
Free Riding in BitTorrent is Cheap

Thomas Locher1, Patrick Moor2, Stefan Schmid1, Roger Wattenhofer1

1 Computer Engineering and Networks Laboratory (TIK), ETH Zurich, 8092 Zurich, Switzerland

{lochert, schmiste, wattenhofer}@tik.ee.ethz.ch
2 Google Inc., Mountain View, CA 94043, USA

pmoor@google.com

ABSTRACT

While it is well-known that BitTorrent is vulnerable to self-
ish behavior, this paper demonstrates that even entire files
can be downloaded without reciprocating at all in BitTor-
rent. To this end, we present BitThief, a free riding client
that never contributes any real data. First, we show that
simple tricks suffice in order to achieve high download
rates, even in the absence of seeders. We also illustrate
how peers in a swarm react to various sophisticated at-
tacks. Moreover, our analysis reveals that sharing com-
munities—communities originally intended to offer down-
loads of good quality and to promote cooperation among
peers—provide many incentives to cheat.

1 INTRODUCTION

As pure peer-to-peer (p2p) systems are completely decen-
tralized and resources are shared directly between partic-
ipating peers, all p2p systems potentially suffer from free
riders, i.e. peers that eagerly consume resources without
reciprocating in any way. Not only do free riders diminish
the quality of service for other peers, but they also threaten
the existence of the entire system.

For that reason, it is crucial for any system without cen-
tralized control to incorporate a rigorous incentive mecha-
nism that renders freeloading evidently unattractive to self-
ish peers. Unfortunately, however, many solutions so far ei-
ther could easily be fooled or were unrealistically complex.
Bram Cohen’s BitTorrent protocol heralded a paradigm
shift as it demonstrated that cooperation can be fostered
among peers interested in the same file, and that concen-
trating on one file is often enough in practice. The fair shar-
ing mechanism of BitTorrent is widely believed to strongly
discourage freeloading behavior.

Contrary to such belief, we show that BitTorrent in fact
does not provide sufficient incentives to rule out free rid-
ing. The large degree of cooperation observed in BitTorrent
swarms is mainly due to the widespread use of obedient
clients which willingly serve all requests from other peers.

We have developed our own BitTorrent client BitThief 1 that
never serves any content to other peers. With the aid of this
client, we demonstrate that a peer can download content
fast without uploading any data. Surprisingly, BitThief al-
ways achieves a high download rate, and in some experi-
ments has even outperformed the official client. Moreover,

1Available at http://dcg.ethz.ch/projects/bitthief/.

while seeders (“altruistic peers”) clearly offer the oppor-
tunity to freeload, we are even able to download content
quickly if we ignore seeders and download solely from
other peers that do not possess all pieces of the desired
content (leechers). This implies that the basic piece ex-
change mechanism does not effectively restrain peers from
freeloading.

Sharing communities are also investigated in this paper.
By banning users with constantly low sharing ratios or by
denying them access to the newest torrents available, such
communities encourage users to upload more than they
download, i.e., to keep their sharing ratio above 1. We will
show that sharing communities are particularly appealing
for free riders, and that cheating is easy.

We believe that the possibility to freeload which does
not come at the cost of a considerably reduced quality of
service (e.g., download rate) is attractive for users: Not
only because wasting more expensive upload bandwidth is
avoided, but also because—in contrast to downloading—
merely the distribution of copyrighted media content such
as music or video shared in p2p networks is unlawful in
certain countries.

However, as more and more users decide to free ride,
the usefulness of a p2p system will naturally decline. Thus,
spreading such freeloading clients might prove to be an
effective attack for corporations fighting the uncontrolled
distribution of their copyrighted material.

2 BITTORRENT

The main mechanisms applied by BitTorrent are described
in [4]; for additional resources including a detailed tech-
nical protocol, the reader is referred to www.bittorrent.org.
Basically, BitTorrent is a p2p application for sharing files or
collections of files. In order to participate in a torrent down-
load, a peer has to obtain a torrent metafile which con-
tains information about the content of the torrent, e.g. file
names, size, tracker addresses, etc. A tracker is a central-
ized entity that keeps track of all the peers (TCP endpoints)

that are downloading in a specific torrent swarm.2 Peers
obtain contact information of other participating peers by
announcing themselves to the tracker on a regular basis.
The data to be shared is divided into pieces whose size
is specified in the metafile (usually a couple of thousand
pieces per torrent). A hash of each piece is also stored in the
metafile, so that the downloaded data can be verified piece

2Recently, a distributed tracker protocol has been proposed. It is im-
plemented by most modern clients.

