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ABSTRACT
Virtualization is arguably the main innovation motor in the Inter-
net today. Virtualization enables the decoupling of applications
from the physical infrastructure, and introduces new mapping and
scheduling flexibilities. While the corresponding algorithmic prob-
lems are fairly well-understood, we ask: Who reaps the benefits
from the virtualization flexibilities? We introduce two simple dis-
tributed cloud market models and study this question in two di-
mensions: (1) a horizontal market where different cloud providers
compete for the customer requests, and (2) a vertical market where
a broker resells the resources of a cloud provider.

1. INTRODUCTION
We live in an age where computation and storage have become

a utility and can be scaled elastically: geographically distributed
resources can flexibly be aggregated and shared by multiple ten-
ants. After revamping the server business, the virtualization trend
has also started spilling over to the network: The network virtu-
alization paradigm [5] envisions a world where entire virtual net-
works (VNets), with QoS and isolation guarantees on both nodes
and links, can be requested on demand. Network virtualization de-
couples the applications and services from the constraints of the
underlying physical network, and where and when resources are
allocated only depends on the VNet specification itself.

Service and virtual network specifications are unlikely to be
very homogeneous [8]. Today’s datacenters concurrently host a
wide range of applications of different tenants with different re-
quirements [2]: while some applications are network-hungry [6]
or latency sensitive [10] (e.g., a web service), and may have dead-
lines [9] and require strict QoS networking guarantees, other appli-
cations (e.g., batch processing jobs) are delay-tolerant.

While today we have a fairly good understanding of how to al-
gorithmically exploit different service specifications and require-
ments [7], e.g., in order to find cheap or resource-efficient embed-
dings, this paper asks the question: Who benefits from specifica-
tion flexibilities in a competitive cloud market? For example, a
customer may expect that being more delay-tolerant and flexible in
terms of resource rates, pays off, i.e., render the service cheaper [1].
Indeed, as the cloud provider may exploit specification flexibilities
to schedule applications more flexibly and hence make a better use
of its resources, it may share the gains with its customers.

Model: Horizontal & Vertical Market. We consider a sim-
ple setting where customers issue virtual network (VNet) requests.
Each VNet specifies (1) resource rates for virtual nodes and links,
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i.e., a fixed amount of CPU per time or bandwidth (using graph
or hose/VC/VOC models [8]), (2) a duration for which the VNet
must be embedded (at the specified resource rate), and (3) possibly
a deadline by which the VNet must have been embedded for the
entire duration (and rate). We propose the following two simplified
VNet market models (cf Figure 1). In the horizontal market model
(Figure 1 left), the customers (or “tenants”) directly request vir-
tual networks (VNets) on demand from different cloud providers.
We assume that a customer first issues the VNet request (anno-
tated with the required resources) to all cloud providers, in order
to obtain an offer on (1) when the VNet request can be scheduled
(time t), and (2) at which price p. We assume that the providers
have fixed but different prices per resource unit, and will greedily
schedule a VNet at the earliest possible point in time. Given the
time-price tuples (t, p), the customer will choose the best provider
offer according a utility function u(t, p). Depending on the appli-
cation, the customer may be relatively flexible in the execution time
as long as the best price is obtained; or, conversely, he or she may
be relatively flexible in the price as long as the job is processed
as soon as possible. In the vertical market model (broker market),
customer requests are handled by a broker (cf Figure 1 right) that is
responsible of embedding the VNets on its virtual resources (simi-
lar to the role for the cloud provider in the basic model). The broker
role benefits from being able to buy larger chunks of resources as
it obtains a discount from the cloud provider. Concretely, we will
assume that the broker can buy different resource contracts from
the cloud provider: a resource contract consists of a resource vol-
ume (i.e., an overall resource rate R) and a duration D. The larger
the product R×D of resource volume and duration of the contract
(henceforth also referred to as the contract area), the higher the
discount. Resource discounts are common (e.g., in Amazon’s EC2
reserved instances) and yield a tradeoff for the broker: buying too
large contracts may be wasteful as the actual resources cannot be
resold, and buying too small contracts may yield small discounts.
In order to study how the costs of the broker and the income of the
cloud provider depend on how flexible the customers are with re-
spect to the VNet deadline, we consider different broker strategies.

