
Good Network Updates for Bad Packets
Waypoint Enforcement Beyond Destination-Based Routing Policies

Arne Ludwig1, Matthias Rost1, Damien Foucard1, Stefan Schmid1,2

1 TU Berlin, Berlin, Germany; 2 T-Labs, Berlin, Germany

{aludwig,mrost,dfoucard}@inet.tu-berlin.de, stefan@net.t-labs.tu-berlin.de

ABSTRACT
Networks are critical for the security of many computer sys-
tems. However, their complex and asynchronous nature of-
ten renders it difficult to formally reason about network be-
havior. Accordingly, it is challenging to provide correctness
guarantees, especially during network updates.

This paper studies how to update networks while main-
taining a most basic safety property, Waypoint Enforce-
ment (WPE): each packet is required to traverse a certain
checkpoint (for instance, a firewall). Waypoint enforcement
is particularly relevant in today’s increasingly virtualized
and software-defined networks, where new in-network func-
tionality is introduced flexibly.

We show that WPE can easily be violated during network
updates, even though both the old and the new policy ensure
WPE. We then present an algorithm WayUp that guaran-
tees WPE at any time, while completing updates quickly.
We also find that in contrast to other transient consistency
properties, WPE cannot always be implemented in a wait-
free manner, and that WPE may even conflict with Loop-
Freedom (LF). Finally, we present an optimal policy update
algorithm OptRounds, which requires a minimum num-
ber of communication rounds while ensuring both WPE and
LF, whenever this is possible.

Categories and Subject Descriptors
C.2.3 [Network Operations]: Network management

General Terms
Algorithms

1. INTRODUCTION
The Software-Defined Networking paradigm enables

a logically centralized and programmatic operation of

Author version only.
HotNets-XIII, October 27-28, 2014, Los Angeles, CA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3256-9/14/10 ...$15.00.
http://dx.doi.org/10.1145/2670518.2673873 .

computer networks. The envisioned network operating
system has the potential to radically simplify the net-
work management, as well as render the network more
flexible: the software controllers can install, update and
verify “the paths that packets follow”, i.e., the (network)
policies [2], fast and in a globally consistent manner.

However, today, we do not have a good understand-
ing yet of the limitations of a more dynamic network
management in general, and the Software-Defined Net-
work (SDN) paradigm in particular. Over the last years,
especially the problem of consistent network updates
has received much attention [4, 5, 8, 10]. In a first
line of works, initiated by Reitblatt et al. [10], network
updates providing strong consistency guarantees have
been studied: even during the transition from an old
policy π1 to a new policy π2, the Per-Packet Consis-
tency (PPC) property is ensured, i.e., each packet will
either be forwarded according to π1 (exclusively-)or π2,
but not a combination of both. In a second line of works,
initiated by Mahajan and Wattenhofer [8], weaker tran-
sient consistency properties have been investigated for
destination-based policies: during a network update, a
packet may be forwarded according to the old policy π1
at some switches and according to the new policy π2 at
other switches; however, the update still provides more
basic transient guarantees, such as Loop-Freedom (LF):
packets will never be forwarded along a loop. LF can be
realized much more efficiently than PPC, and also does
not require the tagging of packets.

This paper investigates fast updates for policies which
describe arbitrary routes and are not destination-based:
Indeed, the fact that routing decisions may not only
depend on the destination, but also on the source or
even the application, constitutes a key advantage of
SDN, enabling interesting new opportunities for traffic
engineering [14]. Furthermore, arbitrary routes are also
attractive because they reduce the dependencies between
different paths to the same destination, facilitating even
faster network updates.

