
Invited Paper: Robust Architectures for Open
Distributed Systems and Topological Self-Stabilization

Stefan Schmid
T-Labs / TU Berlin
Berlin, Germany

stefan@net.t-labs.tu-berlin.de

ABSTRACT
Distributed systems are often dynamic in the sense that there are
frequent membership changes (nodes joining and leaving the net-
work), either due to regular churn or due to an attack. Maintaining
availability and full functionality of such a system under contin-
uous topological changes hence constitutes an important algorith-
mic challenge. This paper reports on some of our recent results
on robust distributed systems. We review two randomized archi-
tectures that build upon the continuous-discrete approach by Naor
and Wieder, namely the SHELL network which allows for fast joins
and leaves and organizes more reliable (or stronger) nodes in a core
network where their communication is not affected by malicious
(or weak) nodes, and the Chameleon network whose replica place-
ment strategy and whose intentional topological updates ensure re-
siliency against denial-of-service attacks, even from past insiders.
To complement our investigations on randomized architectures, we
discuss algorithms to maintain hypercubic networks under worst-
case churn. Finally, we advocate the design of self-stabilizing
topologies—a very appealing and still not well-understood notion
of robustness—that converge quickly to a desirable structure from
arbitrarily degenerated states. As a use case, graph linearization
is examined in more detail. This invited paper complements the
WRAS’10 talk and is joint work with Matthias Baumgart, Dominik
Gall, Riko Jacob, Fabian Kuhn, Andrea Richa, Stephan Ritscher,
Christian Scheideler, Joest Smit, Hanjo Täubig, and Roger Watten-
hofer.

Categories and Subject Descriptors
C.2.4 [Computer Systems Organization]: Computer-
Communication Networks—Distributed Systems; F.2.2 [Analysis
of Algorithms and Problem Complexity]: Nonnumerical
Algorithms and Problems—Routing and Layout

General Terms
Algorithms, Reliability, Theory

Keywords
Networking, Self-Stabilization, Churn

1. INTRODUCTION
Every application run on multiple machines needs a mechanism

that allows the machines to exchange information. A naive solu-

Copyright is held by the author/owner(s).
WRAS’10, July 29, 2010, Zurich, Switzerland.
ACM 978-1-60558-888-9/10/07.

tion is to store at each machine the name (e.g., IP address) of every
other machine. While this may work well for a small number of
machines, large-scale distributed applications such as file sharing,
grid computing, cloud computing, or data center networking sys-
tems need a different, more scalable approach: instead of forming
a clique (where everybody knows everybody else), each machine
should only be required to know some small subset of other ma-
chines. The resulting graph of knowledge can be seen as a logical
network interconnecting the machines; it is also known as overlay
network. A prerequisite for an overlay network to be useful is that
it has good topological properties. Among the most important are:
small node degree, small network diameter, or absence of conges-
tion bottlenecks.

A distinguishing property of many (especially open) distributed
systems are the frequent membership changes. Nodes on an overlay
network may only join for a certain duration to make use of the
services (regular “churn”), or they may be unavailable for a certain
time period due to an attack. While static topologies are understood
well today, researchers have only started to gain insights into the
behavior and maintenance of dynamic distributed systems.

2. DYNAMIC OVERLAYS
This section reviews an interesting design principle to con-

struct dynamic overlays: the continuous-discrete approach. Subse-
quently, we present the distributed heap SHELL and the Chameleon
network which build upon the continuous-discrete approach. We
conclude the section with a mechanism to maintain networks under
worst-case membership changes.

2.1 The Continuous-Discrete Approach
A simple and appealing approach to design dynamic distributed

(peer-to-peer like) systems is the continuous-discrete approach de-
scribed by Naor and Wieder [24]. It is based on a “think contin-
uously, act discretely” strategy, and applies to a variety of topolo-
gies. The idea is as follows: Let I be a Euclidean space, e.g., a
1-dimensional line or cycle. Let Gc be a (infinite) graph where the
vertex set is given by the continuous set I , and where each point
in I is connected to some other points in I . The actual network is
a discretization of this continuous graph based on a dynamic de-
composition of the underlying space I into cells where each node
(or machine/peer/server) is responsible for a cell. Two cells are
connected if they contain adjacent points in the continuous graph.
Clearly, the partition of the space into cells should be maintained
in a distributed manner. When a join operation is performed an ex-
isting cell splits, when a leave operation is performed two cells are
merged into one.

