
PRI: Privacy Preserving Inspection of Encrypted Network Traffic

Liron Schiff1 Stefan Schmid2
1 Tel Aviv University, Israel 2 Aalborg University, Denmark

Abstract—Traffic inspection is a fundamental building block
of many security solutions today. For example, to prevent the
leakage or exfiltration of confidential insider information, as
well as to block malicious traffic from entering the network,
most enterprises today operate intrusion detection and pre-
vention systems that inspect traffic. However, the state-of-the-
art inspection systems do not reflect well the interests of the
different involved autonomous roles. For example, employees
in an enterprise, or a company outsourcing its network man-
agement to a specialized third party, may require that their
traffic remains confidential, even from the system administrator.
Moreover, the rules used by the intrusion detection system,
or more generally the configuration of an online or offline
anomaly detection engine, may be provided by a third party,
e.g., a security research firm, and can hence constitute a critical
business asset which should be kept confidential. Today, it is
often believed that accounting for these additional requirements
is impossible, as they contradict efficiency and effectiveness.
We in this paper explore a novel approach, called Privacy
Preserving Inspection (PRI), which provides a solution to
this problem, by preserving privacy of traffic inspection and
confidentiality of inspection rules and configurations, and e.g.,
also supports the flexible installation of additional Data Leak
Prevention (DLP) rules specific to the company.

I. INTRODUCTION

The Internet has become a critical and indispensable
infrastructure for many organizations. At the same time, the
Internet constitutes a security threat. For example, web-based
services, such as email, are indispensable for communicating
with others either within or outside of an organization, but
introduce the risk of data exfiltration.

Intrusion Detection Systems (IDS) as well as Intrusion
Prevention Systems (IPS) are frequently used today to defend
networks (or specific servers) from cyber attacks [21], [27]. In
particular, such systems can prevent exfiltration of confiden-
tial insider information by blocking accidental or intentional
leakage, e.g., by searching for document confidentiality
watermarks in the data transferred out of an enterprise
network. Such systems are also vital to control inbound
traffic, and e.g., to detect if packets from a compromised
sender contain an attack, employ parental filtering to prevent
children from accessing adult material, etc. [25] Indeed,
many cyber attacks today are carried out remotely, exploiting
vulnerabilities in network components or applications, or
tempting naive users to download malware and install them
on their PCs.

To provide such functionality, these systems rely on traffic
inspection: they allow the definition of configuration rules

which define known attack patterns, indicators for attacks, or
traffic anomalies, and which are matched against the packet
header and payload. If rules are matched, alerts are generated,
and/or, in case of prevention systems or firewalls, packets are
dropped. The corresponding rules can either be distributed by
a local support team, by a third party (for instance a security
research firm), by the network operator, or a combination
thereof: third party provided rules can be complemented with
organization-specific asset leakage indicators, coming from
Data Leakage Prevention (DLP) systems.

While today’s intrusion detection and prevention systems
typically perform well for unencrypted traffic, they struggle
with encrypted traffic, resulting in false negatives or poor
performance. As a workaround, in practice today, the secure
and encrypted channel from or to the Internet is often
terminated at a proxy, which essentially mounts some kind
of “man-in-the-middle-attack”. While this solution ensures
an effective detection and prevention, it comes at the price
that the privacy of user traffic (e.g., emails) is undermined.
In fact, even in the case where communication was already
unencrypted anyway, performing deep packet inspection (not
for the purpose of forwarding) can be seen as privacy
violation. Indeed, users and clients have criticized this
approach and expressed worry, e.g., that the private logged
data is given to marketers [25], [29], [31].

Privacy-preserving intrusion detection may not only be
desirable and relevant in the context of enterprise networks,
but is also gaining in importance in the light of today’s trend
to outsource the network management, including security
aspects, to third parties [24]. For example, the management of
third-party networks can be a lucrative business for Internet
Service Providers (ISPs). At the same time, for customers
running security critical businesses (for example banks), it
is important that the privacy of traffic be preserved.

We in this paper however observe another confidentiality
issue of today’s solutions: it concerns the confidentiality of
the inspection logic itself. For example, the development
and maintenance of effective intrusion detection rules is
challenging, and especially small enterprises do not have
the expertise and time to define the most effective rules
and constantly follow the news. This constitutes a business
opportunity for third parties: a company specialized into
security research can take over the responsibility to define
and maintain a good rule set. However, such a business
model also introduces new requirements. In particular, a
third party company may not be willing to share its rules,



or more generally configurations of (online or offline)
anomaly detection systems, with the customer: these rules and
configurations are an intellectual property which constitute
an essential asset of the business model.