2. BENEFITS IN HORIZONTAL MARKET
We first study how VNet flexibilities influence the income dis-

tribution of the different cloud providers. We make the natural as-
sumption that cheaper and faster executions are always preferred
over more expensive and longer alternatives. Concretely, we con-
sider the following exemplary utility functions: (1) customers are
relatively flexible in time as long as the price is low: uf (t, p) =
−t− 10 · p; (2) customers are inflexible regarding time even if this
turns out to be more expensive: ui(t, p) = −10 · t−p; and (3) cus-
tomers are not specifically flexible or inflexible ue(t, p) = −t− p.
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Figure 1: Left: Horizontal market: A customer requests an of-
fer for a VNet embedding from each provider. Depending on
the price-deadline tuples returned by the providers, the best
option is chosen according to a given utility function. Right:
Vertical market: Customer VNet requests (with deadlines) are
directed towards the broker which is buying resource con-
tracts (subject to discounts for larger contracts) from the cloud
providers.

Finally, (4) we also investigate scenarios where VNets have strict
deadlines d; i.e., the customer will not accept offers violating this
deadline. We will assume that providers have fixed resource prices
and schedule a VNet request at the next possible occasion. A
VNet request will require a constant resource rate, and cannot be
stretched or shortened in time once it is started. Therefore, we use
a simple greedy algorithm which computes earliest embeddings on
the providers, together with the corresponding prices.

In our experiments, we have three different providers whose
prices differ by a certain percentage. VNet requests arrive over time
according to a Poisson distribution with exponentially distributed
inter-arrival times (parameter λ = 1). The request durations follow
a heavy tail distribution (Pareto distribution with exponent α = 3,
minimum 1, and scaling factor 100) and are chosen independently.
The arrival and duration process yields a dynamic demand [3, 4].
For simplicity, the resource requirements of all requested VNets
are identical and we will assume that customers re- quest one unit
of volume. Providers have a capacity of 70 units.

2.1 Provider Perspective
We first study the impact of different customer flexibilities on

the providers. In our model, the revenue of a provider depends on
the number of customer requests it will eventually serve. We com-
pare four different scenarios; three homogeneous ones where all
customers have the same utility function (either flexible uf , equal
ue or inflexible ui), and a heterogeneous scenario where customers
with different utilities (one half uses uf and one half ui) compete
for provider resources.

Figure 2 shows the percentages of the demand assigned to the
three providers: P1, P2, P3 in the three different homogeneous
scenarios. In this experiment, the unit price of provider P2 is 10%
higher than P1, and P3 is 20% higher than P1. Provider P3 has
a lower workload, as the aggregate demand does not always fill
all provider resources. The share of demand on P1 changes only
slightly over the scenarios. Most of the demand that P3 gains (ap-
prox. 2% of the overall demand) while increasing the importance of
the time dimension, is stolen from the P2’s share. That is because
customers prefer P3 at demand peak rates, rather than having to
wait for P2. The heterogeneous scenario shows a behavior similar
to the equal scenario and is hence omitted here.

