
Provable Data Plane Connectivity with Local Fast Failover
Introducing OpenFlow Graph Algorithms

Michael Borokhovich1, Liron Schiff2, Stefan Schmid3

1 Ben Gurion University, Israel; 2 Tel Aviv University, Israel; 3 TU Berlin & T-Labs, Germany

ABSTRACT
Modern software-defined networks support the implemen-
tation of in-network failover mechanisms: mechanisms to
quickly re-establish connectivity in the data plane without
the interaction of the software controller. Interestingly, how-
ever, not much is known today about how to make use of
these mechanisms.

This paper shows a very strong result: there exist failover
implementations for OpenFlow that achieve a maximal ro-
bustness, in the sense that connectivity is always ensured
as long as the underlying physical network is connected. In
particular, we show that the problem of computing failover
tables is related to graph search, and present three different
algorithms achieving different tradeoffs, in terms of the num-
ber of required failover rules, the number of tags, as well as
the resulting path lengths.

Our work can also be seen as a first attempt to implement
classic graph algorithms in OpenFlow.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols

General Terms
Algorithms, Performance

Keywords
Software-Defined Networking, Graph Exploration

1. INTRODUCTION
Software-defined network architectures distinguish between

the data plane, consisting of the forwarding switches, and
the control plane, consisting of one or multiple software
controllers. Out-sourcing the control over the data plane ele-
ments to a logically centralized software controller simplifies
the network management, and introduces new flexibilities
and optimization opportunities.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HotSDN’14, August 22, 2014, Chicago, IL, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2989-7/14/08 ...$15.00.
http://dx.doi.org/10.1145/2620728.2620746 .

However, indirections via the control plane can come at
a cost, both in terms of communication overhead as well as
latency. Indeed, the reaction time to data plane events in the
control plane can be orders of magnitude slower compared
to a direct reaction in the network. [5] Especially for the
recovery of failures, a slow reaction is problematic, and the
indirection via the controller out of question. Accordingly,
recent SDN versions support the implementation of local fast
failover mechanisms: mechanisms that handle the failover
in the data plane directly. For example, OpenFlow, the
predominant SDN protocol today, supports conditional rules
whose forwarding behavior depends on the local state of the
switch; if links fail, an alternative forwarding port will be
chosen according to these pre-defined rules, and without any
controller interaction.

However, surprisingly little is known today about how to
implement such fast-failover mechanisms, that is, how to
algorithmically compute the conditional failover rules which
ensure a high robustness in different failure scenarios. More-
over, hardly anything is known about the achievable robust-
ness as well as the cost tradeoffs of different mechanisms,
e.g., in terms of the number of required conditional rules or
the resulting path lengths. This paper aims to close this gap.

Our Contribution. The main contribution of this paper
are local-fast failover algorithms that guarantee a very strong
notion of data plane robustness: connectivity is preserved
under arbitrary link failures, subject to the (weakest and
necessary) condition that the underlying physical network
be connected. Interestingly, these algorithms can directly
be implemented within modern OpenFlow standards. The
mechanisms could hence also be used as part of a compiler
for a higher-level programming language such as FatTire [11].

Our contribution can also be seen as a first study on how
to introduce graph algorithms into OpenFlow. The first
algorithm, Mod, is based on a simple modulo strategy to
compute failover paths; the second algorithm, DFS, is based
on a depth-first search strategy; and the third algorithm,
BFS, is based on a breadth-first search strategy. We investi-
gate the cost of our algorithms, in terms of the tag complexity
(the number of used tags), the rule complexity (the number
of conditional failover rules), as well as the resulting path
lengths, and show that different tradeoffs can be achieved.

