
Evolution of the R software ecosystem: metrics,

relationships, and their impact on qualities

Konstantinos Plakidas1, Daniel Schall2, Uwe Zdun1

Abstract

Software ecosystems are an important new concept for collaborative software
development, and empirical studies on their development are important to-
wards understanding the underlying dynamics and modelling their behaviour.
We conducted an explorative analysis of the R ecosystem as an exemplar on
high-level, ecosystem-wide assessment. Based principally on the documenta-
tion metadata of the R packages, we generated a variety of metrics that allow
the quantification of the R ecosystem. We also categorized the ecosystem
participants, both in the software marketplace and in the developer commu-
nity, by characteristics that measure their activity and impact. By viewing
our metrics across the ecosystem’s lifecycle for the various participant cat-
egories, we discovered interrelationships between them and determined the
contribution of each category to the ecosystem as a whole.

Keywords: R, software ecosystems, evolution, quantitative analysis,
empirical study

1. Introduction

The move from monolithic, vertically integrated product development to
more open, modular, and collaborative models in recent decades is a well-
documented trend in software engineering and the business practice of soft-
ware companies [44]. Software ecosystems represent the most recent step5

Email addresses: konstantinos.plakidas@univie.ac.at (Konstantinos Plakidas),
daniel.schall@siemens.com (Daniel Schall), uwe.zdun@univie.ac.at (Uwe Zdun)

1Software Architecture Research Group, University of Vienna, Währinger Straße 29,
1190 Vienna, Austria

2Siemens Corporate Technology, Siemensstraße 90, 1210 Vienna, Austria

Preprint submitted to Elsevier June 12, 2017



in this process [19, 35], where a community of developers collaborates asyn-
chronously, and often without central direction, over a common platform or
software market [36, 44, 49]. As summed up by Hanssen [35], the ultimate
objective for investing in and working towards an ecosystem is that all mem-
bers will gain more benefits from being a part of it, as compared to a more10

traditional software product development approach with segregated roles, a
low level of collaboration, and closed processes.

The background and motivation of the members, the variety of the result-
ing software components of the ecosystem, and the complexity of interactions
between them, present a challenge in modelling a software ecosystem. The15

need for such modelling, of interest for both the software development and
business management fields, has been recognized since the early days of the
emergence of software ecosystems as a separate domain [45]. In this paper
we build upon our previous work on the high-level quantitative assessment
of the R ecosystem [55] as an exemplary study on the understanding and20

modelling of software ecosystems. We provide an in-depth examination of
the evolution of the R ecosystem’s dependency network and the contribution
and collaboration patterns of the developer community. Finally we use the
metrics we have extracted to examine qualitative aspects of the R ecosystem
that pertain to its health. Thus, for instance, we examine the developer con-25

tribution and collaboration patterns to determine their influence on the R
ecosystem’s development and prospects. Finally, we discuss the applicability
of our method and our findings to software ecosystems in general.

The remainder of this paper is structured as follows. Section 2 summa-
rizes the current state of research on the field of categorizing and modelling30

software ecosystems. Next, Section 3 offers an introduction to the R ecosys-
tem and presents the work that has been done on it by other studies. Then
Section 4 presents our objectives in studying the R ecosystem. Our anal-
ysis and data-gathering approach is explained in Section 5. The study of
the R ecosystem itself is divided in two main sections: Section 6 presents35

the composition, evolution, and dependency network characteristics of the
R software marketplace, where the individual software package is the main
unit of analysis, and Section 7 presents the characteristics of the R developer
community as extracted from the package author information. Section 8
summarizes the metrics we have gathered and presented in the previous sec-40

tions, and uses them to perform a qualitative analysis of the R ecosystem
from the viewpoint of “ecosystem health”. The discussion in Section 9 ad-
dresses the main insights of our research on the R ecosystem as well as on

2



software ecosystems in general, while examining the problems, limitations
and potential improvements of our approach. Finally, Section 10 presents45

our intentions for possible future works.

2. Related Work

The concept of a software ecosystems (SECO) emerged in the 2000s,
building upon the namesake business concept, and ultimately drawing upon
the well-established concept in ecology [40, 50]. SECOs have been conceived50

as the natural next step in an ongoing process of moving from monolithic,
company-internal development processes to open, collaborative ones [19].
Since its inception, the field has been the object of several studies examining
ecosystems from the perspective of architecture, business and management
issues, and the social relationships evidenced in their communities (for an55

overview, cf. [49, 17]).
Many of the research challenges in the SECO domain were defined by

Jansen et al. [45], and several attempts have been made to construct a frame-
work for a comprehensive SECO taxonomy. Thus, Bosch [19] proposed a
basic categorization between ecosystems centred on operating systems, ap-60

plications, or end-user programming, with a parallel differentiation based on
the platform (desktop, web, mobile) the ecosystem is deployed on. Jansen et
al. [45] take a software vendor view and consider the ecosystem as composed
of three levels: the ecosystem itself, the software supply network, and the
software vendors. In another work, Jansen et al. [43] proposed three dif-65

ferent scopes for analyzing ecosystems as organizations: external, internal,
and organization-centric. Campbell and Ahmed [22], in contrast, stress the
business, architectural, and social dimensions of an ecosystem and the inter-
actions between them. As business entities, SECOs are further commonly
categorized according to their accessibility, depending on the existence of any70

barriers or vetting process before participating in the ecosystem; their owner-
ship by a managing entity, which determines its business model, ranging be-
tween free and community-owned ecosystems to proprietary, company-owned
ones; and the existence, number, and nature of the ecosystem’s software mar-
kets [44, 49].75

Indeed, business and management issues are particularly important for
any company deciding to move towards the SECO model [19], as well as
for the maintenance of an existing ecosystem. A business-aspect analysis
of an ecosystem inevitably leads to attempts to measure the “health” of an

