Blackboard Meets Dijkstra for Resource
Allocation Optimization

Christian Vorhemus and Erich Schikuta

Faculty of Computer Science, University of Vienna
Wahringerstr. 29, A-1090 Vienna, Austria
{christian.vorhemus,erich.schikuta}@univie.ac.at

Abstract. This paper presents the integration of Dijkstra’s algorithm
into a Blackboard framework to optimize the selection of web resources
from service providers. The architectural framework of the implemen-
tation of the proposed Blackboard approach and its components in a
real life scenario is laid out. For justification of approach, and to show
practical feasibility, a sample implementation architecture is presented.

Keywords: Web-service selection - Resource allocation optimization -
Blackboard method - Dijkstra algorithm

1 Introduction

With the advent of cloud computing, where resources are provisioned on demand
as services on a pay-per-use basis, the proper selection of services to execute a
given workflow is a crucial task. For each service or functionality, a range of
concrete services may exist, having identical functional properties, but differing
in their non-functional properties, such as cost, performance and availability.

In literature, the challenge of selecting service deployments respecting non-
functional properties is widely known as the QoS-aware service selection prob-
lem [9]. Given an input workflow with specified abstract services (functionality),
select a concrete deployment (out of several possible ones) for each abstract
service in such a way that a given utility function is maximized and speci-
fied constraints are satisfied. Mathematically, this can be mapped to a multi-
dimension, multi-choice knapsack problem that is known to be NP-hard in the
strong sense [9]. In reality, we have also to cope with dynamic changes of services
and their characteristics during the workflow execution.

In [8] we proposed a blackboard approach to automatically construct and
optimize workflows. We pointed out the problem of changing conditions during
the execution of the algorithm. In a distributed environment like the Web, the
availability of all necessary services to complete a workflow is not guaranteed.
Furthermore it is also possible that users change their configuration. To con-
sider changed condition, we used the A-* algorithm which needs not to know all
services at the beginning of the execution and allows for dynamic adaptation.
A fundamental description of how services can be qualified is presented in [5].

2 Ch. Vorhemus, E. Schikuta

Among an UML-based approach to classify QoS-Attributes, also a detailed de-
scription of how services can be combined is given.

This paper presents a novel approach for the optimization of web service
selection.Hereby, we propose an artificial intelligence approach by mapping the
service selection problem to a graph representation and to apply a combination
of Dijkstra’s algorithm and Blackboard method for optimization.

The layout of the paper is as follows: The Blackboard method and its opti-
mization approach are presented in section 2. In section 3 we depict the archi-
tecture for the implementation of the proposed optimization framework for real
world scenarios, where all our theoretical findings are knot together. The paper
closes with a conclusion of the findings and look-out to further research.

2 The Blackboard Approach

The blackboard method [2] originally comes from artificial intelligence and uses
different expert knowledge resources taking part in a stepwise process to con-
struct solutions to given problems. The Blackboard framework consists of four
different elements:

— A global blackboard representing shared information space considering input
data and partial solutions, where different experts collect their knowledge
and form the partial solutions to a global optimal solution.

— A resource is any kind of service which provides functionality that is needed
to finish a subtask of a workflow.

— Agents are autonomous pieces of software. Their purpose is finding suitable
resources for the Blackboard. An Agent can be a service too and therefore
also be provided from external sources.

— Controller: There are different kinds of controlling components (see 3). Their
main purpose is controlling the start of the algorithm, managing the brokers
and bringing the results back to the user.

The Blackboard approach expands (combines) promising resource offerings
(combinations) step by step, which are stored in the OpenList. All already used
resource offerings are stored in the ClosedList. The Blackboard is divided into
several regions and each region represents a subtask of a workflow. Which and
how many regions exist depends on the workflow.

We give a simple example to outline the previous descriptions. Imagine, a
user wants to store a video online. He also wants to convert the video from AVI
to FLV and compress it to save disk space. The user normally does not care,
how this workflow is completed in detail, he just wants a good, quick and cheap
solution. Furthermore, the user does not want to start each subtask manually.
He just defines the tasks and hands the video over to the Blackboard. Figure 1
gives a graphical representation.

