
Software Transactional Networking:
Concurrent and Consistent Policy Composition

Marco Canini1 Petr Kuznetsov1,2 Dan Levin1 Stefan Schmid1

1 TU Berlin / T-Labs 2 Télécom ParisTech
<first name>@net.t-labs.tu-berlin.de

Rev 014323f built on Thu Jun 6 15:13:07 CEST 2013 by dlevin

ABSTRACT
It seems natural to imagine that SDN policy specification
and control is distributed, and this paper focuses on the re-
sulting concurrency issues. Indeed, conflicts among concur-
rent policy updates may result in serious inconsistencies on
the data plane, even when each update is installed with per-
packet consistent update semantics. This paper introduces
the problem of consistent composition of concurrent policy
updates. Intuitively, consistent concurrent policy composi-
tion must appear as though there is no concurrency neither
between any policy updates, nor between a policy update
and in-flight packets on the data plane.

We propose an elegant policy composition abstraction
based on a transactional interface with all-or-nothing se-
mantics: a policy update is either committed, in which
case the policy is guaranteed to compose consistently over
the entire network and the update is installed in its en-
tirety, or aborted, in which case, no packet is affected by it.
Consequently, the control application logic is relieved from
the cumbersome and potentially error-prone synchronization
and locking tasks, and control applications are kept light-
weight. In this paper, we also sketch a simple implementa-
tion of the transactional synchronization: our approach is
based on fine-grained locking on network components and
avoids complex state machine replication.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Network operating systems

Keywords
Software Defined Network, Control plane, Network policy

1. INTRODUCTION
The raison d’être of Software Defined Networking (SDN)

is to enable the specification of the network-wide policy, that
is, the desired high-level behavior of the network. While

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HotSDN’13, August 16, 2013, Hong Kong, China.
Copyright 2013 ACM 978-1-4503-2178-5/13/08 ...$15.00.

SDN makes this possible, there are several other require-
ments that are not immediately accommodated by this
model. First, the network-wide policy unlikely comes from
a single, monolithic specification, but rather, it is composed
of policy updates submitted by different functional modules
(e.g., access control, routing, etc.). It may ultimately come
from multiple human operators, each of which is only re-
sponsible for a part of it. Second, while control in SDN is
logically centralized, important considerations such as high
availability, responsiveness, and scalability dictate that a ro-
bust control platform be realized as a distributed system.

To support modular network control logic and multi-
authorship of network policy, we face the issues of policy
composition and conflict resolution. In previous work, Fos-
ter et al. [3] and Ferguson et al. [2] have addressed these
two issues to a good extent in centralized (or sequential)
settings—namely, in which there exists a central point for
resolving policy conflicts and serializing policy composition.
In this work, we bring existing approaches one step further,
and present a solution for distributed composition of net-
work policies that supports concurrency among the network
control modules.

To satisfy commercial deployment requirements, Onix [7]
realizes a control platform that relies on existing distributed
systems techniques and builds upon the notion of a Network
Information Base (NIB), i.e., a data structure that main-
tains a copy of the network state. Different control modules
can operate concurrently by reading from and writing to
the NIB. While Onix handles the replication and distribu-
tion of the NIB, it does not provide policy synchronization
semantics. Instead, Onix expects developers to provide the
logic that is necessary to detect and resolve conflicts of pol-
icy specification. In this paper, we argue that synchronized
policy composition must be an indispensable element of the
distributed control platform.

We illustrate in Section 2 that a concurrent execution of
overlapping policy updates (i.e., affecting overlapping sets
of traffic flows), may result in serious inconsistencies on the
data plane (e.g., in violation to the policy, traffic not be-
ing forwarded to an IDS middlebox). To fix this, we need
to ensure that concurrent overlapping policy updates are
consistently synchronized. Informally, we propose to define
consistency by reducing it to the equivalence to a sequen-
tial policy composition, in the spirit of how correctness is
defined for concurrent data structures [6]. We distinguish
between strong and weak consistency levels for policy com-
position. Informally, we say that strongly consistent pol-
icy composition results in all data plane traffic experiencing



the same globally ordered sequence of composed policy up-
dates. Weakly consistent policy composition allows differ-
ent traffic flows to experience differently ordered sequences
of composed policy updates. In the absence of permanently
pending policy updates, both strongly and weakly consistent
concurrent policy compositions eventually lead to the same
network-wide forwarding state.

