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Abstract. We attend to the classic setting where an observer needs to
inform a tracker about an arbitrary time varying function f : No — Z.
This is an optimization problem, where both wrong values at the tracker
and sending updates entail a certain cost. We consider an online variant
of this problem, i.e., at time ¢, the observer only knows f(t') for all t’ < ¢.
In this paper, we generalize existing cost models (with an emphasis on
concave and convex penalties) and present two online algorithms. Our
analysis shows that these algorithms perform well in a large class of
models, and are even optimal in some settings.

1 Introduction

Online function tracking has a wide range of applications. For instance, consider
a sensor network where a node measures physical properties (e.g., oxygen levels)
at a certain location, and needs to report this data to a sink node collecting the
measurements of multiple nodes in order to, e.g., raise an alarm if necessary.
There is a natural tradeoff between communication and energy costs (how often
is the sink informed?) and accuracy (how accurate is the information at the
sink?). Function tracking also finds applications in publish/subscribe systems or
organization theory where similar tradeoffs exist.

This paper attends to a two-party version of the problem where a node ob-
serving a certain function f informs a tracking node. Our main objective is to
devise online algorithms for the observing node, which guarantee that the over-
all cost (sum of update costs and penalties for inaccuracies) is competitive —
for any possible sequence of function changes — to the cost of an optimal offline
algorithm knowing all values of f in advance. This simple two-party instanti-
ation already requires non-trivial solutions [12]. In this paper, we consider an
arbitrary function f and different classes of penalty functions.

1.1 Model

We consider a situation where an observer node wants to keep a tracker node
informed about a certain function f : Time (Ng) — Z evolving over time in
synchronous time steps (rounds). Let f(t) be the actual function value observed
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at round t. Let ALG; denote the value at the tracker at time ¢, specified by
an algorithm ALG; we say that the algorithm is in state ALG;. Initially, at time
t =0, ALGy = f(0). When the time is clear from the context, we drop the time
index.

We study the design of algorithms that allow the observer to inform the tracker
about the current values of f(¢). In each round ¢, the following happens:

1. The function f can assume a new arbitrary value f(¢) € Z.

2. The algorithm may change its state ALG; to any integer paying fixed update
cost C; otherwise ALG; = ALGy_1.

3. The algorithm pays penalty ¥(|ALG: — f(t)]), where ¥ : Ny — Ny is a general
function that specifies the cost of a given inaccuracy (e.g., ¥(z) = x).

For succinctness, we abuse notation and will sometimes write ¥(x,y) meaning
¥ (Jxz—y|). In this paper, we use the reasonable assumption that ¥ (z) grows mono-
tonically in z, i.e., the penalty cost never decreases for larger errors. Moreover,
without loss of generality, we assume that ¥(0) = 0; otherwise, the competitive
ratio only improves.

Our main objective is to find an ideal trade-off between update cost (informing
the tracker about new values) and penalty cost (difference between f(t) and
ALGy):

Cost = Costupdate + CoStpenalty

=C- ZZ;O(ALGt # ALGy41) + Z; W(ALGe, (1))

where T is the total number of rounds (chosen by the adversary). In other
words, our cost function counts the number of updates made by an algorithm
and accumulates penalties at the tracker over time. For any input sequence (i.e.,
the sequence of function changes over time) o and algorithm ALG, by ALG(0)
we denote the cost of ALG on o.

We assume that at time ¢, the algorithm only knows the function values f(¢')
for ¢ < t, but has no information about upcoming values. We are in the realm
of online algorithms and competitive analysis [3], i.e., we want to compare the
performance of an online algorithm ALG with an optimal offline algorithm OpT.
An algorithm is p-competitive if there exists a constant -, such that for any
input o, it holds that

(1)