HotNetsV Session 5: Anti/Social 85

by piece. Peers participating in a torrent download are sub-
divided into seeders which have already downloaded the
whole file and which (altruistically) provide other peers
with any piece they request, and leechers which are still
in progress of downloading the torrent. While seeders up-
load to all peers (in a round robin fashion), leechers upload
only to those peers from which they also get some pieces in
return. The peer selection for uploading is done by unchok-
ing a fixed number of peers every ten seconds and thus en-
abling them to send requests. If a peer does not contribute
for a while it is choked again and another peer is unchoked
instead.

The purpose of this mechanism is to enforce contribu-
tions of all peers. However, each leecher periodically un-
chokes a neighboring leecher, transferring some data to
this neighboring peer for free (called optimistic unchoking
in BitTorrent lingo). This is done in order to allow newly
joined peers without any pieces of the torrent to bootstrap.
Clearly, this unchoking mechanism is one weakness that
can be exploited by BitThief.

3 BITTHIEF: A FREE RIDING CLIENT

In this section we provide evidence that, with some simple
tricks, uploading can be avoided in BitTorrent while main-
taining a high download rate. In particular, our own client
BitThief is described and evaluated. BitThief is written in
Java and is based on the official implementation3 (writ-
ten in Python, also referred to as official client or main-

line client), and the Azureus4 implementation. We kept the
implementation as simple as possible and added a lot of in-
strumentational code to analyze our client’s performance.
BitThief does not perform any chokes or unchokes of re-
mote peers, and it never announces any pieces. In other
words, a remote peer always assumes that it interacts with
a newly arrived peer that has just started downloading.
Compared to the official client, BitThief is more aggres-
sive during the startup period, as it re-announces itself to
the tracker in order to get many remote peer addresses as
quickly as possible. The tracker typically responds with 50
peer addresses per announcement. This parameter can be
increased to at most 200 in the announce request, but most
trackers will trim the list to a limit of 50. Tracker announce-
ments are repeated at an interval received in the first an-
nounce response, usually in the order of once every 1800
seconds. Our client ignores this number and queries the
tracker more frequently, starting with a configurable inter-
val and then exponentially backing off to once every half an
hour. Interestingly, during all our tests, our client was not
banned by any of the trackers and could thus gather a lot
of peers. The effect of our aggressive behavior is depicted
in Figure 1. Finally, note that it would also be possible to

make use of the distributed tracker protocol.5 This proto-
col is useful if the main tracker is not operational. Thus far,
we have not incorporated this functionality into our client
however.

3See http://bittorrent.com/.
4See http://azureus.sourceforge.net/.
5See http://www.bittorrent.org/Draft DHT protocol.html.

 0

 100

 200

 300

 400

 500

 600

 0 2 4 6 8 10 12 14 16 18

C
o

n
n

e
c
ti
o

n
s

Time (minutes)

BitThief
Official Client

Figure 1: Number of open connections over time. In comparison to the
official client, BitThief opens connections much faster.

Having a large number of open connections improves
the download rate twofold: First, connecting to more seed-
ers allows our client to benefit more often from their round
robin unchoking periods. Second, there will be more leech-
ers in our neighborhood that include BitThief in their peri-
odical optimistic unchoke slot. Opening more connections
increases download speed linearly, as remote peers act in-
dependently of the number of our open connections. How-
ever, note that opening two connections to the same peer
does not help, as the official client, Azureus, and presum-
ably all other clients as well immediately close a second
connection originating from the same IP address.

Our experiments with BitThief demonstrate that the
common belief that the performance will degrade if a large
number of TCP connections is maintained simultaneously
is unfounded. On the contrary, more connections always
help to increase the download rate when using BitThief.
The reason why the total number of TCP connections is
kept small in BitTorrent might be that a moderate number
of connections suffice to saturate the average user’s band-
width when following the real protocol, and no further gain
could be achieved by connecting to more peers.