3



ecosystem, i.e., determining what its characteristics say about its current80

state and prospects, detect trouble-spots, and highlight the positive areas.
This is linked to the biological (and business) concept of a system lifecycle
involving birth, expansion, leadership, and either self-renewal or eventual
death [51, 40]. This concept has been expanded and elaborated upon by
subsequent studies such as den Hartigh et al. [30], Manikas and Hansen [48],85

and particularly Jansen [42], who links specific metrics to each of these health
aspects on two levels: the “network level” encompassing the entire ecosystem,
and the “project level” concerning the individual ecosystem constituents.
Franco-Bedoya et al. [31] have also linked specific metrics to quality attributes
of a software ecosystem, distinguishing the health of the community from the90

health of the ecosystem’s software component network.
Analyses of specific open source ecosystems have already been undertaken

before. For example, Kabbedijk and Jansen [46] analyzed Ruby as a network
of software components and developers; Syeed et al. [59] compared the overlap
of relationships between developers and the project dependency structure of95

the Ruby ecosystem; Spauwen and Jansen [56] studied the roles and motives
of open-source developers active in browser extensions; Hoving et al. [39] cat-
egorized and quantified the software and community members of the Python
ecosystem; Alami et al. [16] examine three open source e-commerce platforms
and assess the health of the respective ecosystems.100

To the best of our knowledge, however, no single study has ever attempted
to combine the quantitative analysis of a diverse, major ecosystem with thou-
sands of members in its actual state with an analysis of the same metrics
across its existence, as opposed to small samples or individual software com-
panies over smaller periods of time. Our approach therefore builds upon, tries105

to validate, and extends the state of the art in the field to produce a more
comprehensive method for examining the evolution of software ecosystems.

3. R and its Ecosystem

As with other similar empirical studies, we chose a free, open-source
(FOSS) ecosystem as it allows us to examine it in a depth unavailable for110

closed or commercial, proprietary ecosystems [49]. The R ecosystem was
selected as it has grown from a niche tool for statisticians in academia to a
popular solution in the broader data mining community [21]. Benefiting from
the growing importance of the latter field, R has moved to become one of
the most popular programming languages in the world: in July 2015, IEEE115

4



Spectrum ranked it on place six, moving up from the ninth place in 2014,
behind Java, C, C++, Python, and C# [13].

R is a programming language and free open-source (GNU-licensed) en-
vironment derived from the earlier S language developed at Bell Labs. The
R core began its existence in 1997, and is maintained since by the R Foun-120

dation and the R Core Team [38]. Its main application fields are statistical
computing and graphics. In addition to native R code, it makes extensive
use of C, C++, and Fortran code, and it is available for all three major OS
platforms: Windows, MacOS, and UNIX-derived platforms like Linux [38].
The main repository for software products developed by the R community,125

known as packages, is the Comprehensive R Archive Network, or CRAN [14].
In addition there is a number of related projects [11], chiefly the Bioconduc-
tor repository, which focuses on computational biology and bioinformatics
packages [33], and RForge [8]. A large number of packages also exists inde-
pendently on code repositories like GitHub.130

R can be used either via the command line, or via GUIs and IDEs, of
which RStudio [9] is one of the main representatives, developed under the
supervision of Hadley Wickham, one of the main contributors to R.

A general outline of the R ecosystem is represented in simplified form in
Figure 1. The ecosystem consists of three main areas, i.e., the R platform,135

the software marketplace(s), and the community, along with their interac-
tions: dashed arrows represent the community impact on the software offer-
ings, while solid arrows are a representation of dependencies between software
products. The R platform consists of the R base packages contributed by the
R core team, as well as a small set of “recommended” community-contributed140

packages, which are installed by default as part of the core, but which are also
independently hosted in CRAN. Various third-party vendors like Microsoft
offer broader collections as a basic “platform”. In this study we have gener-
ally limited ourselves to the groups representing CRAN and Bioconductor,
represented with striped fill in Figure 1.145

The R ecosystem has already been the subject of some empirical studies.
In its current state in March 2011 it has been analyzed by German, Adams
and Hassan [34]. Based on a sample of 52 users and the packages they used,
the authors examined the code characteristics and dependency relationships
between the R platform and community-contributed packages, discovering150

that the latter were on average less well documented, had less versions and
were more recent, less downloaded, and less re-used than platform packages.
From an analysis of R mailing lists until the end of 2010, they also showed

5



Figure 1: Overview of the R ecosystem. The striped groups represent CRAN and Bio-
conductor repositories, which were examined in the present study. The displayed sizes are
not representative.

that the end-user community has grown super-linearly, whereas the developer
community has remained stable.155

Another team, composed of Claes, Mens, Claes, Grosjean, and Decan,
from the University of Mons, have explored the CRAN repository from the
perspective of package maintainability resulting from code errors and depen-
dencies between packages. In [24], Claes et al. analyzed the occurrence of
errors in CRAN packages over a period of three months, and found that er-160

rors resulted mostly from updates in the packages’ dependencies, but that
they were quickly corrected (usually within a week for package versions in-
tended for Windows and Linux, but over twice that for MacOS). For this
purpose, the team suggested a dashboard that visualizes package dependen-
cies in [23] to aid in package maintenance. In another study [25], Claes et165

al. identified different types of code cloning behaviour within R packages.

6



The authors also pointed out the rise of GitHub both for active development
as well as for hosting packages, but reaffirmed the importance of CRAN as
the main repository for R packages, both numerically and, more importantly,
dependency-wise. Decan et al. [29] also examined the dependency links be-170

tween the main repositories of the R ecosystem, i.e., CRAN, Bioconductor,
GitHub, and R-Forge, and found that CRAN is largely self-contained and
forms the basis upon which the other repositories build. In another study,
Decan et al. [28] returned to consider the maintainability problems from
breaks in backwards compatibility between packages hosted in CRAN and175

GitHub, which is attracting an increasing share of R packages not hosted
elsewhere.