ALg(o) < p-Opr(0) +7 . (2)
For a randomized algorithm, we replace the cost of ALG by its expected value
and we consider oblivious adversaries [3], which do not have access to random
bits of the algorithm. For succinctness, we will sometimes use the terminology
from the request-answer games [3], saying that in round ¢ a request occurred

at f(t).
1.2 Related Work

The tradeoff between accuracy and update or transmission cost has challenged
researchers from various fields for many years. A classic example of this tradeoff
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is known as the TCP acknowledgement problem [6]. In the design of Internet
transfer protocols such as the TCP protocol, an important question concerns
the times when acknowledgments (ACKs) are sent from the receivers to a sender
(to inform about the successful reception of packets). In many protocols, a de-
lay algorithm is employed to acknowledge multiple ACK packets with a single
message. The main goal of these protocols is to save bandwidth (and other over-
head) while still guaranteeing small delays. Aggregating ACKs has similarities
with function tracking as in some sense, the number of to be acknowledged
packets can be regarded as the to be tracked function. Karlin et al. [8] gave
an optimal e/(e — 1)-competitive randomized online algorithm for a single link.
There are also many variations of the theme, e.g., where the goal is to minimize
the maximum delays of the packets [I], to minimize the total time elapsed while
packets are waiting at the leaf node [7], to meet fixed deadlines [2] or to find
schedules on tree topologies [9TT].

While our model is reminiscent of the TCP acknowledgment problem, there
are crucial differences. First of all, we track an arbitrary function f that can
both increase and decrease over time, whereas the number of ACKs can only
become larger if no message is sent, which means that the to be tracked function
is essentially monotonic. A more general aggregation function has already been
proposed in [I1]; however as there the value at the tracker is updated with a delay,
the offline algorithm is unrealistically strong as it can always anticipate function
changes and update the values before observing them. We note however that
their offfine solution, running in time quadratic in number of function changes,
works also in our model.

In the field of distributed tracking (e.g., [4l5]), a coordinator seeks to keep
track of the online inputs distributed over several sites. This problem can be
regarded as a generalization of the model studied here. However, these results
are still not applicable in our setting. For instance, [4] only considers monotonic
functions, and [5] only allows a site to send the current function values, which
is trivial in our case.

The closest work to ours is the SODA 2009 paper by Yi and Zhang [12]. In
our terminology, they consider a special case with update cost C' = 1, and the
penalty function ¥(z) = 0 for x < A and co otherwise (A is a fixed constant).
They present a deterministic algorithm, which achieves an asymptotically opti-
mal competitive ratio of ©(log A). They also generalize their algorithms to the
multidimensional case, i.e., they are able to track functions whose values are
integer vectors.

1.3 Our Contributions and Paper Organization

We present a simple online algorithm MED that achieves good competitive ratios
for a large class of penalty functions (see Section [Z]). For example, our anal-
ysis shows that MED performs particularly well for concave penalty functions,
where it achieves a ratio of O(log C/loglog C'). This bound is matched for linear
penalty functions, for which we show a lower bound of 2(log C/loglog C) (see



362 M. Bienkowski and S. Schmid

Section B1l). The same lower bound also holds for randomized algorithms (even
against oblivious adversaries).

In Section 221 we propose an alternative algorithm SET which is O(log A)-
competitive for convex penalty functions, where A = min{xz : ¥(z) > C} (see
Section 2.2)). This is a generalization of the bound in [I2]; in their paper, ¥ can
only assume values from {0,00}. We prove that for certain classes of convex
functions, this bound is optimal (again, even for randomized algorithms).

Further, we observe that MED behaves well for a class of functions with
“bounded growth”. In particular, for polynomial penalty functions ¥(z) = z?,
MED is O(4* - log C/loglog C)-competitive and SET is O(max{1,L -logC})-
competitive. Thus, by choosing the better of the two algorithms MED and SET,
we get a competitive ratio of O(log C/logloglog C) for all choices of «, i.e., for
all polynomial penalty functions.

2 Algorithms

All our algorithms follow the accumulate-and-update paradigm: they wait until
the total penalty (since the last update) exceeds the threshold ©(C) and then
they update the value. Henceforth, such a subsequence between two consecutive
updates is called a phase. In the simplest case, when f is non-decreasing, the
problem becomes a discrete variant of the TCP acknowledgement problem [6].

Observation 1. If f changes monotonically, then the algorithm which updates
the value at the end of the phase to the last observed value is 4-competitive.

The proof is similar to the one presented in [6] and is omitted. However, in the
general case, updating always to the last observed value is bad, as the adversary
can exploit this strategy.