2. BACKGROUND AND MODEL
While our work can also be seen in a more general context,

for the sake of concreteness, we will present our results using
the concepts and terminology of recent versions of OpenFlow,
the standard SDN protocol today. In general, the OpenFlow

protocol is based on a match-action concept: OpenFlow
switches store rules (installed by the controller) consisting of
a match and an action part. A packet matched by a certain
rule will be subject to the associated action. For example,
an action can define a port to which the matched packet
should be forwarded. An action can also add or change a tag
of a packet (a certain part in the packet header). Tagging
is a useful technique to equip packet instances with meta-
information; in fact, it is known that without tagging, failover
mechanisms are severely limited. [1] We will assume that
each switch has a group table: a forwarding table whose rules
include an ordered list of action buckets. Each action bucket
contains a set of actions to execute, and provide the ability
to define multiple forwarding behaviors. Each bucket in a
fast failover type table (short: FF table), is associated with
a parameter that determines whether the bucket is live; a
switch will always forward traffic to the first live bucket. As
the parameter to determine liveness, the programmer either
specifies an output port or a group number (to allow several
groups to be chained together).

Note that these failover tables need to be allocated before
the failure(s) happen. We will sometimes refer to the ini-
tial network (before the failures occur) as G0, and to the
remaining “sub-graph” after the failure as G′. The challenge
of how to compute robust failover tables for G0 without
knowing the actual failure scenario, i.e., G′, is addressed in
this paper. Specifically, we will present an algorithm that
ensures provable forwarding connectivity in G′, i.e., each
packet eventually reaches its destination, as long as G′ is
connected. Observe that this is a non-trivial result, given
the limited configuration possibilities OpenFlow offers. In
the following, we will often refer to the network switches as
nodes.

Local fast failover mechanisms are often used together
with additional, slower failover mechanisms. As such, the
main priority of the failover is to quickly re-establish con-
nectivity. Optimality e.g., in terms of path lengths or load
balancing, plays a secondary role: paths can later be im-
proved via the control plane. This two-stage approach is
attractive as it combines the advantages of both worlds. Nev-
ertheless, fast failover mechanisms may come with different
cost-performance tradeoffs, and we in this paper will study
the following metrics.

1. Rule complexity : How many additional rules (per node)
are required to implement the failover mechanism?

2. Tag complexity : How much tag space is needed in the
packets? (We will assume that a protocol requiring x
tags in the worst-case needs Θ(log x) bits tag space to
store the different tags.)

3. Route length: How long is the longest forwarding path
in G′? We are particularly interested in how much
longer the path can be compared to the shortest paths
in G′.

In the following, n will refer to the number of nodes in
the network, ∆ to the maximal node degree in G0, and
δ′ to the maximal distance between two nodes in G′. We
will use subscripts, e.g., ∆i, to denote the corresponding
value for the given node vi. Finally, we will refer to the
intended destination of a packet by d, and assume that all
switches in the network initially have a rule defining the port

Algorithm 1 Algorithm Mod

Input: current node: vi, packet dest: d, packet tag array:
{pkt.vj}j∈[n]

Output: output port: out
1: if no tag then {same as pkt.vi = 0}
2: out← default route(i, d)
3: else
4: out← (pkt.vi mod ∆i) + 1
5: pkt.vi ← out
6: while out failed do
7: out← (pkt.vi mod ∆i) + 1
8: pkt.vi ← out
9: return out

to which a packet destined to d should be forwarded. If the
corresponding link is down, the failover mechanism kicks in.

3. CONNECTIVITY MECHANISMS
This section investigates robust failover mechanisms pro-

viding provable data plane connectivity. To get acquainted
with the problem, we will first describe a simple solution
called Mod. Subsequently, we present two algorithms based
on graph-search techniques, called DFS and BFS, exploring
different points in the tradeoff space. While we will present
the idea and pseudo-code directly in the text, to improve
readability, some details of the OpenFlow failover tables
appear in the Appendix resp. in our technical report [13].

3.1 The Modulo Algorithm
The first algorithm Mod is simple: if a link is failed, an

alternative forwarding port is used in a round-robin fashion.
For this purpose, for switch vi with ∆i ports, we define an
arbitrary order on the outgoing ports p0 ≺ p2 ≺ . . . ≺ p∆i−1.
If a packet cannot be forwarded on a port pi as planned (due
to a link failure), the next port p(i+1 mod ∆) is chosen in
a modulo manner. This alone however is not sufficient to
provide connectivity, as the network reached via p(i+1 mod ∆)

may not include d. Hence, the packet may be returned to a
given switch multiple times, in the search for an alternative
path.