In contrast to other BitTorrent clients, BitThief does not
apply the so-called rarest-first policy, but uses a simpler
piece selection algorithm instead: We fetch whatever we
can get. If our client is unchoked by a remote peer, it picks a
random missing piece. Our algorithm ensures that we never
leave an unchoke period unused. Furthermore, just like all
other BitTorrent clients, we strive to complete the pieces
we downloaded partially as soon as possible in order to
check them against the hash from the metafile and write
them to the harddisk immediately.

3.1 Seeders

We first tested the client on several torrents obtained from
Mininova6 and compared it to the official client.7 By de-
fault, the official client does not allow more than 80 con-
nections. In order to ensure a fair comparison, we removed
this limitation and permitted the client to open up to 500

6See http://www.mininova.org/.
7Official client vers. 4.20.2 (linux source). Obtained from

bittorrent.com, used with parameters: --min peers 500

--max initiate 500 --max allow in 500.

86 Free Riding in BitTorrent is Cheap

Size Seeders Leechers µ σ

A 170MB 10518 (303) 7301 (98) 13 4
B 175MB 923 (96) 257 (65) 14 8
C 175MB 709 (234) 283 (42) 19 8
D 349MB 465 (156) 189 (137) 25 6
E 551MB 880 (121) 884 (353) 47 17
F 31MB N/A (29) N/A (152) 52 13
G 798MB 195 (145) 432 (311) 88 5

Table 1: Characteristics of our test torrents. The numbers in parentheses
represent the maximum number of connections BitThief maintained con-
currently to the respective peer class and is usually significantly lower
than the peer count the tracker provided. µ and σ are the average and
standard deviation of the official client’s download times in minutes. The
tracker of Torrent F did not provide any peer count information. Based on
the number of different IP addresses our client exchanged data with, we
estimate the total number of peers in this torrent to be more than 340.

connections. In a first experiment, we did not impose any
restrictions on our client, in particular, BitThief was also
permitted to download from seeders. The tests were run
on a PC with a public IP address and an open TCP port,
so that remote peers could connect to our client. We fur-
ther blocked all network traffic to or from our university
network, as this could bias the measurements. The prop-
erties of the different torrents used in this experiment are
depicted in Table 1. Note that the tracker information is not
very accurate in general and its peer count should only be
considered a hint on the actual number of peers in the tor-
rent.

 0

 1

 2

 3

 4

 5

 6

GFEDCBA

R
e

la
ti
v
e

 D
o

w
n

lo
a

d
 D

u
ra

ti
o

n

Figure 2: Relative download times for six torrents. The download time
of the official client is normalized to 1.0. Every torrent was downloaded
three times with both clients. The plot shows relative download times with
the fastest run at the lower end of the bar, the average running time at the
level of the horizontal tick mark, and the slowest run at the upper end of
the bar.

The results are summarized in Figure 2. As a first obser-
vation, note that in every experiment, BitThief succeeded
eventually to download the entire file. More interestingly,
the time required to do so is often not much longer than
with uploading! Exceptions are Torrents E and G, where
there are relatively few seeders but plenty of leechers. In
that case, it takes roughly four times longer with our client.
However, the download came at a large cost for the offi-
cial client as it had to upload over 3.5GB of data. Torrents
A, B and F also offer valuable insights: In those torrents,
BitThief was, on average, slightly faster than the official

client, which uploaded 232MB in a run of torrent A and
129MB in a run of Torrent B. We conclude that in torrents
with many peers, particularly seeders, and in torrents for
small files, BitThief seems to have an advantage over the
official client, probably due to the aggressive connection
opening.

3.2 Leechers

In this section, we further constrain BitThief to only down-
load from other leechers. Interestingly, as we will see, even
in such a scenario, free riding is possible.

Seeders are identified by the bitmask the client gets when
the connection to the remote peer is established, and the
have-message received every time the remote peer has suc-
cessfully acquired a new piece. As soon as the remote peer
has accumulated all pieces, we immediately close the con-
nection. We conducted the tests at the same time as in Sec-

 0

 2

 4

 6

 8

 10

 12

 14

 16

GFEDCBA

R
e

la
ti
v
e

 D
o

w
n

lo
a

d
 D

u
ra

ti
o

n

Figure 3: Relative download times of BitThief for six torrents without
downloading from any seeders. The download time of the official client
is normalized to 1.0. As in the first experiment, the torrents were down-
loaded three times with the official client and three times using BitThief
restricted to download from leechers only. The bars again represent the
same minimum, average and maximum running times.