Moreover, we identify and initiate the study of a new
fundamental transient property, namely Waypoint En-
forcement (WPE). WPE is an important property in

today’s increasingly virtualized networks where func-
tionality is introduced also in the network core. For
example, in security-critical environments (e.g., in a fi-
nancial institution), it is required that packets traverse
certain checkpoints, for instance, an access control func-
tion (implemented by e.g., a middlebox [12], an SDN
match-action switch [7], or an NFV function [3]), before
entering a protected network domain. In other words, in
order to prevent a bad packet from entering a protected
domain, not only the old policy π1 as well as the new
policy π2 must ensure WPE, but also any other transient
configuration or policy combination that may arise dur-
ing the network update. So far, waypoints could only
be enforced using PPC, which by definition implies that
new links can never be used earlier. [8]

Contribution. This paper initiates the study of
network update problems where routing policies do not
have to be destination-based but can describe arbitrary
paths, and where weak transient consistency properties
are ensured. In addition, we introduce an important
new transient consistency property, namely Waypoint
Enforcement (WPE), and show that at the heart of the
WPE property lie a number of interesting fundamental
problems. In particular, we show the following results:

1. We demonstrate that WPE may easily be violated
if no care is taken. Motivated by this observation,
we present an algorithm WayUp that provably
updates policies in a consistent manner, while min-
imizing the number of controller interactions.

2. We show that in contrast to other transient consis-
tency properties, such as LF, WPE cannot always
be implemented in a wait-free manner, in the sense
that the controller must rely on an upper bound
estimation for the maximal packet latency in the
network. Moreover, the transient Waypoint En-
forcement WPE property may conflict with Loop-
Freedom LF, in the sense that both properties may
not be implementable simultaneously.

3. We present an optimal policy update algorithm
OptRounds, which provably requires the mini-
mum number of communication rounds while en-
suring both WPE and LF, whenever this is possible.

In order to measure the “speed” of a network update
algorithm, we introduce a new metric called the round
complexity : the number of sequential controller interac-
tions needed during an update. We believe that opti-
mizing the round complexity is natural given the time
it takes to update an individual OpenFlow switch today
(see, e.g. [5]). Especially for scaling service chains on
large NFV-enabled networks, as, e.g., envisioned by the
UNIFY project1, quickly updating policies while guar-
anteeing correctness will be of importance [9]. Moreover,
1http://www.fp7-unify.eu

Figure 1: Updating policies describing arbitrary
paths: the old policy π1 is depicted as a solid line,
the new policy π2 as a dashed line. Left: Orig-
inal situation. Right: Collapsed “line represen-
tation”, where immediately updatable switches
have been pruned.

this paper also shows that the optimization of existing
metrics, like the number of currently updated links [8],
can unnecessarily delay the policy update; even worse,
we show that a greedy selection of links may fail to
install the policy entirely: a deadlock configuration may
occur where the policy installation cannot be completed.

2. EXAMPLE
In order to acquaint ourselves with the problem of

fast and consistent network updates fulfilling Waypoint
Enforcement (WPE) and Loop-Freedom (LF), in this
section, we consider a simple example.

Before presenting the example in detail, we introduce
some terminology. In this paper, a (routing) policy
describes a forwarding path (see also [2, 8, 10]). Routing
policies may not only depend on the destination address
or port, but also, e.g., on the source or application. Such
policies allow us to treat different flows with the same
destination independently, which can also reduce the
problem complexity. Figure 1 illustrates this point: On
the left, two policies, i.e., paths from the network are
shown: an old policy π1 (solid line) and a new policy
π2 (dashed line). Each switch which is only part of π2
but not π1 can be updated immediately, thus reducing
the network update problem to the situation presented
on the right. In the following, we will make use of this
simple line representation, and will depict the old policy,
π1, as a straight line.

With these concepts in mind, we can now introduce
our example, see Figure 2 for an illustration. The old
policy π1 connects four switches, from left to right (de-
picted as a straight, solid line, s1 → s2 → s3 → s4); the
new policy π2 is shown as a dashed line. The second
switch, s2 (in black), represents the waypoint which
needs to be enforced.

How can we update the policy π1 to π2? A simple
solution is to update all switches concurrently. However,
as the controller needs to send these commands over the
asynchronous network, they may not arrive simultane-

2

Figure 2: Updating all switches in one round
may violate WPE.

ously at the switches, which can result in inconsistent
states. For example, if s1 is updated before s2 and s3
are updated, a temporary forwarding path may emerge
which violates WPE: packets originating at s1 will be
sent to s3 and from there to the destination s4—the
waypoint s2 is bypassed.