Of course, we envision that some policy updates cannot be
installed either because their sequential composition is not
defined [2, 3] (e.g., mutually exclusive forwarding actions)
or due to unforeseen network conditions (e.g., failures or
scarce network resources). Therefore, we stipulate that the
synchronization interface should be transactional. A policy
update submitted by a control module either commits, i.e.,
the update is successfully installed, or aborts, i.e., it does
not affect the data plane. We term our approach “Software
Transactional Networking”, inspired by the software trans-
actional memory (STM) abstraction for optimistic concur-
rency control [12].

Implementing strongly consistent transactional synchro-
nization can be achieved by centrally serializing the requests
at a single master controller or using state-machine replica-
tion. However, we believe such heavy-weight solutions are
not required, since weakly consistent policy composition is
good enough for many cases. We describe a surprisingly
simple light-weight implementation of it that only requires
low-level, per-switch port conflict resolution, which can be
implemented by, e.g., maintaining one lock per hardware
switch. Our implementation assumes that sequential com-
position rules are explicitly (but possibly incompletely) spec-
ified using the earlier work [2, 3], and ensures that the data
plane is never affected by partially installed policies using
a variation of the two-phase update protocol of Reitblatt et
al. [11].

Overall, we believe this paper is the first to argue that
policy synchronization protocols must be first-class citizens
in software-defined networking by presenting counter exam-
ples and describing solutions. The rest of the paper is or-
ganized as follows. In Section 2, we demonstrate scenarios
in which näıve NIB-based approaches to implementing con-
current policy updates result in inconsistencies in the data
plane. In Section 3, we briefly describe the details of our
model and state the problem of consistent policy composi-
tion. In Section 4, we sketch our implementation of weakly
consistent policy composition. We overview the related work
in Section 5. We conclude by discussing limitations of our
results and speculating on future work in Section 6.

2. CONCURRENT COMPOSITION
We now discuss two simple examples that illustrate the

need to extend previous work on SDN policy composition
by addressing the concurrency issues in the distributed con-
troller platform setting. Figure 1(a), illustrates a logical
Onix-like SDN architecture in which two distributed con-
troller instances run three functional modules—a packet re-
peater (hereafter called shortest path routing), a web traffic
monitor and a waypoint enforcement module coupled to an
Intrusion Detection System (IDS).

We begin with the policy composition scenario introduced
in Frenetic [3], a network programming language and run-
time system to automatically and correctly “compose” poli-
cies from separate control modules, and compile them to
low-level forwarding rules. Assume the initial network pol-

Traffic
Monitoring

Shortest
Path Routing

Network
Info. Base

Waypoint
Enforcement

Network
Info. Base

(a) 3 control modules in an
Onix-like architecture.

Traffic
Monitoring

TCP 80

Waypoint
Enforcement
Src 10.0.1/24

Shortest Path Routing

(b) Per-policy flow-space.

Figure 1: Three composed policies and their respec-
tive flow-space overlaps.

icy comes from just the shortest path routing and web traffic
monitor. As these modules generate overlapping policy up-
dates, they must compose their forwarding rules before any
rule may be installed. The crux of the composition is that
the correct forwarding rule priorities must be chosen such
that the more specific web-monitoring rule matches packets
with higher priority than the overlapping shortest path for-
warding rule. As we illustrate in the flow-space diagram in
Figure 1(b), the policy whose action applies to the striped
region of flow-space, for example, must be defined consis-
tently over the entire network.