At first sight, it may appear that the requirements are
contradicting: First, it seems unavoidable that an intrusion
detection or prevention system, which for efficiency and
effectiveness reasons needs to inspect the traffic in an
unencrypted form, may leak information about the user
traffic. Second, it also seems unavoidable that a system
administrator operating a system based on the rules of a
third party company, can see the rules.

A. Contribution

We identify the different autonomous roles involved
in a traffic inspection system, including intrusion detec-
tion/prevention systems, but also more sophisticated online or
offline anomaly detection systems as they may for example
be required to deal with insider threats. We then explore the
feasibility of providing a system which meets these require-
ments, respecting the autonomy of the different involved
stakeholders, without introducing new threats coming, e.g.,
from insiders.

In particular, we present a Privacy-Preserving Intrusion
detection/prevention system, short PRI (fruit in Hebrew),
which decouples the different roles, and hence significantly
reduces the required trust assumptions. PRI leverages the
hardware protection of architectures like Intel SGX [30] to
defend against insiders or system administrators aiming to
break the confidentiality. A distinguishing feature of PRI is
the simple and cheap deployment: a single trusted hardware
component is sufficient. On the user side, only a simple
software update is required.

B. Paper Organization

The remainder of this paper is organized as follows. In
Section II, we present a model which identifies the different
roles/stakeholders and the resulting requirements for the
traffic inspection system. After providing the necessary back-
ground (Section III), based on these requirements, Section IV
describes our proposed architecture PRI which meets these
requirements. We discuss use cases in Section V and review
related work in Section VI, and we conclude our contribution
in Section VII. A small demo of our system is available online
at https://www.youtube.com/watch?v=b54unY8iGs0.

II. ROLES AND REQUIREMENTS

In the following, we first present the different roles and
discuss their objectives. Based on this model, we then derive
security goals. Note that for ease of presentation, in the
following, we will mostly focus on intrusion detection. How-
ever, our approach can easily be generalized to prevention
or configuration-based systems, as we will elaborate more
later in this paper.

We in this paper distinguish between the following roles:
• The administrators: The administrators are responsible

for ensuring the availability and security of the network.
In particular, they want to prevent the leakage of
sensitive insider information, and also prevent malicious
traffic entering the network from the outside. Besides
relying on up-to-date security rules possibly provided
by an external company, administrators may also want
to be able to add their own Data Leak Prevention (DLP)
rules, specific to their organization.

• The users: The term user will generally refer to the
communication endpoints. In particular, we will usually
assume that one endpoint is inside an enterprise (an
insider) while the other is outside (an outsider); however,
also traffic between two insiders can be subject to
inspection. We assume that while users profit from
a secure environment and the detection of undesired
inbound and outbound traffic, they also desire a high
communication performance as well as confidentiality
of their traffic.

• The rules (configuration) provider: The rules for
the intrusion detection system (or more generally the
configurations for a traffic inspection system based on
some open-source logic/engine) may be provided by an
external security company specialized into developing
and maintaining high-quality rules. The rules provider
may desire that its rules remain confidential.

Given our roles and their objectives, we identify the
following requirements:

R1 Efficient and effective inspection: The inspection
system must ensure to the administrators that relevant
events and attacks will be detected successfully and
fast.

R2 Privacy-preserving traffic inspection: We want to en-
sure to the users that neither the network administrator
nor the rule/configuration provider should be able to
see the traffic.

R3 Confidentiality of rules: We want to ensure that the
rules are kept confidential and are not leaked to the
other roles.

This paper is motivated by the question whether it is
possible to design an architecture which meets the different
goals of the different roles, maintaining their autonomy.
Indeed, designing such a system seems challenging:

• Today’s proxy solutions do not meet the requirements
R2 and R3: a proxy server can be exploited by the
administrators to learn about the unencrypted traffic.
Rather, we want to develop a solution which does not
allow the administrators to configure the inspection
system in a way that allows them to learn details about
the traffic which are not security relevant.

• Networks usually operate at very high rates: cryp-
tographic schemes based on fully homomorphic or

https://www.youtube.com/watch?v=b54unY8iGs0


functional encryption [9], [11], [13] are slow and can de-
crease network rates by many orders of magnitude [12],
violating requirement R1.