Accordingly, Mod maintains meta-information in the
packet header, using tagging. Concretely, for each node
v (a switch), a set of O(log ∆) bits are reserved in the tag
space, to implement a modulo counter c(v): whenever a
packet with counter c(v) arrives at switch v, the packet is
forwarded to the port c(v) mod ∆, and the counter for this
switch is incremented (c(v)← c(v) + 1).

Algorithm Mod is summarized in Algorithm 1 in pseudo-
code. We use the convention that tag = 0 denotes no tag;
positive tags indicate that the failover mechanism is active.
In the absence of failures, node vi should forward the packet
destined to d to port default route(i, d).

Algorithm Mod can be implemented with the following
tables, see Appendix and [13] for details. The modulo com-
putations are realized using 2∆i flow tables. The first table,
Table 0, tries to forward untagged packets via the default
route (stored in the group table). Packets with tag x > 0 are
sent to the corresponding Table x, where the next forwarding
port is tried; otherwise (sent bit sb = 0), the counter is
incremented.

Note that if the remaining network G′ is connected, a
packet will eventually reach its destination d. The proof is
by induction over the distance from d: a neighbor v of d will
eventually forward a packet to d (at most after ∆− 1 other
attempts). Similarly, a neighbor v′ of v in G′ will eventually
forward the packet to v. And so on, until the entry port of
the packet is reached.

Overall, a linear number of rules are needed to implement
this scheme, and for each switch vi we need to store a counter
assuming values between 0 and ∆i. Hence, we have the
following result.

Theorem 1. Mod ensures data plane connectivity when-
ever the data plane is physically connected. Mod has rule
complexity O(n) and tag complexity O(n · log ∆).

While simple, the Mod comes with a big drawback: in the
worst-case, a packet may have to travel far before reaching
its destination d.

3.2 The Depth-First Algorithm
There exist algorithms that ensure connectivity with

shorter paths. In particular, forwarding a packet pkt to
its destination d in the unknown graph G′ can be seen as a
graph search problem. Accordingly, in the following we show
how to realize a depth-first search in OpenFlow.

Upon a link failure, the DFS algorithm explores alterna-
tive routes in a depth-first fashion, implicitly constructing
a spanning tree. Towards this goal, for each node vi, we
reserve a certain part of the packet header pkt.vi.par, to
store the parent p(vi) of vi: the node from which the packet
was received the first time (indicated by the incoming port
in).

Algorithm DFS is summarized in Algorithm 2 in pseudo-
code. Here, pkt.vi = 0 denotes that no parent has been
selected yet. A node tries to forward the packet to each
neighbor, and only if this fails, returns the packet to the
parent.

How can this graph search algorithm be implemented in
OpenFlow? Figure 1 gives an overview of the required tables.
Overall, there are six types of tables. Table A first tries to
forward the packet along the default route (we have Group
0,j for each destination j), otherwise the packet is sent to
the tables A, B, C which are used to establish the spanning
tree; if no neighbor reaches the destination, the packet is
sent back to the parent (Table E). Finally, for each port x,
Table x is used to try and forward to x. The main OpenFlow
tables for this algorithm appear in the Appendix.

The number of hops traveled by a packet is upper bounded
by O(n), which improves significantly over Mod: a node is
visited at most twice. The tag complexity is O(n log ∆): a
parent pointer has to be stored in the packet for each node.
Finally, per node, O(∆) rules are required.

Theorem 2. DFS ensures data plane connectivity when-
ever the data plane is physically connected. DFS yields paths
of length at most O(n), and has rule complexity O(∆) and
tag complexity O(n log ∆).