Now, assume that the monitoring and forwarding poli-
cies were generated one after the other, by the output of
two independent (yet not concurrent) controller instances.
Even in the absence of concurrency, some synchronization
step would be necessary for the latter controller instance to
detect and resolve which policy should apply to any over-
lapping region of flow-space. For example, the composi-
tion of a monitor update request to count HTTP packets
(tcp_port=80→ count)1 with a forwarding update request
to forward packets arriving from address 10.0/16 to port 2
(src=10.0.* → fwd(2)) should result in the following for-
warding rules regardless of the order in which the requests
are processed:

Priority Match Actions
0 tcp_port=80 count

0 src=10.0.* fwd(2)
1 src=10.0.* ∧ tcp_port=80 count; fwd(2)

In the absence of such an agreement, conflicting rule prior-
ities may be selected and different paths through the network
would yield different policies, by virtue of the order in which
the respective controller instance completed its update. For
this specific case, the resulting data-plane inconsistency at
the end of both updates would be that some paths through
the network monitor web traffic volume while some do not.
Note that even when both controllers utilize per-packet con-
sistent network update semantics [11], the matching rule pri-
ority issue is not guaranteed to be resolved.

Next, we assume that multiple controller instances execute
asynchronously and we show the possibility that an inconsis-
tent policy composition arises. Consider two separate con-
troller instances executing the three functional modules as
depicted in Figure 1(a) over some time period (t0, t1), based

1Although in OpenFlow each rule is implicitly associated
with packet and byte counters, for presentation sake we rep-
resent “count” as an explicit action.



Waypoint
Enforcement
Src 10.0.1/24

Shortest Path Routing

Traffic
Monitoring

TCP 80

Shortest Path Routing

Shortest Path Routing

Time
t0

i

j

k

tE t1

Traffic
Monitoring

TCP 80

Waypoint
Enforcement
Src 10.0.1/24

Shortest Path Routing

Figure 2: Possible policy composition outcomes
from two concurrent policy updates. Conflicting
compositions (crossed out) must be avoided.

on their view of the network. Each controller instance exe-
cutes with the goal of installing its resulting composed pol-
icy, in the form of new or modified flow-table entries into the
underlying switches, using per-packet consistent updates.

Note that whenever policy updates compose trivially, i.e.,
they affect disjoint network-wide slices of the flow-space,
concurrency issues resolve automatically (as in the case of
the FlowVisor [13]). In contrast, when composition is non-
trivial, given the presence of concurrency, the earlier policy
composition problem becomes more difficult to detect and
resolve. Without synchronization it is impossible at any sin-
gle point in time for a particular controller instance to ensure
that its policy specification does not conflict with that of any
other’s (see the companion technical report [1]).

We illustrate an example using two controller instances A
and B running concurrently in Figure 2. At time t0, con-
troller A begins a per-packet consistent network update to
begin collecting web traffic statistics. From the perspective
of controller A, it begins a transition along path i. Soon af-
terward, at time tE , an influx of scanning traffic from source
network 10.0.1/24 triggers a call-back from the IDS module
of controller instance B to execute a waypoint forwarding
rule to capture the scanning traffic for analysis. As the con-
sistent update from controller A is still in progress, controller
B computes an update as though it were transitioning along
edge j. By time t1, once the update execution of A and B
have completed, at least three rules with different match-
ing priorities will have been installed at each switch for the
overlapping region of flow-space depicted in stripes in Fig-
ure 1(b). In the absence of a policy synchronization seman-
tic, any of the three illustrated end-states may be reachable
in the network. Each crossed-out flow-space diagram vio-
lates either the monitoring or waypoint enforcement policy,
respectively. The goal of concurrent consistent policy com-
position is to ensure that only one such final state is reached
eventually, everywhere in the network, and that the final
state is not in violation of the policies which lead to its in-
stallation.

3. THE STN ABSTRACTION
This section gives an overview of the Software Transac-

tional Networking (STN) architecture we propose. This ar-
chitecture relies on a middleware offering a simple trans-
actional interface where policy updates can be applied; the
middleware implements the updates correctly and efficiently.
We define what correctly means below. The discussion of ef-

ficient implementations is postponed to the subsequent sec-
tion.