tion 3.1 and also used the same torrents. The running times
are depicted in Figure 3. It does not come as a surprise that
the average download time has increased. Nevertheless, we
can again see that all downloads finished eventually. More-
over, note that the test is slightly unfair for BitThief, as the
official client was allowed to download not only from the
leechers, but also from all seeders! In fact, in some swarms
only a relatively small fraction of all peers are leechers. For
example in Torrent C, merely 15% are leechers, and Bit-
Thief can thus download from less than a sixth of all avail-
able peers; nevertheless, BitThief only requires roughly 5
times longer than the official client.

We conclude that even without downloading from seed-
ers, BitThief can download the whole torrent from leech-
ers exclusively. Therefore, it is not only the seeders which
provide opportunities to free ride, but the leechers can be
exploited as well.

3.3 Further Experiments

The measurements presented so far have all been obtained
through experiments on the Internet and hence were subject
to various external effects. For example, in case BitThief

HotNetsV Session 5: Anti/Social 87

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16 18

C
o

m
p

le
ti
o

n

Time

Official Client 1
Official Client 2
Official Client 3

BitThief

Figure 4: Download times for three official clients and one BitThief client
in the presence of a slow seeder. BitThief starts downloading 9 minutes
later than the other clients, but catches up quickly. Ultimately, all clients
finish the download roughly at the same time.

was allowed to download from seeders, it sometimes down-
loaded at a high rate, but then—a few minutes later—the
download rate declined abruptly due to a powerful seeder
having left the network. In order to get reproducible results,
we set up a pet network environment on a host, consist-
ing of a private tracker, a configurable number of official
clients as seeders and leechers, and one instance of our own
client. We evaluated different scenarios. In the following,
our main findings will be summarized briefly.

In scenarios with many seeders and only very few leech-
ers, our client will download most data from seeders. As
the leechers often do not fill up all their upload slots with
other leechers,our client is unchoked all the time, yielding
a constant download rate.

More interesting are scenarios with a small number of
seeders. A fast seeder is able to push data into the swarm
at a high rate and all the leechers can reciprocate by shar-
ing the data quickly with their upstreams fully saturated.
In this situation, it is difficult for our client to achieve a
good downstream: We only get a small share of the seeders’
upstream and all the other leechers are busy exchanging
pieces between them. Hence, we only profit from the opti-
mistic unchoke slots, which results in a poor performance.
However, note that many leechers will turn into seeders rel-
atively soon and therefore our download rate will increase
steadily.

A slow seeder is not able to push data fast enough into
the swarm, and the leechers reciprocate the newly arrived
pieces much faster without filling all their upload slots. Al-
though BitThief cannot profit from the seeders, it can make
use of the leechers’ free upload slots. The attainable down-
load rate is similar to the one where there are many seed-
ers. The download rate will go down only when BitThief
has collected all pieces available in the swarm. When a
new piece arrives, the leechers will quickly exchange it,
enabling BitThief to download it as well with almost no
delay. An experiment illustrating this behavior is given in
Figure 4. Note that the execution shown in the figure is
quite idealistic, as there are no other leechers joining the
torrent over time.

In summary, the results obtained from experiments on

the Internet have been confirmed in the experiments con-
ducted in our pet network.

3.4 Exploiting Sharing Communities

Finding the right torrent metafile is not always an easy task.
There exist many sites listing thousands of torrents (e.g.,
Mininova), but often the torrents’ files are not the ones
mentioned in the title or are of poor quality. Therefore, a lot
of sharing communities have emerged around BitTorrent.
These communities usually require registration on an invi-
tation basis or with a limit on the number of active users.
Finding good quality torrents in these communities is much
more convenient than on public torrent repositories. Shar-
ing communities usually encourage their users to upload at
least as much data as they download, i.e., to keep their shar-
ing ratio above 1. This is achieved by banning users with
constantly low sharing ratios or by denying them access to
the newest torrents available.

Andrade et al. [2] studied these communities and an-
alyzed how sharing ratio enforcement influences seeding
behavior. The authors find that seeders are staying in a tor-
rent for longer periods of time, i.e., typically the majority
of peers are seeders. These communities thus exhibit ideal
conditions for BitThief, provided that we can find ways to
access and stay in this communities without uploading.