This illustrates the challenge of updating the SDN,
which is an inherently asynchronous and distributed
system. One solution to overcome this problem would be
to perform the update in two (communication) rounds:
in the first round, only s2 and s3 are updated, and in a
second round, once these updates have been performed
and acknowledged, the controller also updates s1. Note
that this 2-round strategy indeed maintains the waypoint
at any time during the policy update. However, the
resulting solution may still be problematic, as it violates
another desirable transient consistency property, namely
loop-freedom: if the update for switch s3 arrives before
the update at switch s2, packets may be forwarded in a
loop, from switch s2 to s3 and back.

Both Waypoint Enforcement WPE as well as Loop-
Freedom LF can be ensured (for this specific example)
in a three-round update: in the first round, only s2 is
updated, in the next round s3, and finally s1.

We, in this paper, are interested in consistent network
updates which are fast : (parts of) the new paths should
be used as soon as possible during the update. Con-
cretely, we want to minimize the round complexity of the
policy update: the number of communication rounds
where in each round, the controller sends another batch
of updates to a subset of switches, and waits for their
completion before starting the next round.

3. FAST WAYPOINT ENFORCEMENT
It turns out that the transient enforcement of a way-

point is non-trivial. We first show an interesting negative
result: it is not possible to implement WPE in a “wait-
free manner”, in the following sense: a controller does
not only need to wait until the switches have acknowl-
edged the policy updates of round i before sending out
the updates of round i+ 1, but the controller also needs
some estimate of the maximal packet latency: if a packet
can take an arbitrary amount of time to traverse the
network, it is never safe to send out a policy update

Algorithm 1: WayUp

1 Input: old policy π1, new policy π2, threshold θ
2 update switches of π2 which are not in π1
3 update switches of π>wp1 with backw. rules in π<wp2

4 update remaining switches of π<wp2

5 wait θ

6 update switches of π>wp2

for certain scenarios. We are not aware of any other
transient property for which such a negative result exists.
For ease of presentation, we will use the notation π<wpi

to refer to the first part of the route given by policy πi,
namely the sub-path from the source to the waypoint,
and π>wpi to refer to the second part from the waypoint
to the destination.

Theorem 1. In an asynchronous environment, a new
policy can never be installed without risking the violation
of WPE, if a switch is part of π<wp1 and π>wp2 .

Proof. Consider the example in Figure 2 again, but
imagine that the waypoint is on switch s3 and not on
switch s2, and assume the following update strategy: in
the first round, s1 and s3 are updated, and in the second
round, s2. This strategy clearly ensures WPE, if (but
only if) the updates of round 2 are sent out after packets
forwarded according to the rules before round 1 have
left the system. However, if packets can incur arbitrary
delays, then there might always be packets left which
are still traversing the old (solid) path from s1 to s2.
These packets have not been routed via the waypoint
(s3) so far but will be sent out to s4 by s2 in the new
path, violating the WPE property. This problem also
exists for any other update strategy.

Fortunately, in practice, packets do not incur arbi-
trary delays, and Theorem 1 may only be of theoretical
interest: it is often safe to provide an update algorithm
with some good upper bound θ on the maximal packet
latency. The upper bound θ can be seen as a parame-
ter to tune the safety margin: the higher θ, the higher
the probability that any packet is actually waypoint
enforced.

With these concepts in mind, we now describe our
algorithm WayUp which always ensures correct net-
work updates, i.e., updates which consistently imple-
ment WPE if the maximal packet transmission time is
bounded by θ. We define s1 ≺πi

s2 to express that a
switch s1 is visited before s2 on πi. An update rule
(s2, s1) with s1 ≺π1

s2 is called a backward rule (with
respect to the initial direction of the line).