3.3 The Breadth-First Algorithm
The paths computed by the DFS algorithm are still ineffi-

cient in the sense that the actual length of the route taken
by a packet does not depend on δ′, the shortest distance to
the destination d in the remaining network G′. Naturally, a

Algorithm 2 Algorithm DFS

Input: current node: vi, input port: in, packet dest: d,
packet failover global params: pkt.start, packet tag array:
{pkt.vj}j∈[n]

Output: output port: out
1: if pkt.start = 0 then
2: out← default route(i, d)
3: if out failed then
4: pkt.start← 1
5: pkt.vi.par ← 0
6: out← 1
7: else
8: if pkt.vi.cur = 0 then
9: pkt.vi.par ← in

10: out← pkt.vi.cur + 1
11: if out = ∆i + 1 then
12: out← pkt.vi.par
13: goto 19
14: while out failed or out = pkt.vi.par do
15: out← out+ 1
16: if out = ∆i + 1 then
17: out← pkt.vi.par
18: goto 19

19: pkt.vi.cur ← out
20: return out

breadth-first search algorithm has the potential to find more
competitive paths.

It turns out that breadth-first search algorithms can also
be implemented in OpenFlow. In the following, we present
a solution called BFS. Algorithm BFS is summarized in
Algorithm 3. BFS controls the radius at which the destina-
tion d is searched in each phase in a clever way; each node
v (other than the source) behaves as a leaf, and the first
time reached, v returns the packet right back to its parent;
on any other occasion v behaves as a DFS node, trying all
his neighbors and then returning to the parent. Again, a
spanning tree is constructed, and tags are used to store the
discovered parents. The full tables can be found at [13].

The tag complexity of BFS is O(n log ∆), due to the parent
pointers, and the number of rules is O(∆): note that in our

Table A

Table B

Table C

Group 0,j

Table x

Group x

if start=0 and dst=j:
 apply Group 0,j
 goto Table x+1

if in = cur[i] & cur[i]<∆𝑖 :
 goto Table cur[i] + 1

if in = cur[i] = ∆𝑖:
 goto Table C (return to parent)

if in ≠ cur[i]
 return packet to in

forward packet to par[i]

try default route for dest j
If succeeded:
 set sent = 1

if not sent:
 apply Group x
 goto Table x+1
if sent: Drop

set cur[i] = x
try forward to x

Figure 1: Overview of DFS tables for node i.

Table A

Table B

Table C

Group 0,j

Table x

Group x

if start=0 and dst=j:
 apply Group 0,j
 goto Table 1

if cur[i]=0 & par[i]=0 :
 set par[i] = in, goto Table C
if in = cur[i] & cur[i]<∆𝑖 :
 goto Table cur[i] + 1
if in = cur[i] = ∆𝑖:
 goto Table C
if in ≠ cur[i]
 return packet to in-port

forward packet to par[i]

try default route for dest j
If succeeded:
 set sent = 1

if not sent:
 apply Group x
 goto Table x+1
if sent: Drop

set cur[i] = x
set start = 1
try forward to x

Figure 2: Overview of BFS tables for node i.

Algorithm 3 Algorithm BFS

Input: current node: vi, input port: in, packet dest: d,
packet failover global params: pkt.start, packet tag array:
{pkt.vj}j∈[n]

Output: output port: out
1: if pkt.start = 0 then
2: out = default route(i, d)
3: if out failed then
4: pkt.start← 1
5: pkt.vi.par ← 0
6: out← 1
7: else
8: if pkt.vi.cur = 0 and pkt.vi.par = 0 then
9: pkt.vi.par ← in

10: out← in
11: return out
12: if pkt.vi.cur 6= in and pkt.vi.par 6= in then
13: out← in
14: return out
15: out← pkt.vi.cur + 1
16: if out = ∆i + 1 then
17: out← pkt.vi.par
18: pkt.vi.cur ← 0
19: goto 27

20: while out failed or out = pkt.vi.par do
21: out← out+ 1
22: if out = ∆i + 1 then
23: out← pkt.vi.par
24: pkt.vi.cur ← 0
25: goto 27

26: pkt.vi.cur ← out

27: if out = 0 then
28: out← 1
29: while out failed do
30: out← out+ 1
31: if out = ∆i + 1 then
32: Drop
33: pkt.vi.cur ← out
34: return out

implementation, no extra rules are needed for the counting.
Finally, the path length depends on the number of nodes in
the neighborhood of the source at distance at most δ′. Let
Γr denote the number of nodes at distance at most r from

the source node s, and define D =
∑δ′

r=1 Γr(s), then at most
O(D) nodes are visited by a packet: the traffic remains more
local.