3.1 Interface
Concurrent policy updates may conflict in the sense that,

intuitively, they may apply mutually exclusive actions to
overlapping sets of packets. The goal of the synchroniza-
tion layer of the network control platform is to make sure
that all requests are composed in a “meaningful” manner,
so that every packet in the network does not experience an
inconsistent policy composition. On the other hand, if some
conflicting policies cannot be automatically composed,2 the
STN layer may reject some requests. In that case, the corre-
sponding control modules receive a nack response equipped
with some meta-information explaining what kind of conflict
was witnessed.

Formally, a controller module tries to install a new policy p
(a collection of rules to be installed at different switches) by
invoking apply(p). The invocation may return ack meaning
that the policy has been installed or nack(e) meaning that
the policy has been rejected, where e is the explanation why.

3.2 Preliminaries
Before we can introduce our notions of update consistency,

some formalism is needed. We call the sequence of invoca-
tions and responses of policy-update requests plus all data-
plane events (such as data packet arrivals and departures at
the ports of the switches), a history H. We say that request
r1 precedes request r2 in H, and we write r1 ≺H r2, if the
response of r1 precedes the invocation of r2. Note that, in
a concurrent execution, ≺H is a partial order on the set of
requests in H. A request r is complete in H if H contains
a response of r. A complete request is said to be committed
in H if its response is ack, or aborted otherwise.

For a history H, let Pc(H) denote the set of policies result-
ing from sequential composition of all committed policies in
H in the order respecting ≺H , i.e., no request r is (sequen-
tially) processed before any request r′ such that r′ ≺H r.
Let Pi(H) be the set of policies that result from a sequential
composition of a subset of policies submitted by incomplete
requests in H. Thus, a policy p◦p′ such that p ∈ Pc(H) and
p′ ∈ Pi(H), is a composition of all already installed policies
and a subset of policies that are being installed in H.

Following [11], we stipulate that every packet joining the
network incurs a set of traces: sequences of causally related
located packets, i.e., (packet, port) pairs, indicating the order
in which the packets traverse the network. Informally, a
trace is consistent with a policy p [11] if all the events of the
trace are triggered respecting p. For a trace π in a history
H, let Hπ denote the prefix of H up to the first event of
π (i.e., up to the moment when the corresponding packet
enters the network).

3.3 Consistency
Intuitively, we want to ensure that every trace in H re-

spects a policy resulting from a consistent composition of
previously and concurrently installed policies. We distin-
guish between strong and weak consistent composition. In
the strong version, policy-update requests are composed in

2Note that certain conflicts can be arbitrated, e.g., by re-
quiring a priori knowledge of a strict priority order across
modules as in [2].



Traffic
Monitoring

Shortest
Path Routing

Waypoint
Enforcement

STN Middleware

apply(p) ack

Figure 3: A logical representation of the STN mid-
dleware.

the same linear order, and in the weak one incomplete poli-
cies can be composed arbitrarily.

For example, weakly consistent composition allows the
scenario depicted in Figure 2, where packets can be affected
by any policy update that is not yet completed (correspond-
ing to the policies along paths i and j in the figure). In
contrast, strongly consistent policy may only take one of
the paths, i.e., before both updates complete, all the traffic
is processed either according to the one of the concurrent
policy updates or the other one, and then it is processed by
the composition of the two.

Formally, we say that a history H provides weakly consis-
tent composition if for every trace π in H, there exist policies
p ∈ Pc(Hπ) and p′ ∈ Pi(Hπ), such that π respects p◦p′ (the
composition of p and p′).

Respectively, a history H provides strongly consistent
composition if there exist a total order S = (p1, p2, . . .)
of policies installed by requests in H such that (1) S re-
spects ≺H , and (2) every trace π in H respects a policy
p1 ◦ p2 · · · pi−1 ◦ pi that consists of all policies submitted by
committed requests in Hπ and a subset of policies submitted
by a subset of incomplete requests in Hπ. In other words, we
require that there exists some global order in which policies
evolve.