Our own first study [55], examined the broad outlines of the R ecosys-
tem’s characteristics, particularly from the aspect of its division into two
principal repositories, CRAN and Bioconductor. Unlike German et al. [34],180

we examined the entire content of the ecosystem, both past and present,
but we did not consider GitHub or other minor repositories since, just as
[29], we found that CRAN and Bioconductor were self-contained reposito-
ries. Our study contained a quantitative assessment of the R ecosystem’s
platform, marketplaces, and communities, established the main package and185

contributor metrics, and measured R’s growth in these metrics throughout
its existence. We discovered that a core group of users, linked to the develop-
ment of the R platform, have played the most crucial role in extending the R
ecosystem’s functionality by contributing to the most important community-
developed packages as well. We also made an attempt to combine the metrics190

we had gathered in a predictive model for package behaviour, but found that
no meaningful results were possible with the data available.

This study builds upon and significantly extends this work to examine the
evolution of the R ecosystem in greater depth, particularly from the aspect
of interaction between the community and the marketplaces. We examine195

in much more detail the community and marketplace networks, identify the
main categories of ecosystem components, the forces that have shaped it and
what role they have played, thereby extending the quantitative analysis to
examine qualitative aspects of the R ecosystem.

4. Objectives200

Inspired by similar studies in the literature presented in the previous sec-
tions, we used the data we gathered on the R ecosystem’s past and present

7



state to formulate metrics that can be used to gain insights on the ecosys-
tem’s evolution and detect any underlying trends, both on the level of the
entire ecosystem, as well as on the level of individual ecosystem members.205

The metrics we used are those defined in proposed frameworks [42, 31], or
commonly used in network analysis, and which can be generated easily, and
as far as possible automatically, from openly accessible information, rather
than requiring intensive human input for generation.

A platform-oriented SECO like R comprises three main components: the210

software platform, the community of users, and the marketplace(s) where
additional software products are offered. In the present study, we focus on
a high-level examination of the latter two components, whose existence and
synergy present the main extension offered by SECOs as software develop-
ment paradigms.215

RQ1 How is the R marketplace built up? A software marketplace is the
realization of the software ecosystem as a concept. By studying its depen-
dency structure in terms of composition, width, depth, and interconnect-
edness, we extract metrics that can reveal the trends that have shaped its
evolution.220

RQ2 How do community members contribute to the R ecosystem? The
developer community is the force that drives a software ecosystem’s growth.
We examine the patterns of behaviour of its members, both in terms of their
contributions in terms of software packages, and in terms of their collabora-
tion with each other. We also attempt a basic categorization of the commu-225

nity members, and study the impact of each category on the R ecosystem.
RQ3 What is the current state of the R ecosystem? Research Questions

1 to 3 are to a large extent explorative and were designed to help clarify
the underlying dynamics and composition of the R ecosystem. That is, they
aim at resolving the question what is “important” in the R ecosystem and230

how the R ecosystem “behaves”. We combine the insights gained to review
the usefulness of our metrics and assemble a qualitative assessment of the R
ecosystem’s health.

The R ecosystem is a special case in a wide spectrum of software eco-
systems. At the end of our study we discuss of the results and insights235

gained are specific to the R ecosystem, which can be generalized to other
software ecosystems, and why.

8



5. Data Collection and Analysis

At the start of our study, we defined our target data sources. From
our own survey, we discovered that numerous packages hosted on RForge240

or GitHub are also listed in CRAN or Bioconductor. Consequently, as our
focus was on examining the dynamics of marketplaces and their attendant
communities in the R ecosystem, we limited our study to CRAN and Bio-
conductor. GitHub for instance forms an important software repository, but
not a community; rather it is an agglomeration of individual developers and245

their contributions, and not one exclusive to R. Smaller collections such as
Omegahat [6] or the Rmetrics Computational Finance group [12] were also
disregarded as too small and niche-oriented, especially as many Omegahat
packages are also hosted in CRAN, and Rmetrics has switched to using C
RAN for its packages. In so far as these packages were present in CRAN,250

they were included in our analysis as part of the latter repository.
Our decision to limit our study to CRAN and Bioconductor was further

strengthened due to the self-contained nature of both: as will be seen in Sec-
tion 6.2.3, CRAN and Bioconductor both reference only a very small number
(about 0.2% of documented dependencies) of software products external to255

themselves, i.e., either to packages hosted in smaller collections, personal
repositories, code repositories like GitHub, or referred to non-R software al-
together. Consequently, while many R packages can be also hosted in, and
retrieved directly from, RForge, GitHub, or other such repositories, our data
support the view that even if CRAN and Bioconductor do not contain the260

entirety of the R ecosystem, they do contain the vast majority of it and rep-
resent coherent and self-contained entities for analysis purposes. CRAN and
Bioconductor membership overlaps to some degree, but this is mostly the
case with packages that have migrated from CRAN to Bioconductor; where
relevant in the subsequent sections, we note that overlap and how it was265

addressed.
As described in [55], we parsed the content of the R ecosystem at its

state of 31 December 2015. This was performed using a Java program that
parsed the online documentation pages and downloaded both the present
and the archived versions for each package. In the latter, the documentation270

file was retrieved and parsed, and the code files were analysed using the
cloc [4] tool. The information gathered was stored in JSON format due to
the non-homogeneous nature of the data. Two data sets were extracted,
concerning marketplace packages and the community. These data sets were

9



cleaned up in tandem across several rounds, with the aid of OpenRefine [7]275

and RStudio. OpenRefine’s ability to cluster similar names based on different
algorithms (Nearest Neighbor, Key-Collision, etc.) was particularly useful in
cleaning up the many variants of developer names. In cases where there
was ambiguity (e.g., is “Mike Smith” one of “Mike K. Smith” or “Mike L.
Smith”, or is one of the latter simply a typographic error?) we tried to280

match developers to the package in question by online search, but this was
not always a successful endeavour. In such cases, we decided to retain all
the variants as authors. We also improved or filled in missing or inaccurate
release date documentation—particularly in Bioconductor, where the release
cycles skewed the package version release dates by replacing them with the285

Bioconductor version release date—through the use of the far more reliable
download data. About a third of all Bioconductor packages were affected in
this way.

