A Self-Repairing Peer-to-Peer System

Resilient to Dynamic Adversarial Churn*

Fabian Kuhn, Stefan Schmid, and Roger Wattenhofer

Computer Engineering and Networks Laboratory
ETH Zurich
8092 Zurich, Switzerland

Abstract. We present a dynamic distributed hash table where peers
may join and leave at any time. Our system tolerates a powerful ad-
versary which has complete visibility of the entire state of the system
and can continuously add and remove peers. Our system provides worst-
case fault-tolerance, maintaining desirable properties such as a low peer
degree and a low network diameter.

1 Introduction

Storing and handling data in an efficient way lie at the heart of any data-driven
computing system. Compared to a traditional client/server approach, decen-
tralized peer-to-peer (P2P) systems have the advantage to be more reliable,
available, and efficient. P2P systems are based on common desktop machines
(“peers”), distributed over a large-scale network such as the Internet. These
peers share data (as well as the management of the data) that is conventionally
stored on a central server. Usually, peers are under control of individual users
who turn their machines on or off at any time. Such peers join and leave the
P2P system at high rates (“churn”), a problem that is not existent in orthodox
distributed systems. In other words, a P2P system consists of unreliable compo-
nents only. Nevertheless, the P2P system should provide a reliable and efficient
service.

Most P2P systems in the literature are analyzed against an adversary who
can crash a functionally bounded number of random peers. After crashing a few
peers the system is given sufficient time to recover again. The scheme described
in this paper significantly differs from this in two major aspects. First, we assume
that joins and leaves occur in a worst-case manner. We think of an adversary
which can remove and add a bounded number of peers. The adversary cannot be
fooled by any kind of randomness. It can choose which peers to crash and how

* (© Springer Verlag (Berlin, Heidelberg, New York), 2005; Lecture Notes in
Computer Science (http://www.springer.de/comp /Incs/index.html). Research sup-
ported by the Swiss National Science Foundation and the Hasler Stiftung. The
technical report TIK Report 211 which includes all proofs can be downloaded at
http://tik.ee.ethz.ch/.

peers join.! Note that we use the term “adversary” to model worst-case behavior.
We do not consider Byzantine faults. Second, the adversary does not have to
wait until the system is recovered before it crashes the next batch of peers.
Instead, the adversary can constantly crash peers while the system is trying to
stay alive. Indeed, our system is never fully repaired but always fully functional.
In particular, our system is resilient against an adversary which continuously
attacks the “weakest part” of the system. Such an adversary could for example
insert a crawler into the P2P system, learn the topology of the system, and then
repeatedly crash selected peers, in an attempt to partition the P2P network.
Our system counters such an adversary by continuously moving the remaining
or newly joining peers towards the sparse areas.

Clearly, we cannot allow our adversary to have unbounded capabilities. In
particular, in any constant time interval, the adversary can at most add and/or
remove O(logn) peers, n being the total number of peers currently in the sys-
tem. This model covers an adversary which repeatedly takes down machines by
a distributed denial of service attack, however only a logarithmic number of ma-
chines at each point in time. Our algorithm relies on messages being delivered
timely, in at most constant time between any pair of operational peers. In dis-
tributed computing such a system is called synchronous. Note that if nodes are
synchronized locally, our algorithm also runs in an asynchronous environment.
In this case, the propagation delay of the slowest message defines the notion of
time which is needed for the adversarial model.

The basic structure of our P2P system is a hypercube. Each peer is part of a
distinct hypercube node; each hypercube node consists of @(logn) peers. Peers
have connections to other peers of their hypercube node and to peers of the
neighboring hypercube nodes. In the case of joins or leaves, some of the peers
have to change to another hypercube node such that up to constant factors, all
hypercube nodes own the same number of peers at all times. If the total number
of peers grows or shrinks above or below a certain threshold, the dimension of
the hypercube is increased or decreased by one, respectively.