Note that we deliberately leave specifying the details of
how exactly the sequential composition is done to the con-
trol logic since this is in general application-specific (and
realizable, e.g., through previous work in [3]). In particular,
for our weaker notion of consistency, concurrently commit-
ted requests may be required to commute, i.e., their sequen-
tial composition results in the same policy regardless of the
order in which they are applied. Indeed, since we allow
concurrently installed policies to be witnessed by different
traces to be composed in arbitrary order, we may want this
order to be effectively the same (e.g., recall the composition
of the monitor update and the shortest path routing update
in Section 2).

4. THE STN MIDDLEWARE
In this section, we sketch a simple implementation of

weakly consistent policy composition. We investigate a pro-
posal for strongly consistent policy composition in a separate
technical report [1]. On the progress side, we guarantee that
every request eventually completes by returning ack or nack.
To filter out a trivial solution that always returns nack, we

require that no policy-update request aborts, unless it faces
a conflicting policy with which it cannot be composed. The
exact definition of a conflict is left to the control application;
a practical definition comprises regarding mutually exclusive
actions to overlapping sets of packets as conflicts.

The basic building block of our solution is the two-phase
update algorithm [11]. In the first phase, the algorithm first
installs the new policy on the internal ports3 of the network
(in arbitrary order) for packets with a unique tag number. In
the second phase, the algorithm updates the ingress ports
of the network (in arbitrary order) to equip all incoming
packets with the new tag number. This way, while the policy
update is in progress, every packet is processed either only
by the old policy or only by the new one, but never a mixture
of both.

Several implementations are possible based on different
granularity of locking. A trivial solution that provides con-
sistency could maintain a global lock on the entire network:
To install a new policy, a controller grabs the global lock and
then runs the two-phase update algorithm in the absence of
contention. Assuming that the global lock is implemented in
the starvation-free manner (e.g., by a fair central server), we
obtain a solution providing strongly consistent composition.

Below we describe a more intelligent algorithm that only
requires a weak form of local (per-switch) synchroniza-
tion. Our algorithm assumes that each switch exports an
atomic read-modify-write operation rmw(x,m, f), where x
is a switch, m ⊆ States is a “mask” matching a subset of
the forwarding rules in x’s state, and f : 2States → 2States is
a function that updates the part of the state of x matching
m based on the read value. However, note that we do not
necessarily require the switches to implement this atomic
read-modify-write operation; in a NIB-based implementa-
tion of STN, this operation may be incorporated into the
NIB itself.

To illustrate by example, when a control module wants to
collect statistics on all packets with tcp_port=80 arriving
to switch x, it should check if x currently maintains rules
that affect packets to TCP port 80. If this is the case, e.g.,
x forwards all packets with src=10.0.* to port 2 (see the
example in Section 2), then function f stipulates that the
new rules to be added to the configuration of x are:

Priority Match Actions
0 tcp_port=80 count

1 src=10.0.* ∧ tcp_port=80 count; fwd(2)

The pseudocode of our algorithm is sketched in Algo-
rithm 1. A controller first chooses a unique tag number,
and then goes through every switch in the network. In the
first phase of the algorithm, the controller tries to atomically
install the new policy using the read-modify-write (confined
in the atomic block) at every switch. If, at a given switch,
the currently installed policy p cannot be composed with ex-
isting policies, all previous updates are rolled back and nack
is returned, together with the information about conflicting
policies.