By combining our author data with package data, we calculated metrics
on the static characteristics of the R ecosystem, as well as metrics on its290

evolution over time. Partly in order to counteract the skewing of our Bio-
conductor date data resulting from the effects of its semi-annual release cycle,
and partly to make the resulting charts more easy to grasp, we generally ex-
amined both the packages and the community by yearly cohorts. For network
analysis, we used the open source graph visualization and analysis platform295

GEPHI [5], as well as R. Both offered a number of statistical methods; in
particular we used:

• Kendall rank correlation (or tau test) [57], included in the base package
of R. The Kendall rank correlation is a non-parametric statistical test
used to measure the correlation of two ordinal variables, or different300

subsets of the same variable.

• Cliff’s δ [26], provided by the orddom package in R. Cliff’s δ is a robust
statistical method for calculating the difference between the probability
that a random value in one distribution is larger than a random value in
a second distribution, and the reverse[47]. For easier comprehension, we305

have presented it in the form of the probability of superiority P̂ = (δ+1)
2

(also known as area under the receiver curve, AUC) [47].

• Betweenness centrality, provided by GEPHI, measures a node’s central-
ity in a network by calculating the possible paths from all other nodes
that pass through it.310

10



• Closeness centrality, provided by GEPHI, measures a node’s centrality
in a network by calculating its proximity to all other nodes.

• PageRank [54] is an algorithm developed for use by the Google search
engine and provided as the homonymous plugin for GEPHI. It is an
implementation of eigenvector centrality, which measures a node’s im-315

portance in a network by examining its connections to other nodes. It
considers not only the number of incoming connections to a node, but
also whether these are from important nodes.

6. Marketplace and Package Characteristics

6.1. Marketplace Size and Evolution320

RQ1 concerns the quantitative and qualitative assessment of the R market-
place. This involves on the one hand its study in its present state, so as to
establish the main categories of marketplace members, examine the roles they
play, and measure the interactions between them. Subsequently, the devel-
opment of the marketplace is traced back through time, so as to establish325

the driving forces and trends that have shaped it.
Table 1 gives an overview of the CRAN and Bioconductor marketplaces

on 31 December 2015, the date of our data collection. “Current” packages
were those included in the current release of each repository, i.e., they were
up-to-date with the latest R release version (at the date of our data collec-330

tion, this was Version 3.2.3). Packages which no longer satisfied these criteria
were relegated to “archived” lists, which means that they did not appear in
the main package list of the CRAN repository, and no longer had a pack-
age “home page” there. Older versions of “current” packages are likewise
relegated to the “archived” lists.335

45 packages were encountered in both CRAN and Bioconductor, either
being released in parallel in both repositories—officially a discouraged prac-
tice [1]—or having migrated from CRAN to Bioconductor in later versions
(some as late as 2015), usually due to their proximity to Bioinformatics. 41
of them were in the latter category, two—hexbin and pamr—appear to have340

migrated from Bioconductor to CRAN, while the situation of the remaining
two packages—bim and GeneTS )—was unclear. In this study, the migrated
packages have been treated as part of the repository they have been migrated
to, while the two anomalous cases have been regarded as part of CRAN as
it is broader in scope. In the subsequent analysis, where repository-specific345

11



data is used, only the data (e.g., downloads) drawn from the repositories
they have been assigned to have been considered.

Bioconductor further distinguishes its content into three broad categories,
“function” packages which provide additional functionality, “annotation data”
packages (e.g., genome data on various organisms), and “experiment data”350

packages. As the main expansions to the basic Bioconductor core, the “func-
tion” packages were of particular interest, and displayed markedly different
characteristics from the other two categories. We have therefore often con-
sidered them as a special group in this study. Of the subset of packages
included in the latest Bioconductor release (Version 3.2), 1,104 (49%) were355

“function” packages.

CRAN Bioconductor

Packages total 8,942 3,891

of which in “current” release 7,690 (86%) 2,255 (58%)

of which “function” packages – 1,104 (49%)

Package versions total 54,490 27,024

Table 1: Overview of marketplaces as of 31 December 2015. The 45 packages published
in both repositories are included in both.

It should further be noted that out of the Bioconductor versions, about
36% feature no change in their code content (or rather, no change in the
number of code files, lines of code, or comment lines) between consecutive
versions. In other words, a significant proportion of “new” Bioconductor360

version releases are identical to an older version, but as a result of the Bio-
conductor version numbering system [2], the version number is automatically
increased with each Bioconductor release. The equivalent figure in CRAN
remains under 1.5%. This gives an idea of the skewing introduced by Biocon-
ductor’s versioning system (and its version naming policy) in some categories365

of raw metrics, which consequently had to be handled with care.
As can be seen in Figure 2, CRAN and Bioconductor marketplaces have

been growing at markedly different rates. Bioconductor was established in
2004 [33]. The first of what would later become Bioconductor packages were
extant already in 2002, and by 2005, 162 packages were available, but a370

full third of the Bioconductor marketplace, 1,364 packages, was published
in 2006, and the repository has been only slowly growing since. As pointed
out in [55], the annotation data packages experience a high deprecation rate,

12



Figure 2: Growth rates (top), proportion of packages in a given year now marked as
“archived” (middle), and proportion of single-version packages (bottom), in the CRAN
(blue solid line) and Bioconductor (yellow dashed line) repositories. Initial years have
been removed as outliers. Each node is labelled with the corresponding absolute value.

which is expressed in the over 80% of packages published in 2006 being cur-
rently “archived” in Figure 2. As will be seen in the subsequent sections,375

this affects many of the metrics we have used in this study. CRAN, as the
older repository, exhibits a quite steady evolution, with an average annual
growth of 28% since 2007, and a deprecation rate of between 20% and 30%
for the bulk of the older packages (published before 2012). Newer packages
of course are disproportionately represented in the active repository.380

6.2. Dependency Structure

Dependency structure is of particular importance for any analysis of a
composite software system, since the interdependency of the various elements
increases complexity and development overhead, and reduces the efficiency
and the composability of the resulting software [20], while at the same time385

13



increasing modularity and reusability of the individual components. In addi-
tion, dependency relationships can reveal much information about the reuse
of functionality, the propagation of changes such as updates, errors, or bug
fixes (“ripple effects”) through the ecosystem, and the underlying structure
of the ecosystem in the form of functional clusters.390

In this section we employ the data we gathered from CRAN and Bio-
conductor to examine RQ1. We examine its structure and define groups
of packages according to their position and role in the dependency network,
with emphasis on examining the co-dependence between CRAN and Biocon-
ductor.395

Figure 3: Overview of the dependency relationships (edges) of the packages (nodes) in the
CRAN (blue) and Bioconductor (yellow) repositories. The “halo” surrounding the central
component and smaller groupings are packages without explicit dependencies to or from
other packages outside the R platform.