At a first glance, the requirements seem to contradict: a
system may hardly be able to efficiently and effectively
inspect traffic without introducing opportunities to the
administrator to see the traffic and used rules. However,
as we will see in the following, there do exist solutions to
satisfy these seemingly conflicting properties.

III. BACKGROUND

Before presenting our solution, we provide some back-
ground which is necessary to undertand our solution. In
particular, we revisit IDS systems and give an introduction
to SGX.

A. Traffic Inspection Systems

Almost all cyber security breaches involve transmissions
of traffic over a network. The standard approach to secure
transmissions is to inspect traffic, checking whether the traffic
carries the attack (e.g., a malware) or its outcome (e.g., a
stolen digital asset). For this purpose, organizations deploy
packet inspection systems in their networks, configuring
them with known attack indicators, in the case of Intrusion
Detection/Prevention Systems (IDS/IPS), and with (possibly
organization-specific) asset leakage indicators in the case of
Data Leakage Prevention (DLP) systems.

All inspection systems essentially search for the configured
indicators inside the traffic, where indicators can be based on
exact match strings, regular expressions, statistical properties,
and more. Inspection of traffic in these systems usually
includes the inspection of the packet payload, i.e., accessing
the application layer data.

A simpler type of inspection that considers only the
packet headers (up to the transport layer) is often performed
by firewalls. A firewall is a network security system that
monitors and controls the incoming and outgoing network
traffic and may also include IDS/IPS capabilities. Firewalls
can be considered as a barrier between a trusted, secure
internal network and another outside network, such as the
Internet, thereby mitigating attacks in the early stage of
penetration. Firewalls can also be host based, operating on
and defending a single machine.

Inspection systems are also used to detect insider
threats [7], for example by analyzing confidential documents
in private communications, possibly enhanced with water-
marking techniques [26].

Web security today is usually realized with HTTPS, which
relies on the Transport Layer Security (TLS) a.k.a. Secure
Sockets Layer (SSL) protocol. TLS/SSL provides confiden-
tiality, integrity and authentication of data in transit. The
protocol offers encryption, hash functions or message digests,
and digital signatures.

Encrypted traffic constitutes a great challenge to packet
inspection systems as it hides the payload content from
anyone but the session endpoints. There are two common
solutions to this challenge. The first is to extend host based
firewalls to gain access to the data before being encrypted:
this can be implemented through integration with the host
operating system. We will refer to this solution as the client-
side firewall approach. The second solution, usually deployed
by large firms, is to operate a middlebox that serves as a
proxy between any internal user PC and any external web
server. The implementation of such a solution requires to
configure (trick) the user PCs to identify the proxy as the
server and establish an encrypted session with it rather than
with the server.

However, both the distributed firewall as well as the proxy
architecture expose the user data to 3rd parties, namely
the firewall producer, the proxy vendor or the network
operator, possibly violating the user privacy. In addition,
the inspection rules, which are the intellectual property of
security researchers or firms, might be extracted at the host
or the proxy, undermining their effectiveness and profit.

B. SGX

Intel Software Guard Extensions (Intel SGX) [8], [15], [17],
[30] are new CPU instructions which allow applications to
manage private regions of code and data. That is, using SGX,
an application can run in a protected environment, the so-
called enclave, secure from malware or the inspection by the
computer administrators.

There is no need to encrypt the protected portion of an
application for distribution. Before the enclave is built, the
enclave code and data is free for inspection and analysis.
When the protected portion is loaded into an enclave, its code
and data is measured. An application can prove its identity
to a remote party and be securely provisioned with keys and
credentials. The application can also request an enclave and
platform specific key that it can use to protect keys and data
that it wishes to store outside the enclave. In addition to the
security properties, the enclave environment offers scalability
and performance associated with the execution on the main
CPU of an open platform.

IV. PRIVACY PRESERVING INSPECTION

This section shows that the design goals and requirements
derived above can actually be met, assuming the availability
of a trusted hardware. In particular, this section presents our
Privacy Preserving Inspection architecture, short PRI. PRI
allows the inspection, and if considered harmful, possibly
prevention, of encrypted traffic while guaranteeing that no
information about the traffic is leaked from the inspecting
device, and that inspection rules are not revealed to the
operator of the device nor the traffic generator.