The balancing of peers among the hypercube nodes can be seen as a dynamic
token distribution problem [1] on the hypercube. Each node of a graph (hyper-
cube) has a certain number of tokens, the goal is to distribute the tokens along
the edges of the graph such that all nodes end up with the same or almost the
same number of tokens. While tokens are moved around, an adversary constantly
inserts and deletes tokens. Our P2P system builds on two basic components: i)
an algorithm which performs the described dynamic token distribution and ii)
an information aggregation algorithm which is used to estimate the number of
peers in the system and to adapt the dimension accordingly.

Based on the described structure, we get a fully scalable, efficient P2P sys-
tem which tolerates O(logn) worst-case joins and/or crashes per constant time
interval. As in other P2P systems, peers have O(logn) neighbors, and the usual
operations (e.g. search) take time O(logn). In our view a main contribution of

! We assume that a joining peer knows a peer which already belongs to the system.
This is known as the bootstrap problem.

the paper, however, is to propose and study a model which allows for dynamic
adversarial churn. We believe that our basic algorithms (dynamic token distri-
bution and information aggregation) can be applied to other P2P topologies,
such as butterflies, skip graphs, chordal rings, etc. It can even be used for P2P
systems that go beyond distributed hash tables (DHT).

The paper is organized as follows. In Section 2 we discuss relevant related
work. Section 3 gives a short description of the model. A detailed discussion of
our P2P system is given in Sections 4 and 5. Section 6 concludes our work.

2 Related Work

A plethora of different overlay networks with various interesting technical proper-
ties have been proposed over the last years (e.g. [2][3][4][5][6][7][8][9][10][11][12]).
Due to the nature of P2P systems, fault-tolerance has been a prime issue from
the beginning. The systems usually tolerate a large number of random faults.
However after crashing a few peers the systems are given sufficient time to re-
cover again. From an experimental point of view, churn has been studied in [13],
where practical design tradeoffs in the implementation of existing P2P networks
are considered.

Resilience to worst-case failures has been studied by Fiat, Saia et al. in
[14][15]. They propose a system where, w.h.p., (1 — &)-fractions of peers and
data survive the adversarial deletion of up to half of all nodes. In contrast to our
work the failure model is static. Moreover, if the total number of peers changes
by a constant factor, the whole structure has to be rebuilt from scratch.

Scalability and resilience to worst-case joins and leaves has been addressed
by Abraham et al. in [16]. The focus lies on maintaining a balanced network
rather than on fault-tolerance in the presence of concurrent faults. In contrast
to our paper, whenever a join or leave happens, the network has some time to
adapt.

The only paper which explicitly treats arbitrarily concurrent worst-case joins
and leaves is by Li et al. [17]. In contrast to our work, Li et al. consider a
completely asynchronous model where messages can be arbitrarily delayed. The
stronger communication model is compensated by a weaker failure model. It is
assumed that peers do not crash. Leaving peers execute an appropriate “exit”
protocol and do not leave before the system allows this; crashes are not allowed.

3 Model

We consider the synchronous message passing model. In each round, each peer
can send a message to all its neighbors. Additionally, we have an adversary
A(J, L, \) which may perform J arbitrary joins and and L arbitrary leaves
(crashes) in each interval of A rounds.

We assume that a joining peer 71 contacts an arbitrary peer w5 which already
belongs to the system; 7o then triggers the necessary actions for m;’s integration.

A peer may be contacted by several joining peers simultaneously. In contrast to
other systems where peers have to do some finalizing operations before leaving,
we consider the more general case where peers depart or crash without notice.

4 Algorithm

In this section, we describe the maintenance algorithm which maintains the
simulated hypercube in the presence of an adversary which constantly adds and
removes peers. The goal of the maintenance algorithm is twofold. It guarantees
that each node always contains at least one peer which stores the node’s data.
Further, it adapts the hypercube dimension to the total number of peers in the
system.

This is achieved by two basic components. First, we present a dynamic token
distribution algorithm for the hypercube. Second, we describe an information
aggregation scheme which allows the nodes to simultaneously change the dimen-
sion of the hypercube.