We have found that this can often be done by simply pre-
tending to upload. The community sites make use of the
tracker announcements which every client performs reg-
ularly. In these announcements the client reports the cur-
rent amount of data downloaded and uploaded. These num-
bers are stored in a database and used later on to calcu-
late the sharing ratios. The tracker typically does not verify
these numbers, although, in our opinion, it would be possi-
ble to expose mischievous peers: For instance, in a torrent
with 100 seeders and just one leecher, it looks suspicious
if the leecher is constantly announcing large amounts of
uploaded data. Alternatively, the sum of all reported down-
load and upload amounts could be analyzed over different
torrents and time periods, in order to detect and ban dis-
honest peers.

The tracker can also be cheated easily: Clients can
announce bogus information and fake peers so that the
tracker’s peer list fills up with dozens of clients which do
not exist. The seeder and leecher counts reported by the
tracker can therefore be misleading as there are usually
not that many real peers downloading a given torrent. Even
worse, peers asking a tracker for other peers can get a lot
of invalid or stale information, which makes torrent starts
slow.

An alternative is used by recent BitTorrent clients: A dis-
tributed tracker protocol which manages the torrent swarm.
The technique of faking tracker announcements has been
used in a couple of torrents in our tests and we now have a

sharing ratio of 1.4 on TorrentLeech8 without ever upload-
ing a single bit.

An example which emphasizes how dramatic the dif-
ference between a community internal and an external

8See http://torrentleech.org/.

88 Free Riding in BitTorrent is Cheap

 0

 200

 400

 600

 800

 1000

 1200

 0.5 1 2 4 8 16 32

D
o

w
n

lo
a

d
 R

a
te

 (
K

B
/s

)

Time (minutes, logarithmic!)

TorrentLeech
Mininova

Figure 5: BitThief’s download speed: comparison between a community
version of a torrent and a torrent of the same file found on Mininova.

download can be, is given in Figure 5. We used a tor-
rent that was published on TorrentLeech approximately
12 hours before conducting this experiment and looked
for the same one on Mininova, where it had appeared
4 hours earlier. The torrent was 359MB in size on Tor-
rentLeech and slightly smaller (350MB) on Mininova. We
first downloaded the torrent three times from Mininova,
then three times from TorrentLeech. The Mininova runs
took 32/32/37 minutes, while on TorrentLeech the runs
completed in 7:25/7:08/7:08 minutes, respectively. This is
more than four times faster. Considering that there were
only 25 (24 seeders, one leecher) peers in the TorrentLeech
swarm and more than 834 (531 seeders, 303 leechers) peers
in the other swarm, this is surprising.

As far as the individual contributions of the peers are
concerned, we observed the following. While BitThief
tends to benefit more from certain peers, generally seed-
ers, in public torrents, a much larger fraction of all peers
provides a considerable share of the file in sharing commu-
nities, and the distribution across peers is more balanced.
This is probably due to the community peers’ desire to
boost their sharing ratios by uploading as much as possible.
An experiment illustrating this point is depicted in Figure
6.

4 SOPHISTICATED ATTACKS

While simple tricks often yield a good performance, Bit-
Torrent has proved to be quite robust against certain more
sophisticated attacks.

First, we have investigated an exploit proposed in [10],
which truly violates the BitTorrent protocol: The selfish
client announces pieces as being available even if it does
not possess them. If such an unavailable piece is requested
by a remote peer, the client simply sends random data
(garbage). As only the integrity of whole pieces can be
checked, the remote peer cannot verify the subpiece’s cor-
rectness. Note that this behavior cannot be considered free
riding in the pure sense, but it is a strategy that does not
require to upload any valid user data.