Given a certain degree of flexibility (e.g., customers with time
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Figure 2: Boxplots (left: P1 and P2, right: P3) of the overall
workload, in percentages per provider and under a stable pric-
ing scheme (100, 110, 120). The data is collected over 100 runs
with 20k requests each (excluding the first 1k to to remove the
“bootstrap phase”). All providers have a capacity of 70 units,
the demand is subject to Poisson arrival (λ = 1) and durations
are Pareto (α=3, min=1, scaling factor=100).

uncritical applications such as bulk data transfers or batch jobs), the
variance in demand can be exploited to shift load in time. While
P1’s capacity is completely used > 99% of the time, the work-
loads of P2 and P3 vary. An increase of the Poisson arrival rate to
λ = 1.2 leads to a more frequent demand excess, and P2 hardly
has available capacities over longer time periods. Also P3 obtains
approx. a quarter of the overall demand. If not stated differently,
in this paper, we will focus on demands similar to the top scenario
where there are sufficient capacities even in high-demand periods.

deadline
λ median 1% 10% 20%
1.2 182 0.20 0.14 0.01
1.3 193 1.54 0.84 0.1
1.4 209 5.34 4.09 1.89
1.5 224 11.29 10.89 9.82

Table 1: Percentage of requests that cannot be served within
their deadline. The deadline occurs after the duration plus a
percentage (1%,10% or 20%). The arrival process is Poisson
with parameter λ. We show the median demand (total capacity
is 210).

With increasing demand, having strict deadlines becomes more
critical: later, a result may no longer be useful. Table 1 shows the
percentage of requests that cannot be embedded within their dead-
lines. In this experiment, the deadlines are chosen as a function of
the corresponding request duration: we have three different flexi-
bility levels, one adding 1% to the duration, one 10%, and the most
flexible one adds 20%. With a Poisson arrival parameter λ = 1.5,
the percentages are nearly equal, and independent of the deadline
flexibility. This is due to the demand excess for nearly all time peri-
ods. In general strict deadlines are beneficial for P3, as it increases
the fraction of customers that cannot wait.

2.2 Customer Perspective
Next we examine the customer perspective. Clearly, the pricing

scheme on the market combined with the current resource demand
and also the flexibilities of the other customers, will influence the
obtained customer utilities.
Time is money. In order to compare different pricing schemes,
we examine customers with no specific preference on time or
price (utility function ue). The pricing schemes on the compet-
itive provider market lead to different decisions on how long a



request waits for being embedded and what to pay. We investi-
gate the customer utilities on three different pricing scenarios with
1%, 10% and 25% difference between two providers. Figure 3
shows also the respective waiting times. Comparing these plots one
must be aware that an increase of the prices also reduces the average
utilities. Surprisingly, despite the fact that the cheapest price stays
constant over all scenarios, the best utility (no waiting time on first
provider) is only reached in the 1% scenario. This is because of the
small price difference for customers who do not wait and rather pay
the small overhead for embeddings on P2 and P3. With higher dif-
ferences, the customers are more likely to wait for free capacities
on cheaper providers, which leads to the longer waiting times and
queues on those providers, and eventually prevents an immediate
embedding there. This also explains why the utilities in the first
plot can be classified into three groups with nearly identical util-
ities. The increasing price variance renders the differences larger
and leads to even smaller utilities (up to−50% from the maximum)
at peak times, and a wider overall distribution. Unsurprisingly, the
waiting time plots show a change of the slope at the points where
the time matches its utility-wise analog price value (1, 10, 25). The
slope is steeper before these points since there are many customers
who prefer to wait for the next cheaper provider.
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Figure 3: CDFs of customer utilities and their respective wait-
ing times given three different pricing scenarios (1%, 10%, 25%
price differences between the providers). The utilities are given
in a relative percentage to the theoretically highest utility. The
customers are not specifically flexible or inflexible.

Dependency on other customers. The utilities obtained by the
customers are inter-dependent. To study these dependencies, we
extend our setting to a heterogeneous one where the flexibilities of
the customers are mixed. The comparison of these utilities (cf Fig-
ure 4) shows that on the one hand mixed utility functions are ben-
eficial for flexible customers and increase their utility by ∼ 10%.
On the other hand, mixed utility functions are reducing the utili-
ties for inflexible customers. While in a homogeneous scenario the
customers tend to choose a more expensive provider early, which
keeps the waiting times low, the flexible customers in the hetero-
geneous scenario are willing to wait longer for capacities on the
cheapest provider. This leads to a situation where the flexible cus-
tomers reserve the capacities on the cheapest provider while the
inflexible customers are stuck with the expensive providers. Since
this impacts only approximately 50% of the inflexible customers
whose utilities decrease by ∼ 10%, the overall utility under het-
erogeneous demands increases.