One may see the choice of the new value as a pursuit of the optimal algorithm:
we imagine that both the online as well as the optimal offline algorithm OpT
are processing the input in parallel; then the algorithm wants to have a state as
close to OPT’s state as possible.

Where can OPT be found? A straightforward answer is that its state should
be close to the recent requests. Indeed, if the penalty function grows fast at
the beginning (e.g., it is concave), OPT has to be relatively close to the requests
(otherwise, it accrues a high cost). For such functions, we construct the algorithm
MED, which, roughly speaking, changes it state to the median of the recent
requests and in this way decreases the distance between its state and the state
of OPT. However, if the penalty function is relatively flat at the beginning (e.g.,
it is convex), then there are many states which are similarly well-suited for the
optimal algorithm. In this case, in the construction of our second algorithm,
SET, we use an approach which bears some resemblance to the work function
technique (see, e.g., [10]). Namely, we track a set of states with the property
that an algorithm which remains at such states pays little, i.e., the states are
potential candidates for OPT. By choosing our position in the middle of such
a set, in each phase the cardinality of the set decreases by a constant factor.

The intuitions above are formalized in the upcoming sections.



Online Function Tracking with Generalized Penalties 363

2.1 Concave Penalties and the Median Strategy

In this section, we present an online algorithm MED pursuing a median strat-
egy and derive an upper bound on its competitive ratio on concave functions
and functions of bounded growth. Later, we prove that its competitive ratio is
asymptotically optimal for linear penalty functions.

Definition 1 (Growth). Let f : Ny — Ny be a monotonic function with f(0) =
0. The growth of f is defined as max,>1{f(2z)/f(z)}

For example, the growth of any concave function is at most 2. To give another
example, f(z) = c¢-x® has growth 2%,

Observation 2 (Triangle Inequality). Let ¥ be a penalty function of growth
at most 3. For any three integers a, b, and ¢, it holds that ¥(a,c) < 8- (¥(a,b)+
(b, c)), since max{|la —b|,|b—c|} > |a —¢|/2 and since ¥ is monotonic. Con-
sequently, ¥(a,b) > ¥(a,c)/B —¥(b,c).

The online algorithm MED we introduce here is based on a median strategy.
MED partitions the input sequence into phases, each phase consisting of several
rounds; the first phase starts with the beginning of the input, i.e., f(0) = MEDg.
A phase is defined as a period of time, in which MED does not update the
tracker but monitors the total penalty paid so far in this phase. Let ¢ty be the
first round of the current phase. If in one round ¢, the function f(¢) changes
abruptly and is far away from MED;_1, i.e., ¥(MED;_1, f(¢)) > C, then MED
updates MED; := f(t). Otherwise, if the accumulated sum of differences up to the
current round would exceed or be equal to C, i.e., Z::to ¥(MED,, f(3)) > C,
then MED; := x where 7 is the the median of of the function values in this
phase. (In case of two medians the tie is broken arbitrarily.) In either case, if
MED changes its state, the current phase ends and the new begins in the next
round.
First, we bound the cost of MED in any phase.

Lemma 1. Assume that the growth of the penalty function is bounded by (.
Consider a phase P and let op be the input sequence of P. Then, MED(op) <
2-(+1)-C.

Proof. By the definition of MED, its accumulated penalty in all rounds except
for the last one is at most C, and MED pays update cost C' for changing its
state in the last round ¢. In the case that MED changes its state to the last
value f(t), the total cost is 2C' as no additional penalty accrues. Otherwise,
MED updates to the median value Z and in the last round it pays ¥ (Z, f(t)) <
8+ (T(MED¢—1,Z) + ¥(MED;—_1, f(t))). As the median is chosen among all the
requests in P and for any i € P, (MED;_1, f(i)) < C, the total cost in the last
round is at most 23 - C. O

Next, we turn our attention to OPT. In the following, a phase in which OPT pays
less than « is called a-constrained. The main idea for proving the competitiveness
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of MED is as follows. Phases which are not O(C)-constrained — e.g., phases in
which OPT updates — are trivial, as OPT incurs a cost of 2(C) in them. On the
other hand, in a-constrained phases with small «, the possible distance between
OpT and MED becomes smaller: the less OPT pays, the faster the MED’s state
converges to the state of OPT. We show next that if OPT tries to pay o(C) in
a single phase, then after a sequence of O(log C/loglog C) phases, MED’s state
becomes equal to OPT’s state, which entails a OPT cost £2(C) in the next phase.
This idea is formalized in the two lemmas below.