4.1 Dynamic Token Distribution

The problem of distributing peers uniformly throughout a hypercube is a special
instance of a token distribution problem, first introduced by Peleg and Upfal [1].
The problem has its origins in the area of load balancing, where the workload
is modelled by a number of tokens or jobs of unit size; the main objective is
to distribute the total load equally among the processors. Such load balancing
problems arise in a number of parallel and distributed applications including job
scheduling in operating systems, packet routing, large-scale differential equations
and parallel finite element methods. More applications can be found in [18].

Formally, the goal of a token distribution algorithm is to minimize the max-
imum difference of tokens at any two nodes, denoted by the discrepancy ¢. This
problem has been studied intensively; however, most of the research is about the
static variant of the problem, where given an arbitrary initial token distribution,
the goal is to redistribute these tokens uniformly. In the dynamic variant on the
other hand, the load is dynamic, that is, tokens may arrive and depart during
the execution of the token distribution algorithm. In our case, peers may join
and leave the simulated hypercube at arbitrary times, so the emphasis lies on
the dynamic token distribution problem on a d-dimensional hypercube topology.

We use two variants of the token distribution problem: In the fractional
token distribution, tokens are arbitrarily divisible, whereas in the integer token
distribution tokens can only move as a whole. In our case, tokens represent peers
and are inherently integer. However, it turns out that the study of the fractional
model is useful for the analysis of the integer model.

We use a token distribution algorithm which is based on the dimension ex-
change method [19][20]. Basically, the algorithm cycles continuously over the
d dimensions of the hypercube. In step s, where i = s mod d, every node
u = fy...3;...04—1 having a tokens balances its tokens with its adjacent node

in dimension 4, v := By...0;...04—1, having b tokens, such that both nodes end
up with %"b tokens in the fractional token distribution. On the other hand, if
the tokens are integer, one node is assigned [“T'H’} tokens and the other one gets
| 242 | tokens.

It has been pointed out in [19] that the described algorithm yields a perfect
discrepancy ¢ = 0 after d steps for the static fractional token distribution. In
[20], it has been shown that in the worst case, ¢ = d after d steps in the static
integer token distribution. We can show that if the decision to which node to
assign [“£2] and to which node to assign [“f%] tokens is made randomly, the
final discrepancy is constant in expectation. However, we do not make use of
this because it has no influence on our asymptotic results.

In the following, the dynamic integer token distribution problem is studied,
where a “token adversary” A(J, L,1) adds at most J and removes at most L
tokens at the beginning of each step. In particular, we will show that if the
initial distribution is perfect, i.e., ¢ = 0, our algorithm maintains the invariant
¢ <2J + 2L+ d at every moment of time.

For the dynamic fractional token distribution, the tokens inserted and deleted
at different times can be treated independently and be superposed. Therefore,
the following lemma holds.

Lemma 1. For the dynamic fractional token distribution, the number of tokens
at a node depends only on the token insertions and deletions of the last d steps
and on the total number of tokens in the system.

Proof. Assume that a total amount of T' tokens are distributed in two different
ways on the d-dimensional hypercube. According to [19], each node has exactly
2% tokens after d steps in the absence of an adversary. On the other hand, the
token insertions and removals of the adversary that happen in-between can be
treated as an independent superposition, as the corresponding operations are all
linear.

We can now bound the discrepancy of the integer token distribution algo-
rithm by comparing it with the fractional problem.

Lemma 2. Let v be a node of the hypercube. Let 7,(t) and 7, f(t) denote the
number of tokens at v for the integer and fractional token distribution algorithms
at time t, respectively. We have Vt : |7,(t) — 7, 5 (t)| < 4.

Proof. For t = 0, we have 7,(t) = 7, ¢(t). For symmetry reasons, it is sufficient
to show the upper bound 7,(t) < 7, ¢(t) + 4. We first prove by induction that
To(t) < 7o,7(t) + % at time ¢.

For the induction step, we consider two neighbors u and v which exchange
tokens. We have

T(t+1)< [WW

PTv,f(t) + 5+ (s (t) + EJ-‘

<

s+ 4]+ s + 8]
= 2

1
<7y p(t+1)+ trt

1
2

The second inequality follows from the induction hypothesis and the fact that
T, (t) and 7, (t) are integers. Note that adding or removing tokens has no influence
on the difference between 7, and 7, because it modifies 7, and 7, s in the same
way.