The recipe to design a dynamic and scalable network is as fol-
lows: (1) Choose a proper continuous graph Gc over the continuous

xi

xi/2

(1+xi)/2
011010

001101

101101

xi+1

cell

Figure 1: The continuous-discrete approach for the dynamic
de Bruijn graph. Nodes are indicated using circles, files using
rectangles. In the continuous setting, the node at position xi =
.011010 (in binary notation) is connected to positions xi/2 and
(1 + xi)/2. In the discrete setting, it is responsible for the cell
(i.e., the connections and files which are mapped there) between
positions xi and xi+1.

space I . Design the algorithms in the continuous setting. (This is
typically simpler than in the discrete setting: there is no need to
deal with scalability issues and standard mathematical tools can be
used for proving statements.) (2) Find an efficient way to discretize
the continuous graph in a distributed manner, such that the algo-
rithms designed for the continuous graph would perform well in
the discrete graph. The discretization is done via a decomposition
of I into cells. If the cells which compose I are allowed to overlap
then the resulting graph would be fault tolerant.

To give an example, in order to build a dynamic peer-to-peer
network—a distributed hash table (DHT) where nodes collabora-
tively store files which are mapped to the [0, 1) interval as well,
e.g., by a random hash function—featuring a de Bruijn topology of
logarithmic diameter and constant node degree, a node at position
x ∈ [0, 1) (in binary form b1b2... such that x =

∑∞
i=1 2−bi) con-

nects to positions l(x) := x/2 ∈ [0, 1) and r(x) := (1 + x)/2 ∈
[0, 1) in Gc (out-degree two per node). Observe that if position x is
written in binary form, then l(x) effectively shifts ‘0’ into the left
and r(x) shifts a ‘1’ into the left. Moreover, observe that routing
on the corresponding overlay network is straight-forward: based
solely on the current position and the destination (without the over-
head of maintaining routing tables), a message can be forwarded
by fixing one bit after the other.

The set of nodes in the cyclic [0, 1) space then define the dis-
crete graph: Let xi denote the position of the ith node (ordered
in increasing order w.r.t. position). Node i is responsible for the
cell [xi, xi+1), computed in a modulo manner, that is, this node is
responsible to store the data (or files) mapped to this cell plus for
the establishment of the corresponding connections defined in Gc.
Figure 1 gives an example.

2.2 The SHELL Heap
There are several dynamic distributed systems that are based on

the continuous-discrete approach. One example is SHELL [28].
SHELL is motivated by the observation that in many systems
with open clientele, nodes that have joined earlier are likely to
stay longer also in the future. SHELL organizes the nodes in a

distributed heap: the topology can be regarded as a redundant
continuous-discrete de Bruijn graph where a node v connects to
entire intervals in the continuous space, but only to those nodes in
these intervals that joined the system before v. By its connection
and routing policy, SHELL ensures that whenever possible, com-
munication between older nodes is constrained to the more stable
core network. Concretely, it can be shown that a message sent from
some node u that joined at time t′ to some node v that joined at
time t′′ only traverses nodes that joined before max{t′, t′′}. Thus,
SHELL is resilient to certain types of Sybil attacks: A set of ma-
licious nodes that join at time t trying to flood the network cannot
disrupt communication between nodes that arrived before t. Al-
ternatively, SHELL can be used to organize heterogeneous nodes
such that more powerful nodes can collaborate directly with each
other, i.e., they do not depend on (and hence are slowed down by)
contributions from weaker nodes.

The SHELL heap has some interesting properties: it is oblivious
in the sense that its structure only depends on the nodes currently in
the network but not on the past. This allows for fast join and leave
operations which is desirable in open distributed systems with high
levels of churn and frequent faults. In fact, a node departure or
fault does not entail much work and can be dealt with in a constant
number of communication rounds.

In summary, SHELL has the following properties.

1. Scalability: Nodes have degree O(log2 n) and the network
diameter is O(log n), where n is the network size. Conges-
tion is bounded by O(log n) on expectation and O(log2 n)
w.h.p., which is on par with well-known peer-to-peer net-
works like Chord [30].

2. Dynamics: Nodes can be integrated in O(log n) time and
removed in O(1) time.

3. Robustness: SHELL can be used to build robust distributed
information systems, e.g., a system which is resilient to arbi-
trarily large Sybil attacks.