The round complexity of WayUp is four : in the first
round, all switches are updated which were not part of
the old policy π1, and therefore do not have an impact
on current packets (as shown in Figure 1). In the second

3

round, each switch behind the waypoint (i.e., π>wp1)
which is part of π<wp2 and which has a backward rule,
is updated. This allows us to update the remaining
switches from π<wp2 in the third round, since each packet
which is sent “behind“ the waypoint will eventually come
back, according to the consistency properties of the new
policy. After this round, the algorithm will wait θ time
to ensure that no packet is on π<wp1 anymore. In the
fourth round it is possible to update all switches of π>wp2

in one round, because the update cannot interfere with
π<wp2 anymore, and hence it cannot violate WPE.

Theorem 2. WayUp takes four rounds and guaran-
tees the WPE property at any time.

Proof. The round complexity follows from the al-
gorithm definition. The transient consistency can be
proved line-by-line: Line 2 of Algorithm 1 cannot violate
WPE since no packet is crossing any of these switches.
Line 3 does not interfere with π<wp1 and therefore each
packet will still be sent via π<wp1 towards the waypoint.
As long as π2 is consistent, any packet that reaches any
switch of π<wp2 will eventually reach the waypoint during
Line 4, since all backward rules are already updated and
no rule will bypass them. In Line 6, WPE is already
guaranteed, since π<wp2 is already in place and θ time
has elapsed.

4. INCORPORATING LF
The update strategy presented in the previous section

provably fulfills WPE at any time. However, it may
violate LF. Sometimes, this may not be a problem: if a
network update is relatively fast, the number of packets
ending up in a transient loop may be limited; moreover,
Time-To-Live (TTL) mechanisms could be used to re-
move the trapped packets quickly. Nevertheless, it is
sometimes desirable to maintain LF as well.

This section also starts with a negative result: WPE
and LF may conflict, i.e., it is sometimes impossible to
simultaneously guarantee both properties.

Theorem 3. WPE and LF may conflict.

Proof. Consider the example depicted in Figure 3.
Clearly, the source s1 can only be updated once s4 is
updated, otherwise packets will be sent to s5 directly,
which violates WPE. An update of s4 can only be sched-
uled after an update of s3 without risking the violation
of LF. However, s3 needs to wait for s2 to be updated
for the same reasons. This leaves an update of s2 as
the last possibility, which however violates WPE again.
Hence there is no update schedule which does not violate
either WPE or LF.

Fortunately, in practice, such conflicts can be iden-
tified, and if they exist, can be resolved with other
mechanisms (e.g., by sacrificing speed and using the

Figure 3: WPE and LF may conflict.

PPC algorithm described in [10]). In the following, we
will focus on algorithms which find efficient policy up-
dates for scenarios where WPE and LF do not conflict.
A naive approach to find such a consistent update may
be to split the update into two distinct parts: the part
before and the part after the waypoint, i.e., π<wp2 and
π>wp2 , and use a LF update algorithm on both parts (e.g.,
the strategy in [8]). Unfortunately, this approach can
fail: only if π>wp2 has no overlaps with π<wp1 and vice
versa, and if π<wp2 has no overlaps with π>wp1 , it is safe
to update both paths in parallel. This result even holds
for a consecutive update of π<wp2 and π>wp2 . The new
policy shown in Figure 2 cannot be updated without
inducing loops on π>wp1 (i.e., s2 → s3 → s2) if π<wp2 is
updated first; and a similar example can be constructed
for a schedule where π>wp2 is updated first.

In general, an update of a switch violates LF whenever
the update leads to a loop. However this loop might
not be part of the current path from the source to the
destination, and not forward policy-relevant packets.
To ensure that there are no packets left which were
forwarded by the old policy, we use the concept of a
maximal latency θ introduced in Section 3. Assume that
the example shown in Figure 3 is only a part of a policy
update and that s3 is not the waypoint. If s1 and s2
have been updated in a previous round, then an update
of s3 does not violate LF after time θ.