In the second phase, the controller updates the ingress
ports of every switch to tag the incoming traffic with the
new number, computed based on the tags of previously in-
stalled policies. Note that we hide some extra complexity

3Internal and ingress ports are defined as per [11].



procedure apply(p)
tag := choose a unique id for the new policy;
foreach switch x do

atomic{
if x can be composed with p (wrt f) then

foreach subset s of tagged policies at x do
tag′ := the composition of tags of s and tag;
add the composed set of rules marked with
tag′ to x;

end

else
remove all previously installed rules;
return nack(e), where e is the reason why;

end
}

end

foreach switch x do
foreach ingress port i of x do

atomic{
tag′ := the composition of tags at i and tag;
add the rule to tag all traffic to i with tag′;

}
end

end
return ack;

Algorithm 1: Concurrent policy update algorithm:
code for apply(p).

here: we need to make sure that all policies that may coex-
ist in the network are represented at every affected switch.
Therefore, we may need to concurrently maintain a separate
tag number for each subset of previously and concurrently
installed policies. This brings new interesting challenges re-
lated to consistent tag generation and garbage collection of
obsolete policies (see [11] and the discussion in Section 6).

The correctness of the algorithm stems from the fact that
when a packet that arrives at an ingress port is processed,
it obtains a tag number of a policy that has been previously
installed at all internal ports of the network. Moreover, from
the moment when an update request for policy p is complete,
every packet to arrive is processed according to a composed
policy that contains p. Also, the composed policy trivially
preserves the real-time order of non-overlapping requests.
Thus, we implement weakly consistent policy composition.
Finally, assuming atomic read-modify-write primitives, we
observe every policy-update request commits, unless it wit-
nesses a policy it cannot be sequentially composed with.

5. RELATED WORK
The need for a distributed control plane has already been

motivated in different contexts, e.g., to reduce the latency
of reactive control [5], to place local functionality closer to
the data plane [4], to improve Internet routing [8] by out-
sourcing the route selection, and so on. The focus of this
paper is on how to design a distributed control plane which
supports concurrency but yet consistency in policy compo-
sition.

Our work builds upon two recent threads of research: (1)
consistent network updates [11] and (2) abstractions for hor-
izontal and vertical composition [3, 10].

In [11], Reitblatt et al. introduce the notion of consis-
tent network updates that guarantee that during transition
from an initial configuration to a new one every packet (per-
packet consistency) or every flow (per-flow consistency) is

processed either by the initial configuration or by the new
one, but never by a mixture of the two. In a centralized set-
ting, they proposed a two-phase per-packet consistent up-
date algorithm that first installs the new configuration on
the internal ports and then updates the ingress ones.

Foster et al. [3] present the Frenetic language, which in-
cludes a run-time system to correctly compose policy mod-
ules to low-level rules on switches. Compared to the al-
ternative OpenFlow interface, the language simplifies net-
work programming as it circumvents the coupling of differ-
ent tasks (like routing, access control, traffic monitoring,
etc.). As we have shown, the modular composition concepts
in [3] are a very useful abstraction also for the design of a
distributed control plane.

We are not the first to explore SDN architecture as a dis-
tributed system. A study of SDN from a distributed sys-
tems perspective is given in Onix [7], a control plane plat-
form designed to enable scalable control applications. Its
contribution is to abstract away the task of network state
distribution from control logic, allowing application devel-
opers to make their own trade-offs among consistency, dura-
bility, and scalability. However, Onix expects developers
to provide the logic that is necessary to detect and resolve
conflicts of network state due to concurrent control. In con-
trast, we study concurrent policy composition mechanisms
that can be leveraged by any application in a general fashion.
In [9], Levin et al. studied the implications of the logically
centralized abstraction provided by SDN and the resulting
design choices inherent to the strong or eventual network
view consistency. They demonstrate certain consequences
of this design choice on the performance of a distributed
load-balancing control application.

6. DISCUSSION AND FUTURE WORK
Our sketch of an STN implementation hid many technical

implementation details under the rug. Of course, we plan to
address those in future work and below we speculate how.