The dependencies manifest the reuse of offerings in the ecosystem; to
borrow from biology, they represent the links in a food chain, connecting

14



the lower and more elementary offerings to the highly specialized top-level
consumers. As such, a package’s position in that chain, and its connections
to other packages, determines the role it plays in the ecosystem. A package400

situated low on the food chain, whose offerings are reused further along the
line by many other packages, plays a fundamental role in the ecosystem,
whereas a package that is located “higher”, i.e., at the middle or higher
rungs of the food chain, and has perhaps one or two packages that “feed
off” of it, is a branch or leaf in the wider ecosystem. Apart from its role405

and importance to the ecosystem’s functionality, a package’s position in a
dependency network is also an indicator of its own susceptibility to change:
the more dependencies, direct or indirect, a package has, the more likely
it is to need active maintenance due to interface changes lower in the food
chain—indeed, as we demonstrate further on, the most reused (depended-410

upon) packages are largely found in the lower rungs of the chain.

6.2.1. Dependency Metrics

The data collected for our study already provided information on the di-
rect dependencies (Deps) of each package, which was included in the relevant
documentation in the fields “depends” and “imports”. We did not consider415

“soft” dependencies like “suggests”, which include packages that might be
required for additional features, but are not strictly necessary for a package
to function. About 790 packages also explicitly documented the direct re-
verse dependencies (RevDeps) upon each package, but this information was
otherwise missing and had to be reconstructed through the direct dependen-420

cies. Many packages contained a direct reference to either the R core as a
whole or to individual base or “recommended” packages included within the
core. For the purposes of reconstructing the marketplace as a dependency
network radiating outwards from the R core, we considered the core (but not
the “recommended” packages) as a unitary platform.425

In order to perform a dependency-based categorization of each package in
the ecosystem network, we built upon the direct and reverse dependency data
to define a few additional metrics. We were inspired by similar approaches
in software analysis3, but largely the metrics arose from simple consideration
of the dependency network (example in Figure 4).430

• The maximal depth of the dependency chain (MaxDepthDep) for each

3See e.g. http://www.jarchitect.com/Metrics

15



package, measured from the R core platform via intervening packages,
where “0” represents packages without any dependency outside the R
platform. This serves as a measure of the package’s maximum distance
from the platform.435

• Themaximal depth of the reverse dependency chain (MaxDepthRevDep)
for each package, measured from the package itself to the last “leaves”
of the network, via the intervening packages, with the given package at
place 0. This is an indicator of how deep the dependency tree that a
package supports is.440

• The number of transitive dependencies (TrDeps) of each package, i.e.,
the number of all packages that find themselves in the dependency
path(s) of a package’s dependencies. In similar manner, we also calcu-
lated the number of transitive reverse dependencies (TrRevDeps), i.e.,
the transitive closure of TrDeps.445

Figure 4: Example of the dependency metrics: package H has 3 direct and 5 transitive
dependencies (outgoing arrows) and a max. dependency depth of 2, as well as 2 direct
and three transitive reverse dependencies (incoming arrows) and a max. rev. dependency
depth of 2.

The metrics we defined are useful for exploring the dependency network
of a package, but are not well suited for examining the exact nature of the
dependency relations. Thus it is not possible to state with certainty, without
analyzing the source code so as to examine specific function calls, whether
all nodes and paths of the dependency chains forming on either side of the450

package actually represent a package’s actual technical dependencies. For in-
stance, in Figure 4, we cannot know if package H actually reuses functionality

16



from C; only that it transitively requires C to be installed. Equally it is im-
possible to examine the scale and nature of these dependencies. This means
that, without a more detailed examination of the source code, the presence455

of transitive dependencies alone is not sufficient for examining something
like the ripple effect of an update in package C, or quantifying the relative
importance of a package’s dependencies.

6.2.2. Dependency Network Survey

In [55] we reported on the basic quantitative parameters for the CRAN460

and Bioconductor repositories. In that study, only direct dependencies through
the “depends” field were considered, and resulted in rather low numbers of
packages with dependencies on other R packages: some 54% for CRAN, and
66% for Bioconductor. By adding the “imports” field into the consideration,
the figure rises to ca. 70.3% of packages with dependencies for both CRAN465

and Bioconductor, which are figures comparable to similar open-source eco-
systems like Android [18].

The revised figures concerning the basic dependency data are summa-
rized in Table 2. In addition, Bioconductor function packages (denoted as
Bioc-f ) have been examined separately, since they display markedly different470

behaviour than the annotation and experiment data packages. The charac-
teristics have been calculated on the basis of the combined dataset of both
repositories, thereby including dependencies from Bioconductor to CRAN
which would otherwise not be accounted for.

Out of the 12,788 packages examined in total, only 9,829 (7,005 in CRAN,475

2,824 in Bioconductor) are involved in a dependency relationship. Out of
these, 95 packages form smaller dependency clusters (mostly package–and–
dependency pairs) independent from the wider marketplace, while the rest
form a central dependency network of 9,751 interconnected packages (6,923
CRAN, 2,812 Bioconductor) and 31,908 dependency links. The remaining480

1,896 packages in CRAN and 1,063 packages in Bioconductor have no depen-
dencies other than to the R core.