4. Heterogeneity: SHELL can organize arbitrarily heteroge-
neous nodes in an efficient manner (e.g., for streaming ap-
plications).

2.3 The Chameleon System
Distributed DoS attacks are believed to be one of the biggest

problems in today’s open distributed systems such as the Internet.
Attackers use the fact that Internet servers are typically accessible
to anyone in order to overload them with bogus requests from so-
called bot nets, which are large groups of machines that are under
their control. Some popular information services like Google and
Akamai are under constant DoS attacks, and also the Domain Name
System has been hit several times by major DoS attacks during the
last years.

The predominant approach to deal with the threat of DoS-attacks
is the introduction of redundancy. Information which is replicated
on multiple machines is more likely to remain accessible during
a DoS attack. However, replication can entail a large overhead in
terms of storage and update costs. In order to preserve scalability,
it is therefore vital that the burden on the servers be minimized.

Chameleon [7] is a distributed information system (over a set of
completely connected servers) which is robust to Denial-of-Service
(DoS) attacks on the nodes as well as the operations of the sys-
tem, while using a small degree of redundancy only. It is another
example of a system building upon continuous-discrete principles.
Chameleon employs a randomized replication scheme whose ap-
pearance cannot be predicted by the attacker though, maybe at first

sight paradoxically, the data can still be efficiently located. Inter-
estingly, due to randomization, a polylogarithmic redundancy fac-
tor is enough to deal with an adversary blocking a constant fraction
of all servers. In addition, Chameleon pro-actively changes its ap-
pearance over time (hence the system’s name), which renders the
network resilient even to past insiders who have full knowledge of
the system’s internals up to a certain (unknown) time point t0. De-
spite ongoing attacks, Chameleon can process put and get requests
efficiently at any time.

More specifically, Chameleon ensures (before and after t0, with-
out knowing t0):

1. Scalability: Every node spends at most polylogarithmic time
(number of communication rounds) and work (number of
messages) in order to serve all requests, and no node will
get overloaded over time.

2. Robustness: All get requests for data that was inserted or last
updated after t0 are served correctly under any adversarial
attack within our model.

Achieving these conditions is not an easy task as the system can-
not afford to continuously replace all the data in it (recall that the
system does not know t0 and we have no bound on the number of
data items in the system). Also, no long-term information hiding
techniques can be used (as the adversary has full knowledge of the
system up to phase t0).

2.4 Worst-Case Churn
The analysis of fault tolerance of dynamic distributed systems

usually only considers random faults of some kind, and indeed,
many of the guarantees discussed above are subject to some prob-
abilistic assumptions. Contrary to traditional algorithmic research,
faults as well as joins and leaves occurring in a worst-case man-
ner are hardly considered in dynamic distributed systems. More-
over, most fault tolerance analyses are static in the sense that only
a functionally bounded number of random nodes can be crashed.
After removing a few nodes the system is given sufficient time to
recover again. The more realistic dynamic case where worst-case
faults steadily occur has not found much attention.

What degree of dynamics can be tolerated by a distributed net-
work subject to continuous membership changes happening in a
worst-case manner? In [20], a deterministic framework is de-
veloped that allows us to design maintenance algorithms for dis-
tributed hash tables (DHTs) on different topologies. For certain
networks these algorithms are proved to achieve an “optimal ro-
bustness” in the sense that there is no alternative system which can
tolerate higher worst-case churn rates without disconnecting. The
basic idea is to simulate a given network graph, for example, a hy-
percube [19]: Each node is part of a distinct hypercube vertex; each
hypercube vertex consists of a logarithmic number of nodes. Nodes
have connections to other nodes of their hypercube vertex and to
nodes of the neighboring hypercube vertices. It is assumed that the
data items are mapped to vertices by a hash function, and hence, in
order to prevent data loss, there must always be at least one node
per vertex left. Therefore, after a number of joins and leaves, some
nodes may have to change to another hypercube vertex such that
up to constant factors, all hypercube vertices have the same cardi-
nality at all times. If the total number of nodes grows or shrinks
above or below a certain threshold, the dimension of the hypercube
is increased or decreased by one, respectively. The balancing of
nodes among the vertices can be seen as a dynamic token distribu-
tion problem on the hypercube: Each vertex of a graph (hypercube)
has a certain number of tokens, and the goal is to distribute the to-

Figure 2: A simulated 2-dimensional hypercube with four ver-
tices, each consisting of a core and a periphery. All nodes within
the same vertex are completely connected to each other, and ad-
ditionally, all nodes of a vertex are connected to all core nodes
of the neighboring vertices.

kens along the edges of the graph such that all vertices end up with
the same or almost the same number of tokens.