The first question which shows up is: What is a good solution for the user?
It is necessary to assign a numerical value to each subtask to make a comparison
possible. These values are called "cost”. Cost are constituted of ”Quality of

Blackboard Meets Dijkstra for Resource Allocation Optimization 3

workflow
subtask 1 subtask 2:> < subtask 3
v Output:
Input: video —» convert —»{ compress ——» store minimum-cost-
path

Fig. 1. Example of a workflow

Service” parameters, short QoS. The second question is: How can a user specify
restrictions on the workflow? In our example, the user may need a minimum of
15GB of disk space to store the video, so it only makes sense to search for services
which provide more than 15 gigabyte space. These rules are input parameters
to the Blackboard. In our example we have the restriction, that the value for
converting the video should be smaller than 60, the compression-ratio has to be
greater than 20, the disk space has to be greater than 15.

Figure 2 shows a simple Blackboard consisting of 3 regions: convert, compress
and store. For region ”convert”, three different services are available. To all
services, a value is assigned. In this example we assume that there is only one
cost-parameter for each service.

convert

compress

store

Fig. 2. Minimum cost path

We now have to find services which fulfill our restrictions, in other words,
for the first region we search all services with an offer less than 60 and calculate
the cost for each service. Then we look for the service with the minimal cost of
each region. These are our optimal services.

4 Ch. Vorhemus, E. Schikuta

2.1 Finding the Best Service Provider

In practice, there is more than one value to describe the cost of a service. For
example, the user is not only interested which services offer a disk space greater
than 15GB, but he also includes the price for the storage in his calculations. To
handle this scenario, we list all parameters of all providers and connect them,
the result is a graph. Figure 3 shows the subtask ”convert” and two providers
(with ID 10 and 20). The first provider offers the conversion to AVI, the second
offers the conversion to FLV and gives two more options to choose from, a faster
and more expensive possibility (runtime) and a slower option with a lower price.
Again, the user sets restrictions; in this example he chose FLV as output format,
a runtime less than 80 and a price less than 60. Applying the formulas above to
our parameters, we get the cost for each node. Note, that in case of Boolean-
parameters, the cost are set to zero if the condition is true and set to infinity, if
the condition is false.

converting converting

provider 1 provider 2 provider 1 provider 2
1D=10 ID=20 1D=10 ID=20

i)

E

L

g format = flv
2 runtime <= 80
g price <= 60
€

2

4]

Q

=

(=98

Fig. 3. Calculation of the cost of each node

To find the best provider, we use an algorithm to find the lowest cost path.
The Dijkstra algorithm is an appropriate choice for this purpose. In some cases,
the estimated cost for a node may be known in advance. If a good estimator
is known and the risk of overestimating the cost is low, we can use the A-*
algorithm instead of Dijkstra’s algorithm to calculate the total cost.

2.2 Blackboard meets Dijkstra

Our Blackboard approach using Dijkstra’s algorithm is defined by algorithm 1.
The algorithm receives a list of regions (e.g. format, price and runtime) and
a list of parameters as an input. Parameters are numerical values, such as

Blackboard Meets Dijkstra for Resource Allocation Optimization 5

price=30. Each parameter is assigned to a service provider (servicelD), for ex-
ample [price=30, serviceID=10].

© 0N O s W N

Moo
= o

12
13
14

15
16
17

18
19
20
21
22
23

24
25
26
27
28
29
30
31

input: List of regions, list of parameters

OpenList = [];

ClosedList = [];

path = [];

firstRegion = regionlist[0];

lastRegion = regionlist[len(regionlist)-1];

OpenlList.add(allNodesOf(firstRegion));

retrace(Node)

path += Node;

if Node.region is firstregion then
‘ return

else
| retrace(Node.ancestor)

end

end

while OpenlList not emtpy do
calculateCosts(OpenList);
currentNode = minimum_cost(OpenList);

if currentNode.region = lastRegion then
| retrace(current);
end
foreach parameter in parameterlist do
nextRegion = regionlist.index(current.region)+1;
if parameter.region = nextRegion parameter not in OpenList and
parameter not in ClosedList and parameter.servicelD =
current.servicel D then
parameter.cost = current.cost 4+ parameter.cost;
OpenlList += parameter;
parameter.ancestor = current;

end

end

OpenList = OpenlList \ current;
ClosedList += current;

end

Algorithm 1: Find the best provider combintation

The approach is depicted in algorithm 1. It starts with the function calcu-

lateCosts() to determine the cost of each parameter. Then, the node with the
lowest cost is added to the OpenList. The OpenList contains all known but not
yet visited nodes. Then, it is checked if the current node is an ”endnode” (which
means, the last region of the board is reached). If this is not the case, all nodes

6 Ch. Vorhemus, E. Schikuta

from the next region, which are provided from the same service provider as the
current node are added to the OpenList. Finally, the current node is removed
from the OpenList and added to the ClosedList. The ClosedList contains all
nodes, which are already visited. The algorithm is running till there are nodes
in the OpenList or the exit condition is fulfilled.