At first glance, Table 2 shows a similar behaviour for CRAN and the
Bioconductor marketplace. The two exceptions are Bioconductor’s markedly
higher MaxDepthDep values, and the higher values of RevDeps among CRAN485

packages. The reason for this is that Bioconductor builds upon CRAN of-
ferings, as will be seen later when the dependency links between the two
repositories are examined. Table 2 also shows that the bulk of the packages
have a small number of dependencies, and that dependency chains are mostly

17



CRAN Bioconductor Bioc-f

Packages total 8,901 3,887 1,170

Deps >0 6,252 (70.2%) 2,752 (70.8%) 1,088 (92.7%)

Deps >1 4,451 (50%) 1,600 (41.2%) 959 (81.7%)

Deps >5 1,092 (12.3%) 671 (17.3%) 479 (40.8%)

Deps quartiles 0–2–3 0–1–3 2–4–8

MaxDepthDep quartiles 0–2–4 0–6–6 3–6–9

RevDeps >0 2,285 (25.7%) 566 (14.6%) 391 (33.4%)

RevDeps >1 1,304 (14.6%) 268 (6.9%) 219 (18.7%)

RevDeps >5 552 (6.2%) 110 (2.8%) 96 (8.2%)

RevDeps >10 337 (3.8%) 73 (1.9%) 65 (5.5%)

RevDeps quartilesa 1–2–5 1–1–4 1–2–5

MaxDepthRevDep
quartilesa

1–1–3 1–1–3 1–1–3

a for packages with at least one reverse dependency

Table 2: Overview of basic package dependency characteristics by repository

shallow—this is particularly true in Bioconductor, where most packages have490

MaxDepthDep of either 0, indicating that they have no dependencies, or 5–6,
indicating that they directly reuse a Bioconductor package that has a high
MaxDepthDep, such as AnnotationDbi (MaxDepthDep=4, RevDeps=697)
or matchprobes (MaxDepthDep=5, RevDeps=553). In CRAN, in contrast,
MaxDepthDep is much more evenly spread out due to the greater variety495

of packages that comprise it. Thus while the CRAN network had an av-
erage clustering coefficient[61] of 0.079, indicating a mostly amorphous and
sparsely connected network, Bioconductor had an average clustering coef-
ficient of 0.179, precisely due to the clustering of a large number of pack-
ages around packages like AnnotationDbi or matchprobes. Otherwise the two500

repositories display similar characteristics. Bioc-f packages show consistently
higher dependency density, both in Deps as well as in MaxDepthDep. This is
as we expect, since functional packages naturally make much greater re-use
of the ecosystem offerings than annotation or data packages. It is possible
that if a similar filtering of CRAN packages were undertaken to remove the505

18



obscuring influence of various dataset and similar packages, the results would
be similar.

6.2.3. Dependency Flows

Next we examined the flows of dependencies between various package
groups. We decided to split up the central dependency network into smaller510

functional communities, and performed a modularity-based community de-
tection [52] to that effect. At each iteration, however, we obtained different
clusterings around the major packages, with greatly varying compositions.
Consequently we were not able to define specific communities in the depen-
dency network. However, we observed that the algorithm was consistently515

able to discern between CRAN and Bioconductor packages with great ac-
curacy, and detect the main Bioconductor clusters. For instance, even with
settings that resulted in a very small number (3 to 5) of communities, the
large AnnotationDbi–matchprobes and MeSHDbi clusters of Bioconductor,
which are so prominent in Figure 3, were always present as individual com-520

munities.
As a result we moved to examining the dependency links within and

between the two repositories. The results, presented in Table 3, verify the
largely self-contained nature of CRAN, which remains largely independent of
either Bioconductor or of R packages published independently or in smaller525

repositories. The reverse is true for Bioconductor, which demonstrates a con-
tinuing, significant technical dependency on CRAN, with about a third of all
dependencies in Bioconductor being provided by CRAN, a figure that rises to
over 40% for function packages. This also accounts for the differences between
CRAN and Bioconductor in Table 2: CRAN packages provide functionality530

for Bioconductor, resulting in a greater dependency depth of Bioconductor
packages, since it includes the dependency depths of many CRAN packages
as well.

This relationship between CRAN and Bioconductor is illustrated by the
simple graph representation, using GEPHI, of the two repositories in Fig-535

ure 3. This representation is typical of the visualizations we obtained for the
R ecosystem, regardless of the tool or the clustering algorithm employed. We
can see that Bioconductor packages form distinct clusters that build upon,
and stand out from, the mass of CRAN packages. These clusters are mostly
composed of annotation and data packages, however, where the re-use factor540

is very low.
Furthermore, both repositories refer to a very small number of “external”

19



Figure 5: Dependency flows between the two repositories (CRAN at left and Bioconductor
at right) and package groups (no rev. dependencies–low rev. dependencies–high rev.
dependencies).

sources as dependencies. Of the 17 “external” dependencies, three (rcom,
RGtk, fEcofin) are packages formerly hosted in CRAN, but now removed en-
tirely rather than archived; one (Rlibstree) is a former Bioconductor package;545

eight refer to different software products altogether (e.g., ODBC or mSQL)
that are not strictly dependencies; and five to truly external R packages like
Rniftilib, hosted by R-Forge.

A striking feature in Table 2 is the narrow base of dependency packages
for both repositories: only a small fraction of packages is re-used more than550

five times. To better examine this phenomenon, we separated packages into
three groups, based on Table 2: packages with high reuse (RevDeps >10),

20



CRAN Bioconductor Bioc-f

Deps referenced in
group

21,663 10,308 6,905

Corresp. indiv.
packages

2,346 1,076 1,002

Deps to same group
21,104
(97.4%)

7,040 (68.3%) 3,731 (54%)

Corresp. indiv.
packages

2,201 (93.8%) 542 (50.4%) 346 (34.5%)

Cross-repository Deps 515 (2.4%) 3,260 (31.6%) 2,854 (41.3%)

Corresp. indiv.
packages

130 (5.9%) 530 (49.1%) 528 (52.6%)

Packages used only in
other repository

84 24 22

Non-CRAN or
Bioconductor Deps

44 8 9

Corresp. indiv.
packages

15 4 5

Table 3: Overview of basic dependency network characteristics by repository

packages with low reuse (1–10 RevDeps), and packages with no reuse (0
RevDeps). The resulting dependency provider-consumer flow is illustrated
in Figure 5.555

It emerges that a relatively small group of packages plays a fundamental
role in the R ecosystem’s dependency network. This group is in reality even
smaller than can be seen in Figure 5: even if we take the subset of pack-
ages with RevDeps >100, leaving us with only 67 packages, or 0.5% of all R
packages examined, they still provide approximately 51% of all dependencies560

in the CRAN and Bioconductor repositories combined. This confirms the
observation in [55] that the technical dependency of the Bioconductor repos-
itory from CRAN is mainly based upon a few “big” packages (RSQLite,
ggplot2, MASS, RColorBrewer, XML, Rcpp, etc.), which unsurprisingly are
also among the most common dependencies referenced within CRAN, while565

the rest of the CRAN packages are used relatively sparsely.