Theorem 3. BFS ensures data plane connectivity when-
ever the data plane is physically connected. BFS has rule
complexity O(n log ∆), tag complexity O(∆), and path lengths
are at most O(D), where D is the sum of nodes at distances
up to δ′.

3.4 Remarks
We conclude the section with some remarks.

How optimal are the presented algorithms?
It turns out that there is no algorithm that ensures path

length less than Ω(n), independently of δ′. This follows
from literature on agent-based graph exploration, e.g., [10],
where data can be stored in the visited nodes (referred to
as “putting pebbles” or “using white-boards”). While our
algorithms can store information not only in the nodes but
also in the packets (tags), our model is equivalent to an
algorithm that has only pebbles. Hence, our DFS algorithm
achieving O(n log ∆) tag complexity with only two traversals
per edge, is competitive with known algorithms.
What if G′ is not connected?

If G′ is disconnected, certain destinations necessarily be-
come unreachable. Nevertheless, it is desirable that local
failover mechanisms “behave well” in such settings. In partic-
ular: they should discover the disconnection and terminate.

There is a simple technique to render our algorithms robust
to such failures. We simply need to add two bits per every
node to the tag array in the packet’s header (i.e., the tag
complexity is increased by 2n additional bits). The first bit,
b1, will be raised by a node on the first time it is visited.
The second bit, b2, will be raised by a node once it “tried”
sending the packet to all of its neighbors. Each node, upon
packet reception, checks the b1, b2 bits of all the nodes. Any
node which detects that all the visited nodes also “tried” all
their neighbors, will discard the packet. The above condition
implies that all possible paths in the connected component
were traversed by the packet.

For the DFS algorithm, the stopping condition can also be
implemented by simply checking if the DFS root has “tried”
all its neighbors. Notice, in Algorithm 2, the DFS root node
will have value 0 for its parent. Thus, we can check the out
value before returning it in Line 20. Once the out value is 0,
the packet will be discarded.

4. RELATED WORK
Outages due to link failures are not uncommon, [5, 8] and

robust routing mechanisms are provided by many networks
protocols today. For example, robust Multiprotocol Label
Switching (MPLS) supports local and global path protection
to compute shortest backup paths around an outage area [9,
14], where “shortest” often refers to congestion [12, 15]. Al-
ternative solutions to make routing more resilient rely on
special header bits (e.g., to determine when to switch from
primary to backup paths, as in MPLS Fast Reroute [9], or to
encode failure information to make failure-aware forwarding
decisions [4, 7]), or on the fly table modifications [6].

Recently, Feigenbaum et al. [2] made a first step towards
a better theoretical understanding of resilient routing tables.
The authors prove that routing tables can provide guaranteed
resilience (i.e., loop-freeness) against a single failure, when
the network remains connected. In [5], Liu et al. introduce
the notion of ideal forwarding-connectivity : for any failure
scenario where the network remains physically connected,
the forwarding choices should guide packets to their intended
destinations. Ideal forwarding-connectivity is the strongest
resilience that can be provided by the data plane, and is
equivalent to the guarantees given by our algorithms. In
contrast to [5], we in this paper study failover mechanisms for
software-defined networks. In particular, the failover scheme
in [5] is based on link-reversal algorithms [3], which has the
limitation that it requires to maintain dynamic state in the
routers and is not applicable to OpenFlow. In this paper, we
have presented algorithms without this limitation, and also
analytically studied the corresponding complexity tradeoffs.