3. BENEFITS IN VERTICAL MARKETS
Let us study the effects of flexibility in the vertical model: we

assume the customers send their VNet requests to a broker who re-
sells resources from the cloud provider. The business model of the
broker is to buy large resource contracts from the cloud provider,
and uses these resources to satisfy multiple VNet requests. Con-
cretely, we assume that the cloud provider offers a single kind of
resource, and that contracts are given in terms of a resource rate R
and a duration D. The higher the product of resource rate and du-
ration, henceforth called the area A = R ×D of the contract, the
lower the unit price. We define the discount δ as the factor by which
a contract of twice the area is more expensive: δ = 1.5 means that
for a twice as large contract, the price is 50% higher; δ = 2 implies
no discount is given and δ = 1 means infinite discount.
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Figure 4: CDFs of customers utilities in scenarios with het-
erogeneous and homogeneous demands. The utilities are com-
pared based on the user flexibilities (left: flexible only, right:
inflexible only). The utilities are given as a percentage of the
theoretical maximum utility.

We assume that each VNet request vnet, arriving online at time
vnet.arrival(), specifies a constant resource rate vnet.rate(), a du-
ration vnet.dur(), and a deadline vnet.dead() by which it must be
completed. We focus on a simple deadline utility function in the
sense that the customer only cares whether the deadline is met or
not, and accordingly pays a fixed price or nothing. Thus, to maxi-
mize revenues, the broker should embed as many VNets as possible
which meet the deadline. We define the flexibility F of a vnet re-
quest as F = (vnet.dead()−vnet.arrival())/vnet.dur(), the factor
by which the feasible embedding time period exceeds the duration.
(We will assume that F ≥ 1.)

The broker can benefit from delaying VNet requests if the time
period until their deadline is relatively large compared to the VNet
duration: Then, a larger resource contract can be bought at a better
discount. It seems that the broker can reap all benefits from more
flexible deadlines relative to the the VNet durations. Moreover,
the flexibility gains accruing at the broker translate into a corre-
sponding income loss at the cloud provider, as contracts become
cheaper: a zero-sum game. However, as we will see, the situation
is slightly more complicated and the benefits depend on the vari-
ance in demand. Moreover, the distribution of benefits of course
also depends on the strategy by which the broker delays requests
and buys resources. We compare three natural broker strategies:
A greedy strategy called INSTANT where the broker immediately
buys a new contract specifically for each incoming VNet request,
and two strategies ROOF and STAIRS where the broker uses a VNet
buffer B to delay requests and buy larger contracts.

STAIRS and ROOF differ in when and how the buffer B is filled.
Whenever a VNet vnet arrives, STAIRS includes it in the buffer B.
For each time step ∆t, STAIRS checks if the VNets inB can be fur-
ther delayed. If one of the VNet requests vnet ∈ B can no longer
be delayed and must be embedded the latest at the current time t,



STAIRS groups the VNets in the buffer into intervals, all starting
at t, and buys contracts for all these networks. In contrast, ROOF
first checks if there are spare capacities available from previously
bought contracts. If this is the case, these capacities are used for
the embedding of vnet. Otherwise, the broker delays the embed-
ding of vnet and adds it to the buffer B. If one of the VNets in
B cannot be delayed any longer, ROOF buys a single large contract
(i.e., it empties the entire buffer).