In a nutshell, the idea underlying PRI is to decouple
and separate the different roles (e.g., users, administrators,



Figure 1. Setup of the PRI system components. The PRI process is
configured to inspect user traffic according to security rules inserted by the
policy issuer. The process is secured and ensures confidentiality of traffic
and rules. Keys and rules are stored safely in the PRI storage.

security company) by defining an interface between them and
supporting verification. In order to achieve this deoupling,
PRI relies on a single device (such as Intel SGX or ARM
TEE) which decrypts traffic from the users, applies the desired
security rules, and when needed raises alerts or drops the
traffic, without leaking information about the user traffic
nor the applied rules, to the roles which are not allowed to
have this information. Interestingly, a single trusted box is
sufficient for PRI: no hardware modifications are required
on the user side. Moreover, an important aspect of PRI is
that the user side agent and the enclaved system can be
open-source: thus, the users and the research community
can and should verify its privacy preserving property. The
attestation allows the agent to verify that it communicating
with the verified system code.

A. Setting Up PRI

Let us first discuss the setup of PRI (cf Figure 1). We
describe it for the enterprise intrusion detection scenario, but
it is easy to adapt it to ISP outsourcing scenarios. The PRI
system consists of the user’s communication device, e.g., a
personal computer (PC) (or smartphone, laptop, etc.) and the
PRI server which need to be set up as follows. On the user
side, we simply need to install a PRI agent at the encryption
layer of the OS or specific application (e.g., web browser).
The PRI agent is configured with a user key, kU , which is
securely transmitted (through attestation) to the enclaved PRI
system. In addition the agent is installed in a way that allow
it to gain the key, kS , of every encrypted session S, that
uses the encryption layer enabling it to securely send it to
the PRI system.

The setup also involves configuring the PRI server with
the rules (also called the policy) that need to be checked
against the traffic. Rules can be configured by multiple policy
issuers, each of them can connect securely to the PRI process,
validating its secure execution (attestation) and sending the
rules. As a result, the PRI process stores the rules in the
secured storage, to be used when a user traffic needs to be
inspected.

Figure 2. The PRI system inpects user session using the key sent by the
agent. Matches are saved in a secured storage and alerts are sent to the
corporate SIM server about detected anomalies.

B. Operating PRI

Once the system has been set up, the registered users’
traffic can be inspected. Inspection is carried in the following
steps, see also Figure 2.:

1) An encrypted session is established between the appli-
cations of the user PC and an external (unregistered)
or internal PC.

2) The user PC connects to the PRI process (at the PRI
server), and sends to it the session key encripted by
the shared user key, i.e., [kS ]kU

.
3) The session traffic is duplicated and processed by the

PRI process.
4) The session traffic is decrypted, using the session key.
5) The session data (clear text) is inspected with the rules

configured in the system.
6) In case part of the data matches a rule, this part is

securely stored in the PRI storage and an alert (con-
taining the rule identifier) is reported the corporate
Security Information Management (SIM) server.

Note that in case of misconfiguration, or malicious activity
in the user PC that results in decryption failure at the PRI
system, a special alert is reported.

There exists another more subtle threat for the confiden-
tiality of the traffic: even if the traffic cannot be inspected,
the reported matches over traffic leak information. In order
to prevent an attacker from abusing the security rules to learn
about private user data (e.g., matching every possible byte
or word), the PRI system allows each user to request the
parts of his or her traffic which have been matched by the
inspecting device, and thus to learn about and detect the use
of abnormal matching rules. To ensure this, our system uses a
special viewer application which connects to the PRI process,
authenticates as the user and issues the request. As a result,
the PRI process retrieves the user’s matches from the secured
storage and sends them to the viewer app (cf Figure 3.).

In addition, the PRI system can securely inspect static (e.g.,
likelihood of match for common words) and dynamic (e.g.,



Figure 3. The PRI system includes a special viewer app which allows
users to verify that matching rules are not abused to violate confidentiality
of their traffic.

average number of hits per traffic byte) properties of the
rules, thereby detecting abnormal rule sets. Also note that
inferring traffic content from matches is practically difficult
in the prevention operation mode of the PRI system, since
the user session is automatically dropped as a response to
the first match.

The PRI system not only supports intrusion detection but
also intrusion prevention, see Figure 4: The main difference
from detection, is that for prevention, the outcome of the
inspection determines whether the session traffic is forwarded
through the PRI system, or dropped (in case of a match).