The paper closest to ours is [1], which studies SDN local fast
failover mechanisms without tagging. The authors prove that
without tagging, local fast failover mechanisms are severely
limited, in the sense that connectivity cannot be provided
already for a small number of link failures, and even if the
physical network is still well-connected. Moreover, the paper
shows a tradeoff between robustness and load-balancing. In
contrast, we in this paper have presented algorithms that
maintain connectivity under arbitrary link failures.

5. CONCLUSION
This paper presented the first fast failover mechanism for

OpenFlow networks which provably guaranteed data plane
connectivity whenever this is possible. Such a mechanism can
be attractive in many scenarios, e.g., in order to find in-band
paths to the controller, or for network troubleshooting.

We expect that our algorithms scale up to 500-node net-
works using switches like our NoviKit 250 switch, with 32MB
flow table space and full support for extended match fields.
In such networks, the packet header overhead can reach 1KB
which limits the size of the data section of the packet to less
than 0.5KB. For scenarios where high data transfer rates are
crucial, a more compact version is possible, using only about
600 bits of packet header, which supports up to 40 nodes.

Acknowledgments. Michael Borokhovich is supported
in part by the Israel Science Foundation (grant 1549/13).
Liron Schiff is supported by the European Research Council
(ERC) Starting Grant no. 259085 and by the Israel Science
Foundation Grant no. 1386/11. Stefan Schmid is supported
by the EIT ICT project Mobile SDN.

6. REFERENCES
[1] M. Borokhovich and S. Schmid. How (not) to shoot in

your foot with sdn local fast failover: A
load-connectivity tradeoff. In Proc. 17th International
Conference on Principles of Distributed Systems
(OPODIS), 2013.

[2] J. F. et al. Ba: On the resilience of routing tables. In
Proc. ACM Symposium on Principles of Distributed
Computing (PODC), pages 237–238, 2012.

[3] E. Gafni and D. Bertsekas. Distributed algorithms for
generating loop-free routes in networks with frequently
changing topology. Communications, IEEE
Transactions on, 29(1):11–18, Jan 1981.

[4] K. Lakshminarayanan, M. Caesar, M. Rangan,
T. Anderson, S. Shenker, and I. Stoica. Achieving
convergence-free routing using failure-carrying packets.
In Proc. SIGCOMM, pages 241–252, 2007.

[5] J. Liu, A. Panda, A. Singla, B. Godfrey, M. Schapira,
and S. Shenker. Ensuring connectivity via data plane
mechanisms. In Proce. 10th USENIX NSDI, pages
113–126, 2013.

[6] J. Liu, B. Yan, S. Shenker, and M. Schapira.
Data-driven network connectivity. In Proc. HotNets,
pages 8:1–8:6, 2011.

[7] S. S. Lor, R. Landa, and M. Rio. Packet re-cycling:
eliminating packet losses due to network failures. In
Proc. HotNets, pages 2:1–2:6, 2010.

[8] D. Madory. Renesys blog: Large outage in pakistan.
Blog, 2011.

[9] P. Pan, G. Swallow, and A. Atlas. Fast reroute
extensions to RSVP-TE for LSP tunnels. In RFC 4090,
2005.

[10] D. Peleg. Distributed computing: a locality-sensitive
approach. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 2000.

[11] M. Reitblatt, M. Canini, A. Guha, and N. Foster.
Fattire: Declarative fault tolerance for software-defined
networks. In Proc. HotSDN, pages 109–114, 2013.

[12] H. Saito and M. Yoshida. An optimal recovery LSP
assignment scheme for MPLS fast reroute. In Proc.
NETWORKS, 2002.

[13] Tech Report. http://www.net.t-labs.tu-
berlin.de/∼stefan/hotsdn14tr.pdf. Technical report,
pdf, 2014.

[14] J.-P. Vasseur, M. Pickavet, and P. Demeester. Network
Recovery: Protection and Restoration of Optical,
SONET-SDH, IP, and MPLS. Morgan Kaufmann
Publishers Inc., 2004.

[15] D. Wang and G. Li. Efficient distributed bandwidth
management for MPLS fast reroute. IEEE/ACM Trans.
Netw., 2008.