Comparing Objectives.
The speed of a network update is measured in terms

of communication rounds in this paper: the number of
times a controller needs to send updates to a subset of
network elements. As we show in the following, previous
objectives [8] which greedily maximize the number of
updated links in a single round may (1) unnecessarily
delay the policy update, namely by a factor up to Ω(n)
and (2) fail to find a valid update schedule if there exists
one. Let us refer to the max link objective by O1, and to
the min round objective by O2. Figure 4 and Figure 5
show the construction of a worst-case scenario: a greedy
update of all possible switches in the first round (hence
optimizing O1), leads to a situation where from the
third round onward, only one switch can be updated
per round. The first round would include every link
which is a forward link. The second round includes

4

Figure 4: Pattern (here: consisting of three
blocks B) for updates which result in a high num-
ber of rounds, if updated according to O1. The
blocks Bi are shown in detail in Figure 5. The
notation π≤sk and π>sk is used to refer to the
switches left (including sk) resp. right from sk.

Figure 5: Pattern of a block used for the exam-
ple in Figure 4.

all backward links shown in the lower part of Figure 4,
and the first backward link from B3. In the upcoming
rounds only one switch at a time can be updated. The
upper part of Figure 4 shows the first part of π2 which
is basically a chain of backward links between blocks
Bi. Each block Bi includes two of these interleaved
backward rules. Each of these switches is dependent on
an updated successor, before it can be updated itself
without violating LF.

The addition of every block (four switches) and the
switch pointing to it, increases the number of rounds by
two. This leads to 2n/5 rounds. An update minimizing
the number of rounds (objective O2) would not update
the switches characterized by switch i1 in Figure 5 in
the first round, even though this would be possible. This
breaks the long dependency chain in each block and leads
to a fixed number of rounds (namely four), independent
of n. Therefore, maximizing the number of updates per
round can take up to n/10 more rounds.

Even worse, an algorithm optimizing the objective
O1 may not only increase the number of rounds, but
it may fail to find a valid solution entirely. The only
possible updates for the scenario in Figure 6 are the
updates s1 and s2. Updating both of them leads to a

Figure 6: Pattern of a block used for the exam-
ple in Figure 4.

situation where no more switches can be updated, since
they are either violating WPE (s3 and s4) or LF (s5 and
s6). The only possible update schedule delays s1 and
only updates s2.

5. EXACT ALGORITHM
In the following, we present the Mixed-Integer Pro-

gram (MIP) OptRounds, which generates an update
scheme requiring the minimal number of rounds. Ac-
cording to the line representation presented in Section 2,
policies π1 and π2 are described as (simple) paths Eπ1

and Eπ2
on the common set of switches V . Both Eπ1

and Eπ2
connect the start switch s ∈ V to the target

switch t ∈ V .
As the task of the MIP 1 is to find the minimal number

of rounds, we generally allow for |V | − 1 many rounds,
denoted asR = {1, . . . , |V |−1}. We use binary variables
xrv ∈ {0, 1} to indicate whether the forwarding policy of
switch v ∈ V is updated in round r ∈ R or not. Con-
straint 2 enforces the switching policy of each switch to
be changed in exactly one of the rounds. The objective
to minimize the number of rounds is realized by mini-
mizing R ≥ 0 which is lower bounded by all the rounds
in which an update is performed (see Constraint 1).

Given the assignment of switch updates to rounds, the
Constraints 3 and 4 set variables yre ∈ [0, 1] accordingly
to indicate whether the edge e ∈ Eπ1 ∪Eπ2 is contained
after the successful execution of updates in round r ∈ R.
In the following we show how to enforce both the LF
and the WPE properties.

Enforcing LF.
To enforce the LF property, we need to guarantee

transient states between rounds to be loop-free. To this
end, we first define variables arv ∈ {0, 1} to indicate
whether a switch v ∈ V may be reachable or accessible
from the start s ∈ V under any order of updates between
rounds r − 1 and r. The variables are set to 1 if, and
only if, there exists a (simple) path from s towards
v ∈ V using edges of either the previous round or the
current round (see Constraints 5 - 7). Similarly, and
based on this reachability information, the variables
yr−1∨ru,v ∈ {0, 1} are set to 1 if the edge (u, v) ∈ E may
be used in transient states, namely if the edge existed in
round r−1 or r and u could be reached (see Constraints 8
and 9). Lastly, to ensure that a flow cannot be forced
onto loops, we employ well-known Miller-Tucker-Zemlin