C. A Note on Implementation

We started experimenting with an emulated software
version of the SGX framework. However, as the market
introduction of the actual secure hardware is delayed, our
prototype is simple and still contains untrusted parts. Nev-
ertheless, in the following, we report on some preliminary
insights.

On the user side, we need to extract encrypted session keys
and securely transfer them to the PRI server. This can be
performed in multiple ways. For example, at the application
level, applications can report their session keys (as browsers
support [30]) and a PRI agent then sends them to the PRI
server. Alternatively, applications can be extended (e.g., using
a browser plugin) to directly send their key to the PRI server.
A third approach is to modify encryption services offered
by the operating system, to send the used keys to the PRI
server.

On the server side, an inspection program needs to be
executed in an enclaved environment, using the reported
user session keys. We argue that adjusting existing IDS
systems to our needs requires minor code modifications: the
computations can be performed in user mode and the memory
consumption can be optimized, which should make it easy

Figure 4. The PRI system can also be used for prevention, not only
detection. In this case, depending on the result of the inspection, it is
decided whether traffic can be forwarded or should be dropped.

to enclave them. Today there exist several good open-source
IDSs such as Snort [27], Bro [21] and Suricata [28], which
we suggest to employ.

Given a selected existing open-source IDS system, we
propose the following high level design concepts for the
PRI server application: (1) The decryption of traffic can be
handled by a new enclaved module that pushes the plain text
outcome to the enclaved and modified IDS system. (2) The
enclaved IDS system is reduced to only handle protocols
that are known to be encrypted (e.g., HTML), or to inspect
rules that need to be hidden, thereby reducing the memory
footprint which is limited in the enclaved environment. (3) In
parallel to the enclaved IDS, a standard (not enclaved) IDS
is operated for non-encrypted traffic and with open-source
rules, utilizing the standard less restricted environment.

In our prototype, we attend to the problem of human
based data leakage, and focus on the decryption of common
webmail services. We noticed that this traffic is mainly
composed of (encrypted) HTTP/2 [4] traffic which uses
HPACK compression. This protocol is not supported by the
IDSs we examined, and therefore requires special adapters.

In general, the code of both the client and server side
of the PRI system should be fully open, allowing the
research community to examine them and verify their privacy
preservation properties. Combining the verification of the
code with the attestation of the server by the client constitutes
the basis of the system trust.

V. USE CASES

We believe that the ideas underlying PRI can be interesting
in several contexts and beyond the standard enterprise
network security scenario we discussed in this paper so
far. In the following, three examples are discussed in more
detail. A comparison is given in Table I.

A. Enterprise Security and Insider Threats

Email and cloud services (e.g., Google Docs, storage, etc.)
are indispensable but introduce a risk for many organizations



Use Case
Enterprise Security and Insiders Outsourced Security Anti-Terror Intelligence

Entities
Clients employees enterprise civilians / web hosts

PRI Operators admins external ISPs
Rule Providers admins + external external governments

Table I
COMPARISON OF PRI USE CASES.

today. In particular, such services can be used by a malicious
insider to steal intellectual property or sensitive company
information. Indeed, insider attacks pose some unique chal-
lenges for security administrators. In general, it can be
challenging to configure an intrusion detection system and
define a good rule set to detect internal attacks: different users
should have access to and use many different services, servers,
and systems for their work. However, over the last years,
several interesting IDS-based solutions have been developed
to detect insider threats [7], e.g., searching for confidential
documents and watermarks in private communications [26].
Our approach is directly applicable to these systems.

Even in scenarios where IDS-based systems may be
insufficient, PRI can be attractive: PRI is also applicable
in more general security solutions, for example systems
which are based on machine learning or anomaly detection
of online or offline traffic data, and which can consist of an
open-source engine and a possibly confidential configuration.
More concretely, advanced methods to detect insider attacks
usually consider a wider context when processing network
events, therefore requiring to store and query the entire event
history [16], and include machine learning algorithms [5]
(e.g., anomaly detection). Our design can be extended to
support these methods, by utilizing the secure storage to save
the events history and to execute the advanced inspection
as an enclaved process that analyzes the history instead of
the current traffic. In these cases, our extended system also
allows to split the open source inspection engine from the
inspection rules, e.g., the big data queries or the machine
learning parameters and filters, while supporting very general
notions of privacy [20], [18], [19].