So far, we have seen that the number of integer tokens can deviate from the
number of fractional tokens by at most % after the first d steps. In order to
show that this holds for all times ¢, we consider a fractional token distribution
problem 7, y for which 7, s(t — d) = 7,(t — d). Using the above argument, we
have 7,(t—d) < 7, #(t) and by Lemma 1, we get 7, ¢(t) = 7, ¢(t). This concludes
the proof.

Lemma 3. In the presence of an adversary A(J, L,1), it always holds that the
integer discrepancy ¢ < 2J + 2L +d.

Proof. We show that the fractional discrepancy ¢; is bounded by 2J +2L. Since
Lemma 2 implies that for the integer discrepancy ¢; it holds that ¢; — ¢y < d,
the claim follows. Let J; < J and L; < L be the insertions and deletions that
happen at the beginning of step t. First, we consider the case of joins only, i.e.,
L; = 0. Assume that all J; tokens are inserted at node v = 5y...5;...84—1 where
1 := t mod d. In the upcoming paragraph, all indices are implicitly modulo d.
In step t, according to the token distribution algorithm, v keeps J;/2 tokens
and sends J;/2 to node u = ﬁo...E..ﬂd,l. In step ¢t + 1, J;/4 are sent to nodes
Bo..-BiBi+1---Ba—1 and By...0;Bi+1.--Ba—1, and so on. Thus, after step t +d — 1,
every node in the d-dimensional hypercube has the same share of 2‘]—; tokens from
that insertion. We conclude that a node can have at most all insertions of this
step, half of the insertions of the last step, a quarter of all insertions two steps
ago and so on:

Ji1 | Jio Ji—a-1y | Ji—a Ji—(ar1) Ji—(a+2)
TRk T A S TR TR

<2J shared by all nodes

Ji +

Since Jy—; < J fori=0,1,2,..., we have ¢y < 2J. For the case of only token
deletions, the same argument can be applied, yielding a discrepancy of at most
2L. Finally, if there are both insertions and deletions which do not cancel out
each other, we have ¢y < 2J + 2L.

4.2 Information Aggregation

When the total number of peers in the d-dimensional hypercube system ex-
ceeds a certain threshold, all nodes 3y ... 84_1 have to split into two new nodes

Bo-..Ba—10 and By ...LB4-11, yielding a (d 4+ 1)-dimensional hypercube. Analo-
gously, if the number of peers falls beyond a certain threshold, nodes fy . . . G420
and [y ...0B¢_21 have to merge their peers into a single node 3y ...[Bq¢_2, yield-
ing a (d — 1)-dimensional hypercube. Based on ideas also used in [21][22][23],
we present an algorithm which provides the same estimated number of peers in
the system to all nodes in every step allowing all nodes to split or merge syn-
chronously, that is, in the same step. The description is again made in terms of
tokens rather than peers.

Assume that in order to compute the total number of tokens in a d-dimensional
hypercube, each node v = y...84—1 maintains an array I5,[0...d], where I',[é] for
i € [0,d] stores the estimated number of tokens in the sub-cube consisting of the
nodes sharing v’s prefix (g...84_1_;. Further, assume that at the beginning of
each step, an adversary inserts and removes an arbitrary number of tokens at
arbitrary nodes. Each node v = (§y...04_1_;...84—1 then calculates the new array
I'/[0...d]. For this, v sends I,[i] to its adjacent node u = By...04-1—i...Ba—1, for
i € [0,d—1]. Then, I'/[0] is set to the new number of tokens at v which is the only
node with prefix fy...04—1. For ¢ € [1,d], the new estimated number of tokens
in the prefix domain fy...84—1—(i+1) is given by the total number of tokens in

the domain fSy...04_1_; plus the total number of tokens in domain (y...04_1_;
provided by node w, that is, I} [i + 1] := I, [i] + I.[q].

Lemma 4. Consider two arbitrary nodes vi and vy of the d-dimensional hyper-
cube. Our algorithm guarantees that Iy, [d] = Iy, [d] at all times t. Moreover, it

holds that this value is the correct total number of tokens in the system at time
t—d.