APPENDIX
A. MOD FAILOVER TABLES

Flow Table A (Start)

Match Instructionspkt.vi.cur dst
0 1 Gr 0.1, Table 1
0 2 Gr 0.2, Table 1

.
0 n Gr 0.n, Table 1
∗ ∗ Table B

Flow Table B
Match Instructionspkt.vi.cur

1 Table 2
2 Table 3

.
∆i − 1 Table ∆i

∆i Table 1

Table 1: Mod: Flow Tables for switch i.

Group Actions
Gr 0.1 〈sb← 1,Fwd Route(1)〉
Gr 0.2 〈sb← 1,Fwd Route(2)〉
.
Gr 0.n 〈sb← 1,Fwd Route(n)〉
Gr 1 〈sb← 1, T (i)← 1,Fwd 1〉
Gr 2 〈sb← 1, T (i)← 2,Fwd 2〉
.
Gr ∆i 〈sb← 1, T (i)← ∆i,Fwd ∆i〉

Table 2: Mod: Group Table of switch i.

Flow Table 1
Match Instructionssb

0 Gr 1, Table 2
1 Drop

. . .

Flow Table ∆i

Match Instructions
sb

0 Gr ∆i, Table ∆i + 1
1 Drop

. . .

Flow Table 2∆i − 1

Match
Instructionssb

0 Gr ∆i − 1, Drop
1 Drop

Table 3: Mod: Flow Tables for switch i.

B. DFS FAILOVER TABLES

Group Actions
Gr 0.1 〈sb← 1,Fwd Route(1)〉
Gr 0.2 〈sb← 1,Fwd Route(2)〉
.
Gr 0.n 〈sb← 1,Fwd Route(n)〉
Gr 1 〈sb← 1, pkt.vi.cur ← 1, pkt.start← 1,Fwd 1〉
Gr 2 〈sb← 1, pkt.vi.cur ← 2, pkt.start← 1,Fwd 2〉
.
Gr ∆i 〈sb← 1, pkt.vi.cur ← ∆i, pkt.start← 1,Fwd ∆i〉

Table 4: DFS: Group Table of switch i.

Flow Table 1
Match Instructionssb

0 Gr 1, Table 2
1 Drop

. . .

Flow Table ∆i − 1

Match Instructionssb

0 Gr ∆i − 1, Table ∆i

1 Drop

Flow Table ∆i

Match Instructions
sb

0 Gr ∆i,Table 0.2 (Send-Parent)
1 Drop

Table 5: DFS: Flow Tables of switch i.

Flow Table A (Start)

Match Instructionspkt.start dst

0 1 Gr 0.1, Table 1
0 2 Gr 0.2, Table 1

.
0 n Gr 0.n, Table 1
∗ ∗ Table B

Flow Table B
Match Instructionsin pkt.vi.cur pkt.vi.par

1 0 ∗ pkt.vi.par ← in, Table 2
1 1 2 Table 3
2 2 3 Table 4
3 3 4 Table 5

.
∆i − 2 ∆i − 2 ∆i − 1 Table ∆i

∆i − 1 ∆i − 1 ∆i Table C
∗ 0 ∗ pkt.vi.par ← in, Table 1
1 1 ∗ Table 2
2 2 ∗ Table 3
3 3 ∗ Table 4

.
∆i − 1 ∆i − 1 ∗ Table ∆i

∆i ∆i ∗ Table C
1 ∗ ∗ Fwd 1
2 ∗ ∗ Fwd 2

.
∆i ∗ ∗ Fwd ∆i

Flow Table C (Send-Parent)

Match Instructionspkt.vi.par

1 Fwd 1
2 Fwd 2

.
∆i Fwd ∆i

Table 6: DFS Flow Tables of switch i.

	Introduction
	Background and Model
	Connectivity Mechanisms
	The Modulo Algorithm
	The Depth-First Algorithm
	The Breadth-First Algorithm
	Remarks

	Related Work
	Conclusion
	References
	MOD Failover Tables
	DFS Failover Tables