B. Network Outsourcing

Another use case arises in the context of network out-
sourcing: We currently witness the trend that enterprises
wish to outsource their cyber security logic or even the entire
network administration to an external company experienced
in this field. Translating this scenario to our framework, the
enterprise (or any of its employees and their PCs) constitutes
the client, executing the PRI agent, and the external company
operates the PRI server, executing the enclaved (and open-
source) PRI software.

C. Anti-Terror Intelligence

An interesting use case also arises in the context of
governments gathering intelligence from their own citizens

in order to fight terror. This use case is highly controversial
today and subject to major ongoing debates [1] , due to the
tradeoff of preserving civil liberties (i.e., the right for privacy)
and the government duty to save lives. With the PRI system,
governments and citizens can decide and control the level
of inspection and privacy infringement applied to the private
data. The anti-terror intelligence use case may require some
adaptations to the model. For example, the PRI system can
be operated by the ISPs that (as part of the PRI software)
can correlate the traffic with client information. The rules are
securely provided by the government, but some aggregated
information on them can be made accessible to the public, or
its representatives. The exact matches of user traffic, cannot
be provided immediately to the user as this might prevent
the authorities to effectively react to threats, therefore the
PRI system may make use of a notification delay which is
defined a priori.

VI. DISCUSSION AND RELATED WORK

In an age where more and more resources and services
are outsourced, there is an increasing need for solutions
preserving critical security aspects. Over the last years,
this problem has been discussed particularly intensively
in the context of cloud computing: Although users of
cloud computing infrastructure may expect their data to
remain confidential, today’s clouds are built using a classical
hierarchical security model that aims only to protect the
privileged code (of the cloud provider) from untrusted
code (the user’s virtual machine), and does nothing to
protect user data from access by privileged code [3]. While
for many large-scale computations today, the use of cloud
computing resources is unavoidable or at least financially
very attractive, users may not be willing to trust their cloud
provider to keep their data confidential. In fact, the cloud
user must trust not only the hardware on which her or
his data is actually analyzed, but in addition also (i) the
provider’s software, including privileged software such as a
hypervisor and firmware but also the provider’s full stack
of management software; (ii) the provider’s staff, including
system administrators but also those with physical access to
hardware such as cleaners and security guards; (iii) the law
enforcement bodies in any jurisdiction where their data may
be replicated, as the Snowden leaks have revealed [3], [10].

Recently, researchers have started investigating whether
similar approaches as proposed for cloud computing may also
be applicable in the context of computer networks, which



Architecture
Proxy Client-Side Firewall BlindBox [25] PRI

Privacy user exposure middlebox no no no (enclaved)
rules exposure middlebox endpoint middlebox no (enclaved)

Effectiveness inspection guarantee yes no no yes
supports rules any any exact match only any

Overhead computation en-&decryption none tokenization & encryption decryption
communication none none a stream of tokens one packet

Table II
COMPARISON OF PERFORMANCE AND SECURITY OF DIFFERENT IDS ARCHITECTURES.

come with rather different requirements. Existing systems
are based on proxies and are vulnerable to a man-in-the-
middle attack on SSL, installing fake certificates at the
middlebox [14], [23]. The middlebox can break the security
of SSL and decrypt the traffic so it can perform the Deep-
Packet Inspection (DPI). The removal of the SSL end-to-
end security, results in a host of issues. Some proposals
allow users to tunnel their traffic to a third party middlebox
provider [22], [24]. But these approaches allow the middlebox
owner to inspect/read all traffic. An alternative today are
distributed firewalls, a client-side approach to implement
intrusion detection/prevention.

A very interesting approach is taken by BlindBox [25]:
unlike PRI, BlindBox performs the deep-packet inspection
directly on the encrypted traffic. In a nutshell, in BlindBox,
the endpoint generates a tokenized version of the traffic
which can be inspected in privacy preserving manner at a
special server. This tokenized traffic is sent in parallel to the
origin, increasing the load in the network. However, BlindBox
requires the user to compute hashes of traffic segments and
to send them to the inspection box, thereby introducing
computational overhead to the user PC, as well as traffic
overhead to the network. Moreover it is dependent on the
cooperation of the user PC to perform its part of the scheme.
In addition, BlindBox only supports exact match rules and
not regular expressions, that are commonly used in security
policies.

We believe that our approach nicely complements these
works, and focuses on a relevant use case, namely traffic
inspection. An SGX approach as recently suggested in the
context of cloud computing, could be used to implement
our secure server, and the decoupling of the various roles
identified in our paper.