5

Mixed-Integer Program 1: Optimal Rounds

min R (Obj)

R ≥ r · xrv r ∈ R, v ∈ V (1)

1 =
∑
r∈R x

r
v v ∈ V (2)

yru,v = 1−
∑
r′≤r x

r
u r ∈ R, (u, v) ∈ Eπ1

(3)

yru,v =
∑
r′≤r x

r
u r ∈ R, (u, v) ∈ Eπ2

(4)

ars = 1 r ∈ R (5)

arv ≥ aru + yr−1u,v − 1 r ∈ R, (u, v) ∈ E (6)

arv ≥ aru + yru,v − 1 r ∈ R, (u, v) ∈ E (7)

yr−1∨ru,v ≥ aru + yr−1u,v − 1 r ∈ R, (u, v) ∈ E (8)

yr−1∨ru,v ≥ aru + yru,v − 1 r ∈ R, (u, v) ∈ E (9)

yr−1∨ru,v ≤ lrv − lru − 1

|V | − 1
+ 1 r ∈ R, (u, v) ∈ E (10)

ars = 1 r ∈ R (11)

arv ≥ aru + yr−1u,v − 1 r ∈ R, (u, v) ∈ EWP (12)

arv ≥ aru + yru,v − 1 r ∈ R, (u, v) ∈ EWP (13)

art = 0 r ∈ R (14)

constraints (see 10) with corresponding leveling variables
lrv ∈ [0, |V |−1]: if traffic may be sent along edge (u, v) ∈
E, i.e., if yr−1∨ru,v = 1 holds, lrv ≥ lru + 1 is enforced,
thereby not allowing for cyclic dependencies.

Enforcing WPE.
For enforcing WPE a similar reachability construction

is employed (cf. Constraints 5 - 7). We define variables
arv ∈ {0, 1} indicating whether switch v ∈ V can be
reached from the start without passing the waypoint.
To this end, we introduce the set of all edges EWP ⊂ E
not incident to the waypoint and propagate reachability
information only along these edges (see Constraints 11-
13). Lastly, Constraint 14 ensures that no packet can
arrive at t without passing the waypoint.

6. INITIAL COMPUTATIONAL RESULTS
In our computational evaluation2 we are interested

in the number of scenarios in which no solution for an
update schedule can be found. This is either due to
conflicting WPE and LF (see Theorem 3) or due to the
chosen objective (as shown in Section 4). Figure 7 shows
the percentage of solvable scenarios as a function of the
problem size in terms of switches. Every scenario which
could be solved for objective O1 (max link) could also be
solved for objective O2 (min rounds) via OptRounds.
OptRounds also finds approximately 10% additional
solutions for problem sizes of 18 − 30 switches. For
smaller instances the number of additional solutions is
decreasing due to a smaller probability for deadlocks.

2See http://www.net.t-labs.tu-berlin.de/~stefan/
netup.tar.gz for scenarios and results

Number of switches

P
er

ce
nt

ag
e

of
 s

ol
va

bl
e

in
st

an
ce

s
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

5 10 15 20 25 30 35

Figure 7: Percentage of solvable scenarios per
number of switches (1000 scenarios per size).
The bars indicate from dark to bright: (1) Solv-
able regarding O1; (2) additionally solvable with
O2 within 600 seconds; (3) not classified after
600 seconds; (4) not solvable.

The decrease for larger instances is a consequence of the
capped runtime and the increased problem size which
leads to a larger fraction of unclassified instances.

A similar trend can be observed for the total amount
of solvable instances which is slightly increasing with
the scenario size in the beginning. The percentage of
solvable instances is always above 70% (except for the
scenario with 5 nodes), and increases towards 85− 90%
for scenarios with 14− 31 switches.

Whenever OptRounds terminated within 600 sec-
onds, its median runtime was less than 1 second for
networks with less than 15 switches. The median run-
time for solvable scenarios increases roughly linearly in
the number of switches (90 seconds for 35 switches), and
stayed below 1 second for not solvable scenarios.