In a first implementation, all requests are answered
by uploading entire garbage pieces. As has already been
pointed out in [10], this approach is harmful: Both the offi-
cial client and Azureus store information from whom they

 1

 10

 100

 1000

 10000

 100000

 1 2 4 8 16 32 64 128

N
u

m
b

e
r

o
f

s
u

b
p

ie
c
e

s
 (

b
lo

c
k
s
)

re
c
e

iv
e

d

Community
Open

Figure 6: The logarithmically scaled list of peers ordered according to
the number of provided blocks is plotted on the x-axis. The file size was
350 MB. On Mininova (open) and on TorrentLeech (community), BitThief
connected to 309 and 349 peers, respectively. In the community network,
the distribution is more balanced and BitThief is able to download from
much more peers, while only a few peers contributed a large fraction of
all blocks in the public torrent.

have received subpieces and will thus immediately ban our

IP address once the hash verification fails.9 Consequently,
we have tried to answer all requests for a piece except for
one subpiece, which would force the remote peer to get that
subpiece from a different peer. The idea is that the remote
peer cannot tell which peer uploaded the fake data, as it
might as well be the other peer which only supplied one
subpiece. While the official client can indeed be fooled this
way, Azureus is smarter and uses an interesting approach:
Once it has determined that the piece is not valid, it looks
up from which peer it received most subpieces. The piece
is then reserved for that peer, and Azureus aims at fetching
all remaining subpieces from the same peer. When refusing
to answer these requests, the connection stalls, and eventu-
ally our IP address is banned. We have tried several tricks
to circumvent these problems, but came to the conclusion
that uploading random garbage, in any way, does not im-
prove performance.

When establishing connections, peers inform each other
about their download status by sending a list of pieces that
they have already successfully downloaded. While the con-
nection is active, peers send messages to each other for
each new piece they downloaded. Therefore, a peer always
know the progress of its neighbors. We sought to measure
the influence that this information has on a remote peer.
Currently, BitThief sends an empty list of available pieces
during connection setup and it does not inform the remote
peer about any new pieces it acquires. We tried announcing
different percentages of all the pieces at the beginning of
the connection, but our experiments showed that the per-
formance is independent of the percentage, as long as not
all of the pieces are available. However, announcing 100%
of the pieces has disastrous consequences, as the remote
peer considers BitThief a seeder and therefore does not re-
spond to any piece requests.

9Note that an appealing solution would be to fake entire pieces by
using contents yielding the same hash values. Unfortunately, however, the
computation of such SHA-1 hash collisions is expensive and would yield
huge tables which cannot be stored in today’s databases.

HotNetsV Session 5: Anti/Social 89

BitThief profits from the optimistic unchoke slots of
leechers and from the round robin unchoke scheme of seed-
ers. Thus, a client could possibly increase the chance of be-
ing unchoked by being present in the remote peer’s neigh-
borhood more than once. This is known as a Sybil attack
[5]. However, this attack involves opening two or more
connections to a remote peer. Both the official client and
Azureus prevent such behavior. If multiple IP addresses are
available, it would be an easy task to extend the client in a
way to fake two entities and trick remote peers. The peers
would gladly open a connection to both external addresses
and thus our download rate might increase up to twofold.

5 RELATED WORK

In 2000, Adar and Huberman [1] noticed the existence of
a large fraction of free riders in the file sharing network
Gnutella. The problem of selfish behavior in peer-to-peer
systems has been a hot topic in p2p research ever since, e.g.
[8, 12], and many mechanisms to encourage cooperation
have been proposed, for example in [6, 7, 11, 13, 14].

BitTorrent [4] has incorporated a fairness mechanism
from the beginning. Although this mechanism has similar-
ities to the well known tit-for-tat mechanism [3], the mech-
anism employed in BitTorrent distinguishes itself from the
classic tit-for-tat mechanism in many respects [9]. This
fairness mechanism has also been the subject of active
research recently. Based on PlanetLab tests, [9] has ar-
gued that BitTorrent lacks appropriate rewards and punish-
ments and therefore peers might be tempted to freeload.
The authors further propose a tit-for-tat-oriented mecha-
nism based on the iterated prisoner’s dilemma [3] in order
to deter peers from freeloading. However, in their work, a
peer is already considered a free rider if it contributes con-
siderably less than other peers. We, on the other hand, aim
at attaining fast downloads strictly without uploading any
data. This is often desirable, since in many countries down-
loading certain media content is legal whereas uploading is
not.

The paper closest to our work is by Liogkas et al. [10].
The authors implement three selfish BitTorrent exploits and
evaluate their effectiveness. They come to the conclusion
that while peers can sometimes benefit slightly from being
selfish, BitTorrent is fairly robust. Our work extends [10]
in that, rather than concentrating on individual attacks, we
have implemented a client that combines several attacks
(an open question in [10]). In contrast to our work, the au-
thors examine the effect of free riders on the overall sys-
tem and argue that the quality of service is not severely
affected by the presence of some peers that contribute only
marginally. We focus strictly on maximizing the download
rate of a single, selfish peer, regardless of what effect this
peer has on the system.