The system in [20] builds on two basic components: i) an algo-
rithm which performs the described dynamic token distribution and
ii) an information aggregation algorithm which is used to estimate
the number of nodes in the system and to adapt the hypercube’s
dimension accordingly. The following result can be derived.

THEOREM 2.1. Given an adversary who inserts and removes
at most a logarithmic number of nodes per communication round,
there is an algorithm which ensures that 1) every vertex always has
at least one node and hence no data is lost; 2) each node has degree
Θ(log n); and 3) the network diameter is logarithmic as well.

Figure 2 visualizes the simulated hypercube topology. For effi-
ciency reasons and in order to minimize data moves, the nodes in a
vertex are divided into a core (storing data) and a periphery (used
for balancing nodes between vertices). These techniques are appli-
cable to alternative graphs, like pancake graphs [18].

3. SELF-STABILIZATION
An appealing and strong notion of robustness is topological self-

stabilization: A system is called self-stabilizing if it guarantees that
from any weakly connected initial state (e.g., a degenerated sys-
tem after an attack), in the absence of further membership changes,
it will quickly converge to a desirable network. In this section,
as a most simple but already non-trivial use case, self-stabilizing
graph linearization is considered in more detail. Subsequently, we
briefly report on results for 2-dimensional linearization (namely,
self-stabilizing Delaunay graphs) and skip graphs.

3.1 Graph Linearization
Graph linearization can be regarded as the drosophila

melanogaster of topological self-stabilization: We investigate how
to recover a sorted list—i.e., how to linearize a graph—from any
connected state. This section is based on the material presented
in [13].

Formally, we are given a system consisting of a fixed set V of
n = |V | nodes. Every node has a unique (but otherwise arbitrary)
integer identifier. In the following, if we compare two nodes u
and v using the notation u < v or u > v, we mean that the iden-
tifier of u is smaller than v or vice versa. For any node v, pred(v)
denotes the predecessor of v (i.e., the node u ∈ V of largest identi-
fier with u < v) and succ(v) denotes the successor of v according
to “<”. Two nodes u and v are called consecutive if and only if
u = succ(v) or v = succ(u).

Each pair (u, v) of nodes shares a Boolean variable e(u, v)
which specifies an undirected adjacency relation: u and v are called

neighbors if and only if this shared variable is true. The set of
neighbor relations defines an undirected graph G = (V, E) among
the nodes. A variable e(u, v) can only be changed by u and v, and
both u and v have to be involved in order to change e(u, v). (E.g.,
node u sends a change request message to u.) For any node u ∈ V ,
let u.L denote the set of left neighbors of u—the neighbors which
have smaller identifiers than u—and u.R the set of right neighbors
(with larger IDs) of u. deg(u) will denote the degree of a node u
and is defined as deg(u) = |u.L ∪ u.R|. Moreover, the distance
between two nodes dist(u, v) is defined as dist(u, v) = |{w :
u < w ≤ v}| if u < v and dist(u, v) = |{w : v < w ≤ u}|
otherwise. The length of an edge e = {u, v} ∈ E is defined as
len(e) = dist(u, v).

We consider distributed algorithms which are run by each node
in the network. The program executed by each node consists of a
set of variables and actions. An action has the form

< name > : < guard > → < commands >

where < name > is an action label, < guard > is a Boolean predi-
cate over the (local and shared) variables of the executing node and
< commands > is a sequence of commands that may involve any
local or shared variables of the node itself or its neighbors. Given
an action A, the set of all nodes involved in the commands is de-
noted by V (A). Every node that either owns a local variable or
is part of a shared variable e(u, v) accessed by one of the com-
mands in A is part of V (A). Two actions A and B are said to be
independent if V (A) ∩ V (B) = ∅. For an action execution to be
scalable we require that the number of interactions a node is in-
volved in (and therefore |V (A)|) is independent of n. An action is
called enabled if and only if its guard is true. Every enabled action
is passed to some underlying scheduling layer (to be specified be-
low). The scheduling layer decides whether to accept or reject an
enabled action. If it is accepted, then the action is executed by the
nodes involved in its commands.