21



6.2.4. Assessing Package Importance

While RevDeps is an adequate measure of a package’s degree centrality, or
its immediate impact, in the ecosystem, it does not account for the transitive
influence it may have. Thus a package that is reused only a few times, but570

by packages with a high number of reverse dependencies, may have a greater
impact on the ecosystem than is immediately apparent. Here the other met-
rics defined in Section 6.2.1 come into play: the number of transitive reverse
dependencies TrRevDeps and the maximal depth of the reverse dependency
chain MaxDepthRevDep. As a normalized measure of a package’s transitive575

impact (TrImpact), we divided TrRevDeps by MaxDepthRevDep for each
package. The results are summarized in Table 4.

CRAN Bioconductor

Packages with RevDeps >0 2,285 566

TrImpact=1 902 (39.5%) 280 (49.5%)

1<TrImpact≤10 1,045 (45.8%) 214 (37.8%)

TrImpact>10 337 (11.8%) 72 (12.7%)

TrImpact quartiles 1–2–5 1–1.33–3.67

Table 4: Overview of package TrImpact by repository

An illustration of the correlation of TrImpact with its constituent vari-
ables is shown in Figure 6. In both repositories, TrRevDeps plays the more
significant role, especially for the lower values, i.e., the overwhelming major-580

ity of packages involved, where it shows an almost linear relationship with the
TrImpact. This is confirmed through performing a Kendall rank correlation.
Across our dataset, the Kendall τ coefficient for TrRevDeps was calculated
as 0.885, 0.832 for RevDeps, and 0.645 for MaxDepthRevDep. For packages
with a higher impact value (arbitrarily set at greater than 10), TrRevDeps585

has a τ coefficient of 0.822, MaxDepthRevDep 0.529, and RevDeps 0.347.
Examining these “high transitive impact” packages, we discovered that

they were mostly on the lower levels of the dependency chain: 40.3% had
MaxDepthDep=0, and a further 17.6% MaxDepthDep=1. Furthermore, they
generally had a large number of direct reverse dependencies, with 75.2%590

having RevDeps>10. Table 5 compares the metrics of this group compared
with the similar-sized group of packages with RevDeps >10. The strong
similarities are not coincidental, as 310 packages are common to both groups.

22



Figure 6: Correlation of TrImpact with MaxDepthRevDep and TrRevDepsfor CRAN (top)
and Bioconductor (bottom).

This shows that on the one hand, package impact can be adequately assessed
by direct reuse of a package, and on the other, that the high-impact packages595

are found in the lower levels of the dependency chain and are generally older.
The differences between the two groups are few, but precisely therefore

of considerable interest. This is found in the code content: compared with
an average R code content of 435 lines of code (loc) in the two repositories,
both subsets are considerably larger, but the “high reuse” subset has a clear600

advantage over the “high transitive impact” one. Since R code is generally
analogous to feature richness, it is an indication that “richer” packages are
more likely to be reused as dependencies.

Another interesting discovery was that among R packages used as depen-
dencies, the RevDeps and TrRevDeps metrics are strongly correlated, with605

a τ coefficient of 0.797, indicating a strong, positive, almost linear relation-
ship between them, as shown in Figure 7. Along with the similar values in
RevDeps shown by the two subsets in Table 5, this corroborates the empir-
ically observed fact that packages tend to refer directly to their functional
dependencies even if they are part of a dependency cluster or chain, rather610

than implicitly consume what they require through intermediaries. In gen-
eral, the picture that emerges is that the average R package has few depen-
dency trees building transitively upon a dependency, and the trees that do
form are neither deep nor wide. The exception here is again a small group

23



Figure 7: Plot of the number of transitive rev. dependencies to the number of direct rev.
dependencies.

of “high-impact” packages, which largely coincide with the “fundamental”615

packages previously identified based on RevDeps alone. Even here, however,
the chains of reuse, although often deep (5 levels and above), do not “branch
out”.

Nevertheless, while RevDeps and TrRevDeps are highly correlated—largely
because they build upon the same subset of packages—they are not identical.620

Thus bugs and breaks in compatibility in the lower rungs of the dependency
chain likely affect packages situated higher along the chain. This is a ma-
jor maintenance problem for the developers of R packages, and one which is
bound to grow the more the R ecosystem grows: changes in the “fundamen-
tal” packages have an increasingly wide-ranging impact, while the newer and625

more “distant” packages, which are also more likely to have a larger number
of dependencies (as will be seen in Section 6.3), are more susceptible to these
changes.

24



High transit.

impact
High reuse

Number of packages 409 410

CRAN/Bioconductor 337/72 337/73

Deps quartiles 0–1–3 0–1–4

RevDeps quartiles 10–25–56 15–25–55.75

TrRevDeps quartiles 63–160–511 32.25–89–350.8

MaxDepthDep quartiles 0–1–3 0–1–3

MaxDepthRevDep quartiles 4–5–8 3–5–7

Release date quartiles
2004-02 – 2007-09

– 2010-10
2004-03 – 2006-11

– 2010-03

Max. R code content (loc) 536–1,539–4,727 693.8–2,020–6,070

Table 5: Comparison of the two “fundamental” package groups: “high transitive impact”
vs. “high reuse” packages

To complement the basic dependency-based metrics, we also performed a
ranking analysis of the central dependency network with the PageRank algo-630

rithm. About 71% of all packages in the network were disregarded because
they had no RevDeps. Only 691 had a value ≥ 1× 10−4, and 93 ≥ 1× 10−3.
In Table 6 the 10 packages with a value ≥ 1× 10−2 are listed, along with the
corresponding metrics examined so far.