Proof. We prove by induction that at time ¢ + &, all nodes sharing the prefix
Bo...Ba—1—k for k € [0, d] store the same value I',[k] which represents the correct
state of that sub-domain in step t.

k = 0: There is only one node having the prefix fy...84—1, so the claim
trivially holds.

k — k+1: By the induction hypothesis, all nodes v with prefix 8o...8q—1— (1)
Bd—1— share the same value I',[k] which corresponds to the state of the system &
steps earlier, and the same holds for all nodes u with prefix 8o...8q—1— (k+1)Bd—1—&-
In step k + 1, all these nodes having the same prefix fSy...04_1_ (k1) obviously
store the same value I [k + 1] = I') [k + 1] = I, [k] + Lu[k].

5 Simulated Hypercube

Based on the components presented in the previous sections, both the topology
and the maintenance algorithm are now described in detail. In particular, we
show that, given an adversary A(d + 1,d + 1,6) which inserts and removes at
most d+ 1 peers in any time interval of 6 rounds, 1) the out-degree of every peer
is bounded by @(log2 n) where n is the total number of peers in the system, 2)
the network diameter is bounded by @(logn), and 3) every node of the simulated
hypercube has always at least one peer which stores its data items, so no data
item will ever be lost.

5.1 Topology

We start with a description of the overlay topology. As already mentioned, the
peers are organized to simulate a d-dimensional hypercube, where the hyper-
cube’s nodes are represented by a group of peers. A data item with identifier id
is stored at the node whose identifier matches the first d bits of the hash-value
of id.

The peers of each node v are divided into a core C,, of at most 2d+3 peers and
a periphery P, consisting of the remaining peers; all peers within the same node
are completely connected (intra-connections). Moreover, every peer is connected
to all core peers of the neighboring nodes (inter-connections). Figure 1 shows
an example for d = 2.

Fig.1. A simulated 2-dimensional hypercube with four nodes, each consisting of a
core and a periphery. All peers within the same node are completely connected to
each other, and additionally, all peers of a node are connected to all core peers of the
neighboring nodes. Only the core peers store data items, while the peripheral peers
may move between the nodes to balance biased adversarial changes.

The data items belonging to node v are replicated on all core peers, while
the peripheral peers are used for the balancing between the nodes according to
the peer distribution algorithm and do not store any data items. The partition
into core and periphery has the advantage that the peers which move between
nodes do not have to replace the data of the old node by the data of the new
nodes in most cases.

5.2 6-Round (Maintenance) Algorithm

The 6-round (maintenance) algorithm maintains the simulated hypercube topol-
ogy described in the previous section given an adversary A(d+ 1,d + 1,6). In
particular, it ensures that 1) every node has at least one core peer all the times
and hence no data is lost; 2) each node always has between 3d + 10 and 45d + 86
peers; 3) only peripheral peers are moved between nodes, thus the unnecessary
copying of data is avoided.

In the following, we refer to a complete execution of all six rounds of the
maintenance algorithm as a phase. Basically, the 6-round algorithm balances the
peers across one dimension in every phase according to the token distribution
algorithm as described in Section 4.1; additionally, the total number of peers
in the system is computed with respect to an earlier state of the system by
the information aggregation algorithm of Section 4.2 to expand or shrink the
hypercube if the total number of peers exceeds or falls below a certain threshold.
In our system, we use the lower threshold LT := 8d-+ 16 and the upper threshold
UT := 40d + 80 for the total number of peers per node on average.?

While peers may join and leave the system at arbitrary times, the 6-round
algorithm considers the (accumulated) changes only once per phase. That is, a
snapshot of the system is made in round 1; rounds 2 — 6 then ignore the changes
that might have happened in the meantime and depend solely on the snapshot
at the beginning of the phase.

Round 1: Each node v makes the snapshot of the currently active peers. For
this, each peer in v sends a packet with its own ID and the (potentially empty)
ID set of its joiners to all adjacent peers within v.