We model distributed computation as follows. The assignments
of all local and shared variables define a system state. Time pro-
ceeds in rounds. In each round, the scheduling layer may select
any set of independent actions to be executed by the nodes. The
work performed in a round is equal to the number of actions se-
lected by the scheduling layer in that round. A computation is a
sequence of states such that for each state si at the beginning of
round i, the next state si+1 is obtained after executing all actions
that were selected by the scheduling layer in round i. A distributed
algorithm is called self-stabilizing w.r.t. a set of system states S and
a set of legal states L ⊆ S if for any initial state s1 ∈ S and any
fair scheduling layer, the algorithm eventually arrives (and stays) at
a state s ∈ L.

A distributed algorithm is called self-stabilizing in this context
if for any initial state that forms a connected graph, it eventually
arrives at a state in which for all node pairs (u, v),

e(u, v) = 1 ⇔ u = succ(v) ∨ v = succ(u)

i.e., the nodes indeed form a sorted list. Once it arrives at this
state, it should stay there, i.e., the state is the (only) fixpoint of the
algorithm.

In the algorithms we propose, each node u ∈ V repeatedly per-
forms simple linearization steps in order to arrive at that fixpoint: A
linearization step involves three nodes u, v, and v′ with the prop-
erty that u is connected to v and v′ and either u < v < v′ or
v′ < v < u. In both cases, u may command the nodes to move
the edge {u, v′} to {v, v′}. If u < v < v′, this is called a right
linearization and otherwise a left linearization (see also Figure 3).
Since only three nodes are involved in such a linearization, this can

be formulated by a scalable action. Henceforth, we will refer to u,
v, and v′ as a linearization triple.

v’ v u v’vu

Figure 3: Left and right linearization step.

We study two most simple distributed and self-stabilizing
linearization algorithms: LINall and LINmax. In algorithm LINall

each node constantly tries to linearize its neighbors according to
the linearize left and linearize right rules in Figure 3. In doing so,
all possible triples on both sides are proposed to a (hypothetical)
scheduler. More formally, in LINall every node u checks the
following actions for every pair of neighbors v and w:

linearize left(v, w):
(v, w ∈ u.L ∧ w < v < u) → e(u, w) := 0, e(v, w) := 1

linearize right(v, w):
(v, w ∈ u.R ∧ u < v < w) → e(u, w) := 0, e(v, w) := 1

LINmax is similar to LINall but instead of proposing all possible
triples on each side, LINmax only proposes the triple which is
the furthest (w.r.t. IDs) on the corresponding side. Concretely,
every node u ∈ V checks the following actions for every pair of
neighbors v and w:

linearize left(v, w):
(v, w ∈ u.L) ∧ w < v < u ∧ @x ∈ u.L \ {w} : x < v)
→ e(u, w) := 0, e(v, w) := 1

linearize right(v, w):
(v, w ∈ u.R) ∧ u < v < w ∧ @x ∈ u.R \ {w} : x > v)
→ e(u, w) := 0, e(v, w) := 1

Note that both algorithms ensure that in the absence of external
changes, connectivity is preserved at all times. Moreover, it can be
seen that both algorithms eventually converge to a sorted linear net-
work. In order to analyze the actual convergence time, a model for
the parallel execution is needed. Unfortunately, many parallel run-
time models studied in the literature are either overly pessimistic
in the sense that they can force the algorithm to work serially, or
they are too optimistic in the sense that contention or congestion
issues are neglected. In [13], a new family of execution models is
proposed that distinguishes actions proposed by an algorithm and a
more or less adversarial scheduler that selects some of them for par-
allel execution. Concretely, different “scalable schedulers” can be
considered, e.g., a worst-case scheduler Swc: This scheduler must
select a maximal independent set of enabled actions in each round,
but it may do so to enforce a runtime (or work) that is as large as
possible. For instance, for the worst case scheduler Swc we have
the following result.

THEOREM 3.1. Under a worst-case scheduler Swc, LINmax ter-
minates after O(n2) work (single linearization steps), where n is
the total number of nodes in the system. This is tight in the sense
that there are situations where under a worst-case scheduler Swc,
LINmax requires Ω(n2) rounds. LINall terminates after O(n2 log n)
many rounds.

