, without
the need to invest into additional hardware. The opportunities
and limitations of such alternative architectures need to be
explored in future research.

We will release the code of our NetCo prototype to the
community together with this paper.

ACKNOWLEDGMENTS

Research supported by the German Federal Office for In-
formation Security (BSI).

REFERENCES

[1] “The tale of one thousand and one dsl modems,”
https://securelist.com/analysis/publications/57776/
the-tale-of-one-thousand-and-one-dsl-modems/, 2012.

[2] “Synful knock - a cisco router implant - part i,” https://www.fireeye.
com/blog/threat-research/2015/09/synful knock - acis.html, 2015.

[3] F. Lindner, “Cisco ios router exploitation,” Black Hat USA, 2009.
[4] S. Lee, T. Wong, and H. S. Kim, “Secure split assignment trajectory

sampling: A malicious router detection system,” in Proc. International
Conference on Dependable Systems and Networks (DSN), 2006, pp.
333–342.

[5] “Huawei hg8245 backdoor and remote access,” http://websec.ca/
advisories/view/Huawei-web-backdoor-and-remote-access, 2013.

[6] “Netis routers leave wide open backdoor,” http:
//blog.trendmicro.com/trendlabs-security-intelligence/
netis-routers-leave-wide-open-backdoor/, 2014.

[7] “Snowden: The NSA planted backdoors in cisco products,”
http://www.infoworld.com/article/2608141/internet-privacy/
snowden--the-nsa-planted\\-backdoors-in-cisco-products.html, 2014.



[8] G. Kurtz, “Operation aurora hit google,” in http:// securityinnovator:
com/ index:php?articleID=42948&sectionID=25, 2010.

[9] A. Herzberg, “Tolerant combiners: Resilient cryptographic design,”
Cryptology ePrint Archive, Report 2002/135, Tech. Rep., 2002.

[10] D. Harnik, J. Kilian, M. Naor, O. Reingold, and A. Rosen, “On robust
combiners for oblivious transfer and other primitives,” in Advances in
Cryptology (EUROCRYPT), ser. Lecture Notes in Computer Science,
R. Cramer, Ed., 2005, vol. 3494.

[11] W. Aiello, J. Ioannidis, and P. McDaniel, “Origin authentication in
interdomain routing,” in Proc. 10th ACM Conference on Computer and
Communications Security (CCS), 2003, pp. 165–178.

[12] K. Butler, T. Farley, P. McDaniel, and J. Rexford, “A survey of bgp
security issues and solutions,” Proceedings of the IEEE, vol. 98, no. 1,
pp. 100–122, 2010.

[13] Y.-C. Hu and A. Perrig, “A survey of secure wireless ad hoc routing,”
IEEE Security and Privacy, vol. 2, no. 3, pp. 28–39, May 2004.

[14] S. Kent, C. Lynn, and K. Seo, “Secure border gateway protocol (s-bgp),”
IEEE J.Sel. A. Commun., vol. 18, no. 4, pp. 582–592, Sep. 2006.

[15] L. Subramanian, “Decentralized security mechanisms for routing proto-
cols,” Ph.D. dissertation, 2005.

[16] J. Naous, M. Walfish, A. Nicolosi, D. Mazières, M. Miller, and
A. Seehra, “Verifying and enforcing network paths with icing,” in Proc.
ACM CoNEXT, 2011, pp. 30:1–30:12.

[17] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey, “Veriflow:
Verifying network-wide invariants in real time,” in Proc. 10th USENIX
NSDI, 2013.

[18] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey, and
S. T. King, “Debugging the data plane with anteater,” in Proc. ACM
SIGCOMM, 2011, pp. 290–301.

[19] P. Kazemian, G. Varghese, and N. McKeown, “Header space analysis:
Static checking for networks,” in Proc. 9th USENIX NSDI, 2012.

[20] I. Avramopoulos and J. Rexford, “Stealth probing: Efficient data-plane
security for ip routing,” in Proc. USENIX Annual Technical Conference
(ATEC), 2006.

[21] G. Mathur, V. N. Padmanabhan, and D. R. Simon, “Securing routing in
open networks using secure traceroute,” Microsoft Research, Tech. Rep.
MSR-TR-2004-66, July 2004.

[22] Y. Yu, C. Qian, and X. Li, “Distributed and collaborative traffic moni-
toring in software defined networks,” in Proc. ACM HotSDN, 2014, pp.
85–90.

[23] S. Shirali-Shahreza and Y. Ganjali, “Flexam: Flexible sampling exten-
sion for monitoring and security applications in openflow,” in Proc. ACM
HotSDN, 2013, pp. 167–168.

[24] N. Handigol, B. Heller, V. Jeyakumar, D. Mazières, and N. McKeown,
“I know what your packet did last hop: Using packet histories to
troubleshoot networks,” in Proc. 11th USENIX Conference on Networked
Systems Design and Implementation (NSDI), 2014, pp. 71–85.

[25] P. Tammana, R. Agarwal, and M. Lee, “Cherrypick: Tracing packet tra-
jectory in software-defined datacenter networks,” in Proc. 1st ACM SIG-
COMM Symposium on Software Defined Networking Research (SOSR),
2015, pp. 23:1–23:7.

[26] A. Bates, K. Butler, A. Haeberlen, M. Sherr, and W. Zhou, “Let SDN
be your eyes: Secure forensics in data center networks,” in Proc. NDSS
Workshop on Security of Emerging Network Technologies (SENT’14),
Feb. 2014.

[27] S. Dolev and S. Tzur-David, “Sdn-based private interconnection,” in
Proc. ACM PODC Workshop on Distributed Software-Defined Networks
(DSDN), 2014.

[28] D. Achenbach, J. Müller-Quade, and J. Rill, Proc. BalkanCryptSec,
2015, ch. Universally Composable Firewall Architectures Using Trusted
Hardware, pp. 57–74.