The simulations show that there is a significant frac-
tion of unsolvable scenarios. A possibility to solve these
scenarios without violating WPE and LF is by introduc-
ing additional edges, so-called helper rules [8]. However
these can only be utilized when an independent path
exists, i.e., a path which does not interleave with the
new and the old path from the source to the waypoint.

7. CONCLUSION
We believe that our paper opens a rich and interesting

area of research, and the presented fast and independent
network update algorithms may also be of interest for
the design of more distributed control planes [1, 6, 11,
13]. Accordingly, we understand our work as a first step
towards a better understanding of the consistent updates
of more complex network policies, which include various
network functionality.

Acknowledgments. This research was supported
by the BMBF (01IS12056) and the EU FP7 UNIFY
project, which is partially funded by the Commission of
the European Union.

6

http://www.net.t-labs.tu-berlin.de/~stefan/netup.tar.gz
http://www.net.t-labs.tu-berlin.de/~stefan/netup.tar.gz

8. REFERENCES

[1] M. Canini, P. Kuznetsov, D. Levin, and S. Schmid.
Software transactional networking: Concurrent
and consistent policy composition. In Proc. ACM
SIGCOMM Workshop on Hot Topics in Software
Defined Networking (HotSDN), August 2013.

[2] M. Casado, M. J. Freedman, J. Pettit, J. Luo,
N. McKeown, and S. Shenker. Ethane: Taking
control of the enterprise. In Proc. ACM
SIGCOMM, 2007.

[3] ETSI. Network Functions Virtualisation –
Introductory White Paper. 2012.

[4] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang,
V. Gill, M. Nanduri, and R. Wattenhofer.
Achieving high utilization with software-driven
wan. In Proc. ACM SIGCOMM, 2013.

[5] X. Jin, H. Liu, R. Gandhi, S. Kandula,
R. Mahajan, J. Rexford, R. Wattenhofer, and
M. Zhang. Dionysus: Dynamic scheduling of
network updates. In Proc. ACM SIGCOMM, 2014.

[6] T. Koponen, M. Casado, N. Gude, J. Stribling,
L. Poutievski, M. Zhu, R. Ramanathan, Y. Iwata,
H. Inoue, T. Hama, and S. Shenker. Onix: A
distributed control platform for large-scale
production networks. In Proc. USENIX OSDI,
2010.

[7] D. Levin, M. Canini, S. Schmid, F. Schaffert, and
A. Feldmann. Panopticon: Reaping the benefits of
incremental sdn deployment in enterprise networks.
In Proc. USENIX Annual Technical Conference
(ATC), 2014.

[8] R. Mahajan and R. Wattenhofer. On Consistent
Updates in Software Defined Networks. In Proc.
12th ACM Workshop on Hot Topics in Networks
(HotNets), 2013.

[9] P. Skoldstrom et al. Towards unified
programmability of cloud and carrier
infrastructure. In Proc. European Workshop on
Software Defined Networking (EWSDN), 2014.

[10] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger,
and D. Walker. Abstractions for network update.
In Proc. ACM SIGCOMM, pages 323–334, 2012.

[11] S. Schmid and J. Suomela. Exploiting locality in
distributed sdn control. In Proc. ACM SIGCOMM
Workshop on Hot Topics in Software Defined
Networking (HotSDN), 2013.

[12] V. Sekar, S. Ratnasamy, M. K. Reiter, N. Egi, and
G. Shi. The middlebox manifesto: Enabling
innovation in middlebox deployment. In Proc. 10th
ACM Workshop on Hot Topics in Networks
(HotNets), 2011.

[13] A. Tootoonchian, S. Gorbunov, Y. Ganjali,
M. Casado, and R. Sherwood. On controller
performance in software-defined networks. In Proc.
USENIX Hot-ICE, 2012.

[14] P. Vicente and L. Rodrigues. SDX: A Software
Defined Internet Exchange. In Proc. USENIX
Open Networking Summit (ONS), 2013.

7

	Introduction
	Example
	Fast Waypoint Enforcement
	Incorporating LF
	Exact Algorithm
	Initial Computational Results
	Conclusion
	References