6.3. Evolution of the Dependency Structure635

In the previous sections, we have examined the state of the dependency
network as it was at the time of our sampling. In this section, we move
towards examining the dynamics that have shaped it over time.

6.3.1. Dependency Metrics by Package Age

The evolution of the main dependency metrics over time is illustrated640

in Figure 8. For ease of presentation, we have divided the packages into
cohorts based on their age, i.e., their date of first release: 1997–2000, 2001–
2005, 2006–2010, 2011–2015. Although the dates were somewhat arbitrarily
chosen, they nevertheless can be said to represent specific eras in the R
ecosystem’s evolution: the first two cohorts represent its infancy and early645

years, whereas the latter two represent its maturity.

25



Package Repository PageRanks RevDeps TrImpact

BiocGenerics Bioconductor 6.22× 10−2 220 284.27

lattice CRAN 3.021× 10−2 476 529

AnnotationDbi Bioconductor 2.233× 10−2 669 203.3

MASS CRAN 1.976× 10−2 1,009 363

matchprobes Bioconductor 1.754× 10−2 553 145.5

Biobase Bioconductor 1.646× 10−2 499 270.27

Rcpp CRAN 1.637× 10−2 613 323.63

Matrix CRAN 1.286× 10−2 464 418.2

DBI CRAN 1.114× 10−2 103 236.9

S4Vectors Bioconductor 1.047× 10−2 311 219.27

Table 6: Top packages by PageRanks, along with two of the main metrics presented earlier:
RevDeps and TrImpact

Examining the behaviour of the two repositories separately, they show
a marked difference in the evolution of Deps per package: in CRAN, Fig-
ure 8 shows a clear increase over time whereas in Bioconductor, the pack-
ages of the period 2006–2010 show a decrease. This can probably be at-650

tributed to the nature of the packages published at the time: as already men-
tioned, a large number were annotation and experiment data packages, which
largely depended on a single central package (chiefly in the AnnotationDbi–
matchprobes and MeSHDbi clusters), which became obsolete quickly, and
which were mostly not re-used in other packages. Nevertheless, the data655

overall appears to show growth in both the average Deps and the average
MaxDepthDep in packages that are more recently released, as well as a corre-
sponding increase for the RevDeps and MaxDepthRevDep metrics from the
older packages over time.

All four metrics are indicative of an increase in the complexity of the660

ecosystem’s dependency structure around the core provided by the older
packages. This is in accord with Table 5, where both the “high reuse” and
“high impact” packages were mostly found on the lower rungs of the depen-
dency chains, and were, to over 75%, published up until 2010. The same
holds true even in the smaller core of 67 packages with over 100 reverse665

dependencies.

26



Figure 8: Comparison of the number of direct dependencies and reverse dependencies,
and the max. depth of the dependency and reverse dependency chains per package in
Bioconductor (left) and CRAN (right) by package age

We also observe that for MaxDepthDep, Bioconductor displays a more
marked increase than CRAN. This is not unexpected: CRAN has a more
varied nature, which tends to obscure such tendencies, while Bioconductor
relies on a smaller number of fundamental packages. Given that the depth670

of the CRAN packages upon which Bioconductor builds is low—about 63%
are at levels 0 or 1, i.e., adjacent to the core, and adjusted to take into
account the frequency of package reuse, the overall average is at 1.3—this
indicates that whatever growth there is in dependency depth derives largely
from within the Bioconductor repository itself.675

To verify this, we performed a comparative statistical analysis of the
dependency metrics across the individual yearly cohorts. As the data groups
had neither the same distribution nor a similar group size, we used Cliff’s
δ, from which we calculated the probability of superiority P̂ = (δ+1)

2
, also

known as area under the receiver curve (AUC). The results of the analysis680

are shown in Figure 9 in the upper triangles, with the corresponding p-values

27



Figure 9: Probability of superiority P̂ (y ≥ x) (in the upper triangles, with the correspond-
ing p-values in the lower triangles) for the number of dependencies (A), number of direct
reverse dependencies (B), max. depth of dependency chain (C), and max. depth of the
reverse dependency chain (D) per package, by year group.

in the lower triangles.
The results were of varying quality. Due to the extremely small size of

the respective groups, we omitted the years 1997 and 1998 entirely. As can
be seen in the figure, for all the groups up to 2003 (100 packages) and 2004685

(174 packages), and to an extent 2005 (337 packages) as well, the tests we
ran had low statistical significance, due to the small number of packages and
their generally similar behaviour. Comparison with the packages of 2006

28



proved contrary to the trend prevailing across the marketplace due to the
sudden influx of a large number of Bioconductor packages. As explained in690

Section 6.1, about a third of all Bioconductor packages was published in that
time, of which most were gathered in a few large clusters dependent on a small
numbers of central packages. Consequently the data for 2006 were severely
distorted, as is evident in Figure 9: the Bioconductor packages had few
dependencies (mostly to the one central package, hence lower Deps compared695

to both older and newer packages), and were quickly deprecated and saw
virtually no reuse (hence lower RevDeps and MaxDepthRevDep compared to
both older and newer packages). Another observation from Figure 9 is that
a few of the recent cohort groups were virtually undistinguishable: the 2012–
2015 cohorts in terms of Deps ; the 2008–2012 cohorts in terms of RevDeps ;700

the 2009–2013 in terms of MaxDepthDep; and the 2007–2010 in terms of
MaxDepthRevDep.

For greater differences in age, however, we obtained results with a very
high degree of confidence that confirm the original supposition, i.e., that
more recent packages have more direct dependencies on other packages, are705

at the end of a longer dependency chain, and conversely provide fewer re-
verse dependencies and in turn support shallower chains of reuse. It can be
observed that 2008 appears to form a cut-off point for the direct dependency