3 Workflow Optimization Implementation Architecture

Computational science applications all over the world can benefit from our frame-
work. A real-world application scenario, which we used in the past [6], is the
scientific workflow environment of the ATLAS Experiment aiming at discov-
ering new physics at the Large Hadron Collider [1]. The TAG system [3] is a
distributed system composed of databases and several web services accessing
them.

To describe the implementation architecture of our Blackboard based opti-
mization framework we use the Model-View-Controller concept. A URL opened
in a standard Webbrowser represents the ”view”. The user has the opportunity
to set rules via HTML-form, all rules are stored in a shared repository to which
only the user and the Blackboard have access. The GUI also displays the results
of the algorithm, i.e. those service providers with the best offer. Subsequently,
the workflow executes autonomously: The user receives a response with the best
offer and has to confirm it. Afterwards, all tasks of the workflow are completed
automatically.

Shared
Repository

ns
GuI H exchange H ngﬁg};r

& —+ | rules controller Blackboard aiont
set rules
Q. QO :
. algorithm service
A controller @ finder
controls Cj&ﬁ

calculate | | results

Public Cloud

Private Cloud

=

minimum-cost-

results path algorithm

Fig. 4. The components of the sample implementation of the Blackboard approach

Figure 4 shows the graphical representation of the architecture: The left part
shows the layer of the user, the right part is the service-layer. The core consists
of the Blackboard, which is implemented in the sample-code as a class and

Blackboard Meets Dijkstra for Resource Allocation Optimization 7

several controllers that govern the process. In addition, a shared repository is
used for services and rules as a cache, so that they can be accessed quickly by
the Blackboard.

For justification the algorithm was implemented within the Google App En-
gine (GAE) [4]. The Blackboard-Application architecture of the software follows
the concept shown in figure 4.

4 Conclusion

This paper presents an approach how the selection of services for scientific work-
flows on the Web can be optimized based on QoS offers of service providers. The
novelty of our approach is mapping the service selection problem to a graph rep-
resentation and to apply a combination of Dijkstra’s algorithm and Blackboard
method for optimization.

Further we present the architectural framework of the Blackboard approach
and its components. The practical feasibility is shown by a use case implemen-
tation.

A further research topic is the handling of dynamically changing QoS con-
ditions during workflow execution. The presented method can cope with this
challenging situation, which is described in an extended version of this paper [7].

References

1. Aad, G., Abat, E., Abdallah, J., Abdelalim, A., Abdesselam, A., Abdinov, O., Abi,
B., Abolins, M., Abramowicz, H., Acerbi, E., et al.: The atlas experiment at the
cern large hadron collider. Journal of Instrumentation 3(8), S08003-S08003 (2008)

2. Corkill, D.D.: Blackboard systems. Al expert 6(9), 40-47 (1991)

3. Duckeck, G., Jones, R.W.: Atlas computing. Technical design report by atlas col-
laboration, CERN (2005)

4. Engine, G.A.: https://developers.google.com/appengine/. last visited 07-04-2018

5. Vinek, E., Beran, P.P.; Schikuta, E.: Classification and composition of qos attributes
in distributed, heterogeneous systems. In: 11th IEEE/ACM International Sympo-
sium on Cluster, Cloud, and Grid Computing (CCGrid 2011). IEEE Computer
Society Press, Newport Beach, CA, USA (May 2011)

6. Vinek, E., Beran, P.P., Schikuta, E.: A dynamic multi-objective optimization frame-
work for selecting distributed deployments in a heterogeneous environment. Proce-
dia Computer Science 4, 166-175 (2011)

7. Vorhemus, C., Schikuta, E.: Blackboard meets dijkstra for optimization of web ser-
vice workflows. arXiv preprint arXiv:1801.00322 (2017)

8. Wanek, H., Schikuta, E.: Using blackboards to optimize grid workflows with respect
to quality constraints. In: Fifth International Conference on Grid and Cooperative
Computing Workshops (GCC’06). vol. 0, p. 290-295. IEEE Computer Society, Los
Alamitos, CA, USA (2006)

9. Yu, T., Lin, K.J.: Service selection algorithms for composing complex services with
multiple qos constraints. In: ICSOC. vol. 3826, pp. 130-143. Springer (2005)