Lemma 2. Assume that the growth of the penalty function is at most 3. Fix
any a-constrained phase P, starting at round tg and ending at t1, for a given
a < C/(38). Assume that OPT is in state & throughout P. Then, it holds that
U (MEDy,,§) < 2C and

U (MEDy,, §) < 2.«
LD(MEDtmg) N C/ﬂfa .

Proof. First, we consider the case that MED updates its state to the last re-
quest in P, i.e., MEDy, = f(t1). By the definition, ¥ (¢, f(t)) < « for all t €
{to,to +1,...,t1}. Then, by Observation 2, ¥ (MEDy,, &) > ¥(MEDy,, f(t1))/5 —
U(&, f(t1)) > C/B — a. Finally, ¥(MEDy,, &) = ¥(f(t1),£) < «, and the lemma
holds.

Second, we consider the case that P ends with MED updating its state to the
median. Since all the requests are at distance at most C' from MEDy,, initially
U(MEDy,, &) < 2C (as otherwise OPT would pay C for each request). Thus,
in the following, we show that ¥(MEDy,,&)/¥(MEDy,, &) < 2a/(C/8 — a). As
2a/(C/B — a) < 1, this implies both parts of the claim. Let n be the number of
rounds in P and let & be the median of the corresponding n requests, denoted
by x1,xa,...,2,. By Observation 2] we obtain a lower bound for ¥ (MEDy,, §):

n-W(MEDy,, &) > Xn: <% -W(MEDy,, x;) —¥(€ — :171)>
i=1
= % : ZW(MEDtmxi) - Zw(gvxz)
i=1 i=1
>C/f—a.

Moreover, by the median definition, it follows that at least half of the requests
in P are further from £ than the median is, and thus (n/2)-¥(£,7) < OpT(op) <
a. This implies that ¥ (MEDy,,&) = ¥(Z,¢) < 2a/n. Comparing ¥(MEDy,, ) to
¥ (MEDy,, ) immediately yields the lemma:

LD(MEDM ) 5)
W(MEDy,, &)

2a/n 2«
(C/B—a)/n  C/B—a’ .

IN
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Lemma 3. Assume that the growth of the penalty function is at most 3. There
exists £ = O(log C/loglog C), such that in any subsequence T consisting of con-
secutive 20 + 1 phases, OPT(T) = 2(C/3).

Proof. Fix any input sequence o and any contiguous subsequence 7 consisting
of 2¢ 4+ 1 phases. (The exact value of ¢ is discussed later.)

If OpT changes its state within 7, then the lemma follows trivially. Thus, in
the remainder of the proof, we assume that throughout 7, OPT is in state &.
We look at the prefix 7/ of 2¢ phases of 7 (i.e., ignoring the last phase). Let
B= % -C'//log C. We assume that C' is sufficiently large, i.e., B < C/(33). We
consider three cases:

1. 7/ contains a phase for which OPT pays at least % - C/B. In this case, the
claim follows trivially.

2. 7’ contains ¢ phases for which OPT pays at least B. Then, OpT(7') > ¢-B =
2(C/8).

3. All phases of 7 are (3 - C/3)-constrained and at least £+ 1 of them are ad-
ditionally B-constrained. We show that this implies the existence of a phase
in 7/, at the end of which ¥(MED, &) = 0.

By Lemma 2, we can make three key observations for this case: (1) in
all phases of 7/, the distance between MED and & does not increase; (2)
after the first phase of 7/, the distance between MED and £ becomes at most
2C; (3) in each of the next ¢ B-constrained phases, ¥(MED,¢) decreases
by a factor of ¢ := 2B/(C/B — B) = 6(1/y/logC). Let £ = log; ,,(4C) =
O(log C/loglog C). Thus, at the end of these ¢ phases, ¥(MED, &) decreases
to at most 1/2, i.e., it becomes 0.