Table II summarizes the advantages and disadvantages of
the different architectures: the man-in-the-middle proxy and
the client-side distributed firewalls used today, as well as
BlindBox and PRI. Among these solutions, only BlindBox
and PRI are providing the required privacy guarantees. The
main limitation of BlindBox is arguably its expressive power,
while the main limitation of PRI is its dependency on a SGX
hardware (although a single box is sufficient).

VII. CONCLUSION

This paper studied the classic problem of traffic inspection
from an interesting new, privacy preserving perspective. In
particular, while today it is commonly believed that it is
inevitable that users have to blindly trust the administrator
managing the intrusion detection or prevention system, we
in this paper, have questioned this assumption. In particular,
we have shown that it actually is possible to reduce trust
assumptions in the enterprise network, and presented an in-
trusion detection system which is not only privacy preserving
regarding the user traffic but also regarding the rules used in
the IDS/IPS. Interestingly, the proposed PRI system requires
a single secured server; no modifications of the hardware at
the users is required.

In summary, the PRI system features the following
properties:

1) It decrypts and inspects network traffic in a privacy
preserving manner.

2) It accepts new security rules from administrators and
applies them to the traffic in a secure and privacy-
preserving manner: the inspecting device does not leak
any unnecessary information about the user traffic.

3) It can be configured with new rules from rule providers
in a secure and privacy-preserving manner: the inspect-
ing device does not leak any unnecessary information
about the user traffic.

We believe that the ideas underlying PRI can be used in
several contexts and beyond the use cases discussed in this
paper. In particular, it is not limited to rule-based intrusion
detection systems, but can also be useful in the context of
more sophisticated and offline systems, as they may for
example be required to handle advanced insider threats [2],
[6], [7].

Our approach raises several interesting questions for future
research. Obviously, the performance of our architecture
needs to be evaluated in detail. Moreover, it will be interesting
to explore further the applications of trusted execution
environments in the context of computer networking and
network function virtualization.

We have started implementing a simple test version of
the PRI intrusion detection/prevention system. Due to the
delayed introduction of SGX hardware, the code is still very
simple and contains untrusted parts.



REFERENCES

[1] H. Abelson, R. Anderson, S. M. Bellovin, J. Benaloh, M. Blaze,
W. W. Diffie, J. Gilmore, M. Green, S. Landau, P. G. Neumann,
R. L. Rivest, J. I. Schiller, B. Schneier, M. A. Specter, and D. J.
Weitzner. Keys under doormats. Commun. ACM, 58(10):24–26,
Sept. 2015.

[2] R. Barrios. A multi-leveled approach to intrusion detection
and the insider threat. Scientific Research Publishing, 2013.

[3] A. Baumann, M. Peinado, and G. Hunt. Shielding applications
from an untrusted cloud with haven. ACM Trans. Comput.
Syst., 33(3), Aug. 2015.

[4] M. Belshe, R. Peon, and M. Thomson. Hypertext transfer
protocol version 2 (http/2). RFC 7540, RFC Editor, May 2015.
http://www.rfc-editor.org/rfc/rfc7540.txt.

[5] O. Brdiczka, J. Liu, B. Price, J. Shen, A. Patil, R. Chow,
E. Bart, and N. Ducheneaut. Proactive insider threat detection
through graph learning and psychological context. In Security
and Privacy Workshops (SPW), 2012 IEEE Symposium on,
pages 142–149, May 2012.

[6] D. Cappelli, A. Moore, R. Trzeciak, and T. Shimeall. Common
sense guide to prevention and detection of insider threat. CERT
Insider Threat Study Team, Carnegie Mellon University, 2008.

[7] N. Einwechter. Preventing and detecting insider attacks using
ids. SecurityFocus, March, 2002.

[8] F. McKeen. Innovative instructions and software model for
isolated execution. In Proc. HASP, 2013.

[9] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and
B. Waters. Candidate indistinguishability obfuscation and
functional encryption for all circuits. In Proc. IEEE 54th
Annual Symposium on Foundations of Computer Science
(FOCS), pages 40–49, 2013.

[10] B. Gellman and A. Soltani. Nsa infiltrates links to yahoo,
google data centers worldwide, snowden documents say. In
The Washington Post, 2013.