3.2 Delaunay and Skip Graphs
Motivated by the insights from graph linearization, one may

wonder how to design more sophisticated self-stabilizing topolo-
gies. A natural idea is to reason about a 2-dimensional lineariza-
tion variant, e.g., about self-stabilizing Delaunay graphs. In [17],
it is shown that such a generalization is possible indeed, although
the construction and analysis is much more complicated than in the
1-dimensional case, and requires geometric arguments.

Another interesting class of topologies to study from a self-
stabilization point of view are skip graphs. Due to their hypercubic
structure, skip graphs are an interesting candidate for the design
of scalable overlays [2, 14]. In [16], a self-stabilizing variant of a
skip graph called SKIP+is described. In contrast to traditional skip
graphs, SKIP+can be locally checked for the correct structure. In-
terestingly, one can also show that a single join event (i.e., a new
node connects to an arbitrary node in the system) or a single leave
event (i.e., a node just leaves without prior notice) can be handled
“locally” and with polylogarithmic work, demonstrating that the
self-stabilizing algorithm is also useful for the case where the over-
lay network is already forming the desired topology (which is the
standard case in the literature).

4. FURTHER READING
There is a large body of related and relevant literature, and only

a small subset can be discussed here. The interested reader can
find more complete overviews in the full articles on the different
systems.

The classic example of a dynamic distributed system are peer-
to-peer networks with open membership, and indeed most of the
architectures presented in this talk are designed with peer-to-peer
in mind. Protocols such as Pastry [11] and CAN [26] allow for un-
expected failures, and it is shown that they remain well-structured
after failures occur in certain valid initial states; it is typically not
shown how a system can return to the initial state after the mem-
bership changes [23]. Moreover, maintenance costs can be high.
For example, in CAN, a background stabilization process is used
which introduces a constant overhead [1].

Awerbuch and Scheideler have proposed several interesting al-
gorithms to render today’s peer-to-peer systems more robust. For
example, in [4], searchable concurrent data structures are studied
where data elements can be stored on a dynamic set of nodes, e.g.,
in a peer-to-peer network. Their Hyperring data structure has de-
gree O(log n) and requires O(log3 n) work for insert and delete
operations; search time and congestion is bounded by O(log n)
with high probability, which improves on alternative structures,
e.g., the deterministic Skipnet by Harvey and Munro [15]. The
PAGODA [8] system allows heterogeneous nodes to join and leave
in polylogarithmic work; in some sense, PAGODA can be regraded
as the predecessor of SHELL [28]. Finally, the Chameleon sys-
tem builds upon the DoS-resilient archival system by Awerbuch
and Scheideler [5].

Liben-Nowell, Balakrishnan, and Karger [23] have analyzed the
evolution of distributed systems in the face of concurrent joins and
unexpected departures. They give a lower bound for the rate at
which nodes in the Chord peer-to-peer system must participate to
maintain the system’s distributed state. For instance, they show that
if churn can be described by a Poisson distribution, a peer which re-
ceives fewer than k notifications per half-life will be disconnected
from the network with probability at least (1 − 1/(e − 1))k. The
half-life time period is defined as the time which elapses in a net-
work of n live nodes before n additional nodes arrive, or before
half of the nodes depart. Their result implies that a successor list of

length Θ(log n) per peer is sufficient to ensure that a graph stays
connected with high probability, as long as Ω(log n) rounds pass
before n/2 peers fail. It is also shown in [23] that a modified ver-
sion of Chord is within a logarithmic factor of the optimal rate. The
authors assume that the half-life is known, and the question of how
to learn the correct maintenance rate of the behavior of neighbors
is left for future research.

Resilience to worst-case failures (for the more challenging
Byzantine fault model) has been studied by Fiat, Saia et al. in [12,
27]. The authors introduce a system where a (1 − ε)-fraction of
peers and data survives the adversarial removal of up to half of all
nodes with high probability. However, the failure model is static.
Abraham et al. [1] address scalability and resilience to worst-case
joins and leaves, and propose a generic overlay emulation approach
for graph families such as hypercubes, butterflies, or de Bruijn net-
works. They focus on maintaining a balanced network rather than
on fault-tolerance in the presence of concurrent faults; moreover,
whenever a join or leave takes place, the network is given some
time to adapt. Concurrent (and asynchronous) worst-case joins and
leaves are also considered by Li et al. [22]. The leaving nodes exe-
cute an “exit” protocol which does not allow for sudden crashes.