Round 2: Based on the snapshot, the core peers of a node v know the total
number of peers in the node and send this information to the neighboring core
with which they have to balance in this phase (cf. Section 4.1). The cores also
exchange the new estimated total number of peers in their domains with the
corresponding adjacent cores (cf. Section 4.2). Finally, each peer informs its
joiners about the snapshot.

Round 3: Given the snapshot, every peer within a node v can compute the new
periphery (snapshot minus old core). This round also prepares the transfer for
the peer distribution algorithm across dimension i: The smaller of the two nodes
determines the peripheral peers that have to move and sends these IDs to the
neighboring core.

Round 4: In this round, the peer distribution algorithm is continued: The core
which received the IDs of the new peers sends this information to the periphery.
Additionally, it informs the new peers about the neighboring cores, etc.

The dimension reduction is prepared if necessary: If the estimated total num-

ber of peers in the system is beyond the threshold, the core peers of a node which
will be reduced send their data items plus the identifiers of all their peripheral
peers (with respect to the situation after the transfer) to the core of their adja-
cent node in the largest dimension.
Round 5: This round finishes the peer distribution, establishes the new periph-
eries, and prepares the building of a new core. If the hypercube has to grow in
this phase, the nodes start to split, and vice versa if the hypercube is going to
shrink.

Given the number of transferred peers, all peers can now compute the new
peripheries. Moreover, they can compute the new core: It consists of the peers of

2 Note that since we consider the threshold on average, and since these values are
provided with a delay of d phases in a d-dimensional hypercube (see Lemma 4), the
number of peers at an individual node may lie outside [LT', UT].

10

the old core which have still been alive in Round 1, plus the 2d + 3 —|C| smallest
IDs in the new periphery, where C is the set of the old core peers which have
still been alive in Round 1. The old core then informs all its neighboring nodes
(i.e., their old cores) about the new core.

If the hypercube has to grow in this phase, the smallest 2d+3 peers in the new
periphery of the node that has to be split become the new core of the expanded
node, and half of the remaining peripheral peers build its periphery. Moreover,
the necessary data items are sent to the core of the expanded node, and the
neighboring (old) cores are informed about the IDs of the expanded core.

If the hypercube is about to shrink, all old cores in the lower half of the
hypercube (the surviving sub-cube) inform their periphery about the peers ar-
riving from the expanded node and the peers in the expanded node about the
new core and its periphery. The data items are copied to the peers as necessary.
Round 6: In this round, the new cores are finally built: The old core forwards
the information about the new neighboring cores to the peers joining the core.

Moreover, if the hypercube has been reduced, every peer can now compute the
new periphery. If the hypercube has grown, the old core forwards the expanded
cores of its neighbors to all peers in its expanded node.

6 Conclusion

We presented a first distributed hash table which provably tolerates continuous
worst-case membership changes while maintaining crucial features such as effi-
cient routing. We believe that our approach opens several exciting P2P research
challenges. For example: How well do classic P2P proposals perform when stud-
ied with a dynamic failure model or what is the adversary/efficiency tradeoff
when studying dynamic models?

References

1. Peleg, D., Upfal, E.: The Token Distribution Problem. SIAM J. on Computing
287(2) (1989) 229-243

2. Aberer, K.: P-Grid: A Self-Organizing Access Structure for P2P Information Sys-
tems. In Proc. 9th Int. Conference on Cooperative Information Systems (CooplS)
(2001) 179-194

3. Abraham, I., Dobzinski, O., Malkhi, D.: LAND: Stretch (1 + &) Locality-Aware
Networks for DHTs. Proc. 15th Ann. ACM-SIAM Symp. on Discrete Algorithms
(SODA) (2004) 550-559

4. Aspnes, J., Shah, G.: Skip Graphs. In Proc. 14th Ann. ACM-SIAM Symp. on Dis-
crete Algorithms (SODA) (2003) 384-393

5. Awerbuch, B., Scheideler, Ch.: The Hyperring: A Low-Congestion Deterministic
Data Structure for Distributed Environments. In Proc. 15th Ann. ACM-SIAM
Symp. on Discrete Algorithms (SODA) (2004)