The support of concurrent and consistent network updates
features several additional challenges which have not been
addressed so far. For example, while tags in the packet head-
ers can be used to isolate different flows from each other and
ensure that only one policy is applied throughout the packet
paths, the number of required tags grows exponentially in
the number of policies: given k policies, in the worst case, we
may have to maintain the order of 2k policy compositions.
Adding these tags ensures consistent per-packet forwarding,
but the solution is not scalable. Automatically reducing the
number of used tags within the STN is however complicated.
We envision some new and interesting trade-offs between the
complexity of the state maintained at network components
and the amount of synchronization required to ensure con-
sistency across them.

Also the size of the Forwarding Information Base (FIB),
i.e., number of flow table entries that can be stored, may be
a limiting factor for policy composition. While this problem
is not specific to the distributed controller but general, we
envision that an efficient STN middleware may be able to
optimize the policy implementation by automatically aggre-
gating multiple forwarding rules into a single one, and/or by
distributing (“load-balancing”) rules across multiple switches
where possible.

The current definition of consistency of composition works
on per-packet basis, but seems to be straightforward to ex-



tend it to the per-flow level (along the lines of [11]), as long
as we know how to define flow delimiters.

There are many ways to implement the read-modify-write
primitive giving access to the network switches. At a high
level, it depends on how the rights of accessing a switch
are distributed across the controllers. If there is a single
controller that is allowed to modify the configuration of the
switch, then we can implement the rmw primitive at the
controller, so that it is responsible for the physical installa-
tion of the composed policy. An alternative solution is to
provide a lock abstraction by the switch itself. For example,
a weak form of locking can be achieved by maintaining a sin-
gle test-and-set bit at a switch. Also, we believe that even
more fine-grained locking mechanisms are possible, where,
e.g., instead of acquiring locks on entire switches, transac-
tions synchronize on ports only. We leave the discussion of
implementation details and further optimizations for future
work.

Acknowledgements
This work was supported in part by the EU FP7 project
OFELIA.

7. REFERENCES
[1] M. Canini, P. Kuznetsov, D. Levin, and S. Schmid.

The Case for Reliable Software Transactional
Networking. CoRR, abs/1305.7429, 2013.
http://arxiv.org/abs/1305.7429.

[2] A. D. Ferguson, A. Guha, C. Liang, R. Fonseca, and
S. Krishnamurthi. Hierarchical Policies for Software
Defined Networks. In HotSDN, 2012.

[3] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto,
J. Rexford, A. Story, and D. Walker. Frenetic: A

Network Programming Language. In ACM ICFP,
2011.

[4] S. Hassas Yeganeh and Y. Ganjali. Kandoo: A
Framework for Efficient and Scalable Offloading of
Control Applications. In HotSDN, 2012.

[5] B. Heller, R. Sherwood, and N. McKeown. The
Controller Placement Problem. In HotSDN, 2012.

[6] M. Herlihy and J. M. Wing. Linearizability: A
correctness condition for concurrent objects. ACM
Trans. Program. Lang. Syst., 12(3):463–492, 1990.

[7] T. Koponen, M. Casado, N. Gude, J. Stribling,
L. Poutievski, M. Zhu, R. Ramanathan, Y. Iwata,
H. Inoue, T. Hama, and S. Shenker. Onix: A
Distributed Control Platform for Large-scale
Production Networks. In OSDI, 2010.

[8] V. Kotronis, X. Dimitropoulos, and B. Ager.
Outsourcing the Routing Control Logic: Better
Internet Routing Based on SDN Principles. In
HotNets, 2012.

[9] D. Levin, A. Wundsam, B. Heller, N. Handigol, and
A. Feldmann. Logically Centralized? State
Distribution Trade-offs in Software Defined Networks.
In HotSDN, 2012.

[10] C. Monsanto, J. Reich, N. Foster, J. Rexford, and
D. Walker. Composing Software Defined Networks. In
NSDI, 2013.

[11] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger,
and D. Walker. Abstractions for Network Update. In
SIGCOMM, 2012.

[12] N. Shavit and D. Touitou. Software transactional
memory. Distributed Computing, 1997.

[13] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller,
M. Casado, N. Mckeown, and G. Parulkar. Can the
Production Network Be the Testbed? In OSDI, 2010.