[11] C. Gentry. Fully homomorphic encryption using ideal lattices.
In Proc. 41st Annual ACM Symposium on Theory of Computing
(STOC), pages 169–178, 2009.

[12] C. Gentry, S. Halevi, and N. P. Smart. Homomorphic
evaluation of the AES circuit. In Proc. 32nd Annual Cryptology
Conference Advances in Cryptology (CRYPTO), pages 850–
867, 2012.

[13] S. Goldwasser, Y. Kalai, R. A. Popa, V. Vaikuntanathan, and
N. Zeldovich. Reusable garbled circuits and succinct functional
encryption. In Proc. 45th Annual ACM Symposium on Theory
of Computing (STOC), pages 555–564, 2013.

[14] L. S. Huang, A. Rice, E. Ellingsen, and C. Jackson. Analyzing
forged ssl certificates in the wild. In Proc. IEEE Symposium
on Security and Privacy (SP), pages 83–97, 2014.

[15] I. Anati et al. Innovative technology for cpu based attestation
and sealing. In Proc. HASP, 2013.

[16] S. Inc. Detecting insider threats: How splunk software is used
to safeguard financial data, 2014.

[17] M. Hoekstra et al. Using innovative instructions to create
trustworthy software solutions. In Proc. HASP, 2013.

[18] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasub-
ramaniam. L-diversity: Privacy beyond k-anonymity. ACM
Trans. Knowl. Discov. Data, 1(1), Mar. 2007.

[19] F. D. McSherry. Privacy integrated queries: An extensible
platform for privacy-preserving data analysis. In Proc. ACM
SIGMOD International Conference on Management of Data
(SIGMOD), pages 19–30, 2009.

[20] A. Meyerson and R. Williams. On the complexity of optimal
k-anonymity. In Proc. 23rd ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems (PODS), pages
223–228, 2004.

[21] V. Paxson. Bro: A system for detecting network intruders in
real-time. Comput. Netw., 31(23-24), Dec. 1999.

[22] A. Rao, J. Sherry, A. Legout, A. Krishnamurthy, W. Dabbous,
and D. Choffnes. Meddle: Middleboxes for increased trans-
parency and control of mobile traffic. In Proc. ACM CoNEXT,
pages 65–66, 2012.

[23] Runa. Security vulnerability found in cyberoam dpi devices
(cve-2012-3372). In Tor Project Blog, 2012.

[24] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy,
and V. Sekar. Making middleboxes someone else’s problem:
Network processing as a cloud service. In Proc. ACM
SIGCOMM, pages 13–24, 2012.

[25] J. Sherry, C. Lan, R. A. Popa, and S. Ratnasamy. Blindbox:
Deep packet inspection over encrypted traffic. In Proc. ACM
SIGCOMM, pages 213–226, 2015.

[26] G. Silowash, T. Lewellen, J. Burns, and D. Costa. Detecting
and preventing data exfiltration through encrypted web sessions
via traffic inspection. Technical Report CMU/SEI-2013-
TN-012, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA, 2013.

[27] Snort. website. https://www.snort.org/ , 2016.

[28] Suricata. website. http:// suricata-ids.org/ , 2016.

[29] N. Vallina-Rodriguez, S. Sundaresan, C. Kreibich, N. Weaver,
and V. Paxson. Beyond the radio: Illuminating the higher
layers of mobile networks. In Proc. ACM MobiSys, pages
375–387, 2015.

[30] S. Website. https://www.sans.org/reading-room/whitepapers/
authentication/ssl-tls-whats-hood-34297. 2016.

[31] K. Zetter. The feds cut a deal with in-flight wi-fi providers,
and privacy groups are worried. In Wired Magazine, 2014.

http://www.rfc-editor.org/rfc/rfc7540.txt
https://www.snort.org/
http://suricata-ids.org/
https://www.sans.org/reading-room/whitepapers/authentication/ssl-tls-whats-hood-34297
https://www.sans.org/reading-room/whitepapers/authentication/ssl-tls-whats-hood-34297

	Introduction
	Contribution
	Paper Organization

	Roles and Requirements
	Background
	Traffic Inspection Systems
	SGX

	Privacy Preserving Inspection
	Setting Up PRI
	Operating PRI
	A Note on Implementation

	Use Cases
	Enterprise Security and Insider Threats
	Network Outsourcing
	Anti-Terror Intelligence

	Discussion and Related Work
	Conclusion
	References