Finally, [2] has studied the cooperation in BitTorrent
communities. It has been shown that community-specific
policies can boost cooperation. In our work, we have
demonstrated that cheating is often easy in communities
and selfish behavior even more rewarding.

6 OUTLOOK

In a first thread of future research, we aim at incorporat-
ing further selfish attacks such as collusion into BitThief.

Moreover, current trends such as ISP caching10 could also
introduce new potential exploits.

In a second thread of research, we extend our BitThief
client such that it truly enforces cooperation among peers.

For this purpose, the Fast Extension11 might serve as a
promising starting point. A challenging problem which has
to be addressed is to find a mechanism that applies some
kind of tit-for-tat algorithm for older peers in the system,
while at the same time efficiently solving the bootstrap
problem of newly joining peers: As these new peers inher-
ently do not have any data to share, they must be provided
with some “venture capital”.

REFERENCES

[1] E. Adar and B. A. Huberman. Free Riding on Gnutella. First Mon-
day, 5(10), 2000.

[2] N. Andrade, M. Mowbray, A. Lima, G. Wagner, and M. Ripeanu.
Influences on Cooperation in BitTorrent Communities. In Proc. 3rd
ACM SIGCOMM Workshop on Economics of Peer-to-Peer Systems
(P2PECON), 2005.

[3] R. Axelrod. The Evolution of Cooperation. Science,
211(4489):1390-6, 1981.

[4] B. Cohen. Incentives Build Robustness in BitTorrent. In Proc.
1st Workshop on Economics of Peer-to-Peer Systems (P2PECON),
2003.

[5] J. R. Douceur. The Sybil Attack. In 1st International Workshop on
Peer-to-Peer Systems (IPTPS), Cambridge, MA, USA, pages 251–
260, 2002.

[6] M. Feldman and J. Chuang. Overcoming Free-Riding Behavior in
Peer-to-Peer Systems. ACM Sigecom Exchanges, 6, 2005.

[7] D. Grolimund, L. Meisser, S. Schmid, and R. Wattenhofer. Have-
laar: A Robust and Efficient Reputation System for Active Peer-to-
Peer Systems. In 1st Workshop on the Economics of Networked
Systems (NetEcon), Ann Arbor, Michigan, USA, June 2006.

[8] D. Hughes, G. Coulson, and J. Walkerdine. Free Riding on Gnutella
Revisited: The Bell Tolls? IEEE Distributed Systems Online, 6(6),
2005.

[9] S. Jun and M. Ahamad. Incentives in BitTorrent Induce Free Riding.
In Proc. 3rd ACM SIGCOMM Workshop on Economics of Peer-to-
Peer Systems (P2PECON), 2005.

[10] N. Liogkas, R. Nelson, E. Kohler, and L. Zhang. Exploiting Bit-
Torrent For Fun (But Not Profit). In Proc. 5th Itl. Workshop on
Peer-to-Peer Systems (IPTPS), 2006.

[11] S. Sanghavi and B. Hajek. A New Mechanism for the Free-rider
Problem. In Proc. 3rd ACM SIGCOMM Workshop on Economics of
Peer-to-Peer Systems (P2PECON), 2005.

[12] J. Shneidman and D. C. Parkes. Rationality and Self-Interest in
Peer to Peer Networks. In Proc. 2nd Int. Workshop on Peer-to-Peer
Systems (IPTPS), 2003.

[13] K. Tamilmani, V. Pai, and A. Mohr. SWIFT: A System with Incen-
tives for Trading. In Proc. 2nd Workshop on Economics of Peer-to-
Peer Systems, 2004.

[14] V. Vishnumurthy, S. Chandrakumar, and E. G. Sirer. KARMA: A
Secure Economic Framework for P2P Resource Sharing. In Proc.
Workshop on Economics of Peer-to-Peer Systems (P2PECON),
2003.

10See CacheLogic Press Release http://www.cachelogic.com
/home/pages/news/pr070806.php.

11See http://bittorrent.org/fast extensions.html.

90 Free Riding in BitTorrent is Cheap