We consider the next phase of 7, during which ¥(MED, &) = 0 and we
denote the requests in this phase by x1, x9, ..., z,. By Observation[] the cost
of OPT in this phase is Y., ¥ (&, ;) > Y i, (Z(MED, z;)/3—¥(MED, £)) >
C/f (as by the construction of MED, Y ., ¥(MED, z;) > C). O

Theorem 3. MED is O(f3? - log C/ loglog C)-competitive for penalty functions
¥ of growth at most 3.

Proof. Fix any input sequence o and partition it into subsequences of length
2/ +1 phases, where /£ is as in the proof of Lemma[3l Fix any such subsequence 7.
By Lemma[] OpT(7) = £2(C/() and by Lemmalll MED(7) < (20+1)-2(8+1)-C.
Summing over all the subsequences of o, we obtain that the competitive ratio is

p=0 (CB—/Cﬂ -logC/loglogC) = O(%*log C/loglog C) .

Finally, we observe that after partitioning o, we might get a subsequence shorter
than 2¢ + 1 at the end. However, by Lemma [I] this contributes only a constant
term to the overall cost, and hence it does not influence the competitive ratio
(cf. Equation [2]). O
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2.2 Convex Penalties and the Set Strategy

In the previous section, we have observed that MED performs particularly well
for concave penalty functions. We now turn our attention to a different algorithm
SET which is inspired by [12]: there, it is shown that such a strategy performs well
under “0-or-oco” penalties, which is in some sense an extreme case of convexity.
Thus, we seek to generalize the approach of [I2] to an entire class of penalty
functions, and provide a performance analysis.

The algorithm SET works as follows. First, on the basis of the penalty func-
tion ¥, it computes a parameter A = min{z : ¥(x) > C'}. We call this value the
C-gap of ¥. This means that if an algorithm’s state is at distance A from the
request, then the algorithm pays at least C, and A is the smallest distance with
this property.

SET keeps track of a set .S, centered at its current state, consisting of consecu-
tive integers. At the beginning, S = [SETo— A, SETo+A]NZ, where SETo = f(0).
Again, in one phase, SET remains in the same state. Similarly to the MED algo-
rithm, SET computes the penalties accumulated since the beginning of a phase.
If this cost exceeds C, then SET changes its state as described below and a new
phase starts.

For any point x € S, SET computes the accumulated penalty of an algo-
rithm A, which remains at x during the whole phase. Among all points = € S,
we choose the leftmost (£) and the rightmost (r) point for which A, < C/2. Let
S’ be the set of all integers in [£,7]. Now SET distinguishes two cases. If S’ is
nonempty, then we set S := S’, otherwise we choose set S to contain all the
integers from range [z — A, z + A], where z is the latest request. In the second
case, we say that an epoch has ended and a new epoch starts with the next
phase. In either case, SET moves to the median of the new set S.

Below, we analyze the performance of the algorithm SET for convex penalty
functions. We start with a simple property of set S’ chosen at the end of each
phase.

Observation 4. Assume that the penalty function ¥ is convex. Let S" = {{, ¢+
1,...,7r} be the set computed by SET at the end of phase P. Then A, (P) < C/2
for any x € S’ (and not only for x € {£,r}).

Proof. The function of the cumulative penalty over a fixed period is also convex
(as the sum of convex functions is convex). This function is bitonic (i.e., first
monotonically decreasing and then monotonically increasing), which implies the
observation. a

In the lemmas below, we use the above observation, i.e., we assume that ¥ is a
convex function.

Lemma 4. In any phase, the cost of SET is at most 5C/2.

Proof. As in the proof of Lemma [I the total penalty for all the requests but
the last one is at most C. The cost of changing state is also C'. Thus, we have
to show that the penalty associated with the last request y is at most C/2. If
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set S’ is non-empty, then SET changes its state to a median of S’. Hence, by
Observation [ the penalty associated with y is at most C'/2. If S’ is empty, then
SET changes its state to y, in which case the penalty is zero. O

Lemma 5. In any two consecutive epochs E;_1 and E;, the cost of OPT is at
least C'/2.