Topological self-stabilization is a relatively young field, and re-
searchers have only started to examine the most simple networks
such as line or ring graphs, e.g., [9]. While interesting compil-
ers [6] have been proposed many years ago that allow to render any
local algorithm self-stabilizing (see also the recent survey [21]),
the overhead when applied to dynamically changing topologies and
the implications on randomized algorithms are not well understood
yet. The Iterative Successor Pointer Rewiring Protocol described
in [10] and the Ring Network described in [29] organize the nodes
in a sorted ring. Aspnes et al. [3] present a self-stabilizing algo-
rithm for overlays for states where the network nodes initially have
out-degree 1. In [25], a local-control strategy called linearization is
presented for converting an arbitrary connected graph into a sorted
list; time complexity results for convergence are derived as well,
for a simplified model without congestion.

5. CONCLUDING REMARKS
This paper reviewed different notions of robustness as well as

mechanisms to ensure availability and functionality in distributed
systems with dynamic membership. It has been shown that ran-
domization can help to design dynamic networks with attractive
properties or to redundantly store data such that it is hard to block
access. We then discussed deterministic algorithms to maintain net-
works under worst-case changes. Unfortunately, these algorithms
can only be used from certain configurations and if the degree of
dynamics is bounded. This motivated us to study topologies that
can be repaired from any connected state.

The material presented in this WRAS talk concentrates on our
own work and the selection is highly biased. For a thorough review
of related literature, in order to put the contributions into perspec-
tive, and for a discussion of the numerous exciting open questions,
we refer the reader to the related work sections of the correspond-
ing articles. Similarly, while we have focused on the main results,
the detailed algorithms and the analysis can only be covered by the
original full papers.

6. REFERENCES
[1] Ittai Abraham, Baruch Awerbuch, Yossi Azar, Yair Bartal,

Dahlia Malkhi, and Elan Pavlov. A generic scheme for
building overlay networks in adversarial scenarios. In Proc.
17th Int. Symposium on Parallel and Distributed Processing
(IPDPS), 2003.

[2] James Aspnes and Gauri Shah. Skip graphs. In Proc. 14th
Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2003.

[3] James Aspnes and Yinghua Wu. O(log n)-time overlay
network construction from graphs with out-degree 1. In
Proc. International Conference on Principles of Distributed
Systems (OPODIS), volume 4878 of LNCS, pages 286–300,
2007.

[4] Baruch Awerbuch and Christian Scheideler. The hyperring:
A low-congestion deterministic data structure for distributed
environments. In Proc. 15th Ann. ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 318–327, 2004.

[5] Baruch Awerbuch and Christian Scheideler. A
denial-of-service resistant dht. In Proc. 21st International
Symposium on Distributed Computing (DISC), 2007.

[6] Baruch Awerbuch and George Varghese. Distributed program
checking: a paradigm for building self-stabilizing distributed
protocols. In Proc. 32nd Annual Symposium on Foundations
of Computer Science (FOCS), pages 258–267, 1991.

[7] Matthias Baumgart, Christian Scheideler, and Stefan
Schmid. A dos-resilient information system for dynamic data
management. In Proc. 21st ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA), 2009.

[8] Ankur Bhargava, Kishore Kothapalli, Chris Riley, Christian
Scheideler, and Mark Thober. Pagoda: A dynamic overlay
network for routing, data management, and multicasting. In
Proc. 16th Annual ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), pages 170–179, 2004.

[9] Thomas Clouser, Mikhail Nesterenko, and Christian
Scheideler. Tiara: A self-stabilizing deterministic skip list. In
Proc. 10th International Symposium on Stabilization, Safety,
and Security of Distributed Systems (SSS), 2008.

[10] Curt Cramer and Thomas Fuhrmann. Self-stabilizing ring
networks on connected graphs. Technical Report 2005-5,
System Architecture Group, University of Karlsruhe, 2005.

[11] Peter Druschel and Antony Rowstron. Pastry: Scalable,
distributed object location and routing for large-scale
peer-to-peer systems. In Proc. 18th IFIP/ACM International
Conference on Distributed Systems Platforms (Middleware),
pages 329–350, 2001.

[12] A. Fiat and J. Saia. Censorship resistant peer-to-peer content
addressable networks. In Proc. 13th Symposium on Discrete
Algorithms (SODA), 2002.