Figure 5 (left) plots the total contract price paid by ROOF and
STAIRS, as a function of the contract discount and relative to the
INSTANT price which serves as a baseline. We assume the dis-
count model for the product of contract duration D and resource
rate R, i.e., for the area A = R ×D: for a twice as large area, the
price is between one and two times higher (the former implies free
resources, the latter no discount). As expected, ROOF performs
bad without discounts and benefits from buying large contracts if
discounts are high. STAIRS is always at least as good as INSTANT
(equal in the no discount scenario). However, under high discounts,
STAIRS pays relatively more again. This can be explained by the
overall decreased cost of INSTANT.
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Figure 5: Left: Price paid by STAIRS and ROOF relative to
INSTANT’s price as a function of the discount factor for twice
as large contracts. The arrival times are generated using a
λ = 1.2 Poisson distribution and the durations are generated
according to a Pareto distribution with α = 2. The flexibility
factor is F = 1.01. Right: Price paid by STAIRS and ROOF
relative to INSTANT’s price as a function of F . (Arrival times
λ = 1.2, durations α = 2, discount factor δ = 1.5)

Broker Perspective. Figure 5 (right) shows the costs of ROOF
and STAIRS relative to INSTANT’s costs. Note that since INSTANT
does not benefit from flexibilities (it does not delay any requests),
INSTANT’s costs can be used as a baseline and the fraction of its
costs can be regarded as the benefit of flexibility. This benefit is
plotted as a function of the flexibility ratio (overall feasible time
period divided by request duration). We see that for very low flexi-
bilities, the strategies do not differ much: on average, only roughly
5% of the VNet requests are not immediately embedded. The frac-
tion of delayed VNets increases with higher flexibilities F , e.g.,
to 75% (for F = 1.001) resp. to 95% (for F = 1.01). Using
the ROOF strategy, the broker will benefit more since the already
bought resources can be used to a greater extent.

Provider Perspective. The provider perspective is similar: the
flexibility benefits that could be exploited by the broker automati-
cally translate into an additional revenue for the cloud provider; we
have a zero-sum game. Interestingly, these benefits also depend on
the variance of the demand. Table 2 shows the price paid by the
broker (and thus the income of the cloud provider), under differ-
ent variances of the VNet duration, i.e., different α values in the
Pareto distribution (note that larger α also increases the demand, cf
Table 2 INSTANT). In general, we observe that a higher variance
benefits the cloud provider: resources cannot be delayed efficiently.
Interestingly, a higher variance does not necessarily lead to a higher

price for the broker using the ROOF strategy however. This can be
explained by the large discount in these cases.

Pareto α 1.5 2 2.5 3
INSTANT 12109 11503 11183 10951
STAIRS 10264 9143 8493 7943
ROOF 1105 1291 1248 1190

Table 2: Mean provider income given VNets with different du-
rations (a smaller Pareto α means a higher variance). Inter-
arrival times λ = 1.2, discount δ = 1.2, flexibility F = 1.01.

4. CONCLUSION
This paper initiated the study of the benefits and beneficiaries

of specification flexibilities and introduced two most simple mar-
ket models. In horizontal markets, we find that customers can often
benefit from being more flexible in some dimension (e.g., execution
time) in the sense that the service is improved in the other dimen-
sion. Moreover, more flexibility on the customer side dispropor-
tionally benefits the cloud providers offering cheaper prices. Inter-
estingly however, it is often not the cheapest provider that benefits
the most from customer flexibilities. Finally, we also find that while
the social welfare of both customers and providers is increased un-
der heterogeneous requirements and flexibilities, not all customers
can benefit in this setting; inflexible customers may even be worse
off. Overall, more resources are needed in case of inflexible cus-
tomers, opening new business opportunities for providers.

In vertical markets, we observe that the benefits from customer
flexibilities typically accrue at the broker, which can bundle re-
quests and exploit potential discounts on the provider side. How-
ever, depending on the broker strategy, a higher variance in the re-
quest demands helps the cloud providers to increase their revenues.
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