Proof. The lemma follows trivially if OPT changes its state in these epochs, so
we assume it does not. Let S; be the set S of the algorithm SET at the beginning
of epoch E;. If OPT’s state is in S;, then its cost is at least C'/2 in at least one
phase of E;. Otherwise, the OPT state is outside S;. Then, we consider the last
request of E;_1, which, by the definition of SET is given at the center of .5;, i.e.,
at a distance of at least A+ 1 from the state of OpT. Thus, the penalty for OPT
associated with this request is at least C'. O

Theorem 5. For any convez penalty ¥ with C-gap equal to A, SET is O(log A)-
competitive.

Proof. By Lemmas @ and [l it suffices to show that the number of phases in a
single epoch is at most O(log A). At the beginning of any epoch, span(S) (defined
as the distance between the rightmost and the leftmost point of S) is 2A. Fix
any phase that is not the last phase in an epoch. Then a set S’ chosen at the
end is non-empty. Let x be the state of SET at the beginning of this phase. Since
A, > C, S’ cannot contain z, i.e., the median of S. Thus, span(S’) < span(S)/2,
which means that span(S) decreases at least by a factor of 2 in each phase. This
may happen only O(log A) times. O

It follows from [12] that this result is asymptotically tight in the following sense:
for any A there exists a convex penalty function ¥, so that the competitive ratio
of any online algorithm is 2(log A). In Section B, we will show that this lower
bound holds also for randomized algorithms. The function ¥ for which our lower
bound holds is any (possibly convex) function satisfying ¥(z) = 0 for x < A
and ¥(x) > C otherwise.

Remark. Note that our results are also applicable to convex penalty func-
tions ¥ with the additional hard constraint that the difference between reported
and observed value must not exceed T'. Convexity was used only to obtain the
property guaranteed in Observation [t however, this property also holds for
a function ¥(x) that is derived from a convex function ¥’ and a threshold T,
such that ¥(z) = ¥'(z) for ¢ <T and ¥(z) = oo for x > T.

3 Lower Bounds

Next, we show that our algorithms MED and SET are asymptotically optimal in
the classes of convex and concave functions, respectively. Note that we are not
claiming their optimality for every such function, but for a quite broad subset of
them. We emphasize that our lower bound holds even for randomized algorithms
against oblivious adversaries.



368 M. Bienkowski and S. Schmid

3.1 Linear Penalties

We prove that our deterministic algorithm MED is asymptotically optimal for
linear penalty functions.

Theorem 6. For a given penalty function ¥(x) = a-x (for any a > 0), the
competitive ratio of any randomized algorithm is at least 2(log C'/loglog C).

To prove this theorem, we employ a standard min-max approach. We fix an arbi-
trary deterministic online algorithm DET and generate a probability distribution
7 over input sequences in such a way that if an input sequence o is chosen ac-
cording to , the following conditions hold:
1. OpT(0) = O(C)
2. E;[DET(0)] = 2(C - log C/loglog C), where the expectation is taken over
the random choice of the input;

Our construction below can be repeated an arbitrary number of times. Along
with the second condition above, this ensures that the cost of the algorithm
cannot be hidden in the additive constant in the definition of the competitive
ratio (see Eq. 2)). Then the lower bound for any randomized online algorithm
follows immediately by the Yao min-max principle [3].

We now describe how to randomly choose an input o, that is, we will implic-
itly create a probability distribution 7 over input sequences. Let [a, by be the set
[a,b) NN = {a,a+1,...,b}. Let s be the largest integer i for which (log C')* < C;
clearly s = O(log),ec C) = O(logC/loglog C). First, we create a sequence
of s + 1 random sets: Ry 2 Ry 2 R2 2 ... O Rs. Ry = [0,(logC)* — 1]n.
The remaining sets are chosen iteratively in the following manner. We parti-
tion R; into log C disjoint contiguous subsets of the same size; R;41 is chosen
uniformly at random among them. For example, R; is chosen amongst the fol-
lowing sets: [0, (log C)*~! — 1]y, [logC)*~ 1,2 (logC)*~t — 1]y, ..., [(log C)* —
(log C)*~1, (log C)* — 1]n. Note that the construction implies that R contains
a single integer. The sequence o associated with sets Ry, Ry, ..., Rs consists of
s phases, numbered from 1. In phase i there are [C/(a - |R;—1])] requests given
at the leftmost integer from the set R;.