6. Harvey, N., Jones, M., Saroiu, S., Theimer, M., Wolman, A.: SkipNet: A Scalable
Overlay Network with Practical Locality Properties. In Proc. 4th USENIX Symp.
on Internet Technologies and Systems (USITS) (2003)

11

7. Bindel, D., Chen, Y., Eaton, P., Geels, D., Gummadi, Kubiatowicz, J., R., Rhea, S.,
Weatherspoon, H., Weimer, W., Wells, Ch., Zhao, B.: OceanStore: An Architecture
for Global-scale Persistent Storage. In Proc. of ACM ASPLOS (2000)

8. Malkhi, D., Naor, M., Ratajczak, D.: Viceroy: A Scalable and Dynamic Emulation
of the Butterfly. In Proc. 21st Ann. Symp. on Principles of Distributed Computing
(PODC) (2002) 183-192

9. Plaxton, G., Rajaraman, R., Richa, A.: Accessing Nearby Copies of Replicated
Objects in a Distributed Environment. In Proc. 9th Ann. ACM Symp. on Parallel
Algorithms and Architectures (SPAA) (1997) 311-320

10. Francis, P., Handley, Karp, R., M., Ratnasamy, S., Shenker, S.: A Scalable Content
Addressable Network. In Proc. of ACM SIGCOMM 2001

11. Balakrishnan, H., Kaashoek, F., Karger, D., Morris, R., Stoica, I.: Chord: A Scal-
able Peer-to-peer Lookup Service for Internet Applications. In Proc. ACM SIG-
COMM Conference (2001)

12. Joseph, A., Huang, L., Kubiatowicz, J., Stribling, J., Zhao, B.: Tapestry: A Re-
silient Global-scale Overlay for Service Deployment. IEEE Journal on Selected Areas
in Communications 22 (2004)

13. Geels, D., Kubiatovicz, J., Rhea, S., Roscoe, T.: Handling Churn in a DHT. In
Proc. USENIX Ann. Technical Conference (2004)

14. Fiat, A., Saia, J.: Censorship Resistant Peer-to-Peer Content Addressable Net-
works. In Proc. 13th Symp. on Discrete Algorithms (SODA) (2002)

15. Gribble, S., Fiat, A., Karlin, A., Saia, J., Saroiu, S.: Dynamically Fault-Tolerant
Content Addressable Networks. In Proc. 1st Int. Workshop on Peer-to-Peer Systems
(IPTPS) (2002)

16. Abraham, I., Awerbuch, B., Azar, Y., Bartal, Y., Malkhi, D., Pavlov, E.: A Generic
Scheme for Building Overlay Networks in Adversarial Scenarios. In Proc. 17th Int.
Symp. on Parallel and Distributed Processing (IPDPS) (2003)

17. Li, X., Misra, J., Plaxton, G.: Active and Concurrent Topology Maintenance. In
Proc. 18th Ann. Conference on Distributed Computing (DISC) (2004)

18. Hurson, Kavi, K., A., Shirazi, B.: Scheduling and Load Balancing in Parallel and
Distributed Systems. IEEE Computer Science Press (1995)

19. Cybenko, G: Dynamic Load Balancing for Distributed Memory Multiprocessors.
Journal on Parallel Distributed Computing 7 (1989) 279-301

20. Plaxton, G.: Load Balancing, Selection and Sorting on the Hypercube. In Proc. 1st
Ann. ACM Symp. on Parallel Algorithms and Architectures (SPAA) (1989) 64-73

21. Albrecht, K., Arnold, R., Gahwiler, M., Wattenhofer, R.: Aggregating Information
in Peer-to-Peer Systems for Improved Join and Leave. 4th IEEE Int. Conference on
Peer-to-Peer Computing (P2P) (2004)

22. Birman, P., van Renesse, R., Vogels, W.: Astrolabe: A Robust and Scalable Tech-
nology for Distributed System Monitoring, Management, and Data Mining. ACM
Transactions on Computing Systems 21(2) (2003) 164-206

23. Bozdog, A., van Renesse, R.: Willow: DHT, Aggregation, and Publish/Subscribe
in One Protocol. In Proc. 3rd Int. Workshop on Peer-To-Peer Systems (IPTPS)
(2004)