[13] Dominik Gall, Riko Jacob, Andrea Richa, Christian
Scheideler, Stefan Schmid, and Hanjo Täubig. Time
complexity of distributed topological self-stabilization: The
case of graph linearization. In Proc. 9th Latin American
Theoretical Informatics Symposium (LATIN), 2010.

[14] Nicholas J. A. Harvey, Michael B. Jones, Stefan Saroiu,
Marvin Theimer, and Alec Wolman. Skipnet: A scalable
overlay network with practical locality properties. In Proc.
4th USENIX Symposium on Internet Technologies and
Systems (USITS), pages 113–126, 2003.

[15] N.J.A. Harvey and J.I. Munro. Deterministic SkipNet. Inf.
Process. Lett., 90(4):205–208, 2004.

[16] Riko Jacob, Andrea Richa, Christian Scheideler, Stefan
Schmid, and Hanjo Täubig. A distributed polylogarithmic
time algorithm for self-stabilizing skip graphs. In Proc. ACM
Symp. on Principles of Distributed Computing (PODC),
2009.

[17] Riko Jacob, Stephan Ritscher, Christian Scheideler, and
Stefan Schmid. A self-stabilizing and local delaunay graph

construction. In Proc. 20th International Symposium on
Algorithms and Computation (ISAAC), 2009.

[18] Fabian Kuhn, Stefan Schmid, Joest Smit, and Roger
Wattenhofer. A blueprint for constructing peer-to-peer
systems robust to dynamic worst-case joins and leaves. In
Proc. 14th IEEE International Workshop on Quality of
Service (IWQoS), 2006.

[19] Fabian Kuhn, Stefan Schmid, and Roger Wattenhofer. A
self-repairing peer-to-peer system resilient to dynamic
adversarial churn. In Proc. 4th International Workshop on
Peer-To-Peer Systems (IPTPS), 2005.

[20] Fabian Kuhn, Stefan Schmid, and Roger Wattenhofer.
Towards worst-case churn resistant peer-to-peer systems.
Journal Distributed Computing (DIST), 22(4), 2010.

[21] Christoph Lenzen, Jukka Suomela, and Roger Wattenhofer.
Local algorithms: Self-stabilization on speed. In Proc. 11th
International Symposium on Stabilization, Safety, and
Security of Distributed Systems (SSS), 2009.

[22] Xiaozhou Li, Jayadev Misra, and C. Greg Plaxton. Active
and concurrent topology maintenance. In Proc. 18th Ann.
Conference on Distributed Computing (DISC), 2004.

[23] David Liben-Nowell, Hari Balakrishnan, and David Karger.
Analysis of the Evolution of Peer-to-Peer Systems. In Proc.
21st Annual Symposium on Principles of Distributed
Computing (PODC), pages 233–242, 2002.

[24] Moni Naor and Udi Wieder. Novel architectures for p2p
applications: the continuous-discrete approach. In Proc. 15th
Annual ACM Symposium on Parallel Algorithms and
Architectures (SPAA), pages 50–59, 2003.

[25] Melih Onus, Andrea Richa, and Christian Scheideler.
Linearization: Locally self-stabilizing sorting in graphs. In
Proc. 9th Workshop on Algorithm Engineering and
Experiments (ALENEX). SIAM, 2007.

[26] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard
Karp, and Scott Schenker. A scalable content-addressable
network. In Proc. ACM SIGCOMM Conference on
Applications, Technologies, Architectures, and Protocols for
Computer Communications, pages 161–172, 2001.

[27] J. Saia, A. Fiat, S. Gribble, A. Karlin, and S. Saroiu.
Dynamically fault-tolerant content addressable networks. In
Proc. 1st Int. Workshop on Peer-to-Peer Systems (IPTPS),
2002.

[28] Christian Scheideler and Stefan Schmid. A distributed and
oblivious heap. In Proc. 36th International Colloquium on
Automata, Languages and Programming (ICALP), 2009.

[29] Ayman Shaker and Douglas S. Reeves. Self-stabilizing
structured ring topology P2P systems. In Proc. 5th IEEE
International Conference on Peer-to-Peer Computing, pages
39–46, 2005.

[30] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer lookup
service for Internet applications. In Proc. of the ACM
SIGCOMM ’01, 2001. See also
http://www.pdos.lcs.mit.edu/chord/.