Below, we present two lemmas, which directly imply the two conditions above,
and thus also Theorem [6

Lemma 6. For any initial state of OPT and input o generated in the way de-
scribed above, OPT(0) = O(C).

Proof. Let Ry 2 Ry O ... 2 R, be the sequence of sets associated with o. Let
2 be the only element of the set Rs. The strategy for an offline (possibly not
optimal) algorithm OFF is to change its state to = at the very beginning of o
and remain there for the whole o.

Clearly, the update cost is C. In phase 7, the distance between x and the
requests is at most |R;|, and thus the total penalty paid by OFF is at most
O(a - |Ri| - [C/(a - |Ri—1]]) = O(C/logC). Thus, the total cost in the entire
sequence is OFF(0) < C + s-0O(C/logC) = O(C). As OpT(0) < OFF(0), the
lemma follows. O
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Lemma 7. For any deterministic online algorithm DET and input o generated
randomly in the way described above, E[DET(o)] = 2(C -log C/loglogC).

Proof. Any sequence o consists of s = O(log C'/loglog C) phases. It is therefore
sufficient to show that the expected cost of DET in any phase is at least £2(C).

We consider the moment at the very beginning of phase i, even before its
first request is presented to DET. At that moment, DET knows the set R; 1
and is at some fixed state z (not necessarily but possibly from R;_1). When the
first request from phase i is revealed to DET, it immediately learns R;, but it is
already too late. For any fixed state x, the expected distance between x and the
leftmost point of R; is at least £2(|R;—1|). Thus, DET has two choices. It may
change its state, paying C' or it may remain at x paying in expectation the total
penalty of at least 2(a - [C/(a- |R;i—1]|)] - |Ri—1]) = £2(C). O

3.2 Convex Penalties

The following theorem shows the asymptotic optimality of the algorithm SET
in the class of convex functions. We note that the deterministic variant of this
theorem is already known (cf. Theorem 2.1 of [I2]) and our proof can be viewed
as its adaptation.

Theorem 7. For any A, there exists a convex penalty function ¥, whose C-gap
is A and the competitive ratio of any randomized algorithm is at least 2(log A).

Proof. We consider the convex penalty function used in [12], i.e., ¥(x) = 0 for
z < A and ¥(z) = oo otherwise. In fact, for our proof to work, we require only
that @(z) =0 for x < A and ¥(x) = 2(C) otherwise.

Our approach is similar in flavor to the proof of Theorem [6, so we just con-
centrate on the differences. Once again, we randomly construct a family of sets
Ry, R1,...Rs. This time s = [log A| and Ry = [0,2° — 1]n. To construct R; out
of R;_1, we divide R;_1 into two equal contiguous halves and R; is chosen ran-
domly among them. The sequence consists now of s rounds, numbered from 1. In
round ¢, the requests are given at x;, such that the distance between x; and any
point of R; is at most A and the distance between xz; and any point of R;_1\ R;
is greater than A.

OPT can serve the whole sequence without penalties changing its state to the
only integer of R, at the beginning (paying C for the state change). On the other
hand, any deterministic algorithm DET at the beginning of round ¢ knows set
R;_1, but does not know which half will be chosen as R;, and with probability
1/2 it is in “the wrong half”. Thus, with probability 1/2, when the request is
presented to DET, it either has to pay the penalty 2(C') or change its state paying
C'. Hence, the expected cost of DET on such a sequence is £2(C - s) = £2(C'log A),
i.e., the ratio of E[DET] divided by OPT is at least £2(log A). Again, using the
Yao min-max principle, the same bound even holds for any randomized algorithm
(against an oblivious adversary). O
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4 Conclusions

This paper studies generalized penalty functions for the problem of approximat-
ing a function f (that is revealed gradually) by a piecewise constant function g,
where the cost depends on the number of value changes of g plus the error cost
summed over the discrete sampling points.

We believe that our work opens several interesting directions for future re-
search. First, our results raise the question whether MED and SET can be com-
bined in order to have the advantages of both worlds in penalty functions beyond
concave and convex models. Another research direction is the study of different
penalty functions in multi-dimensional tracking f : Ng — Z¢ and the analysis
of the gains that can be obtained with the line predictions of [12]. Finally, dis-
tributed settings remain to be explored where there are multiple observers at
different sites.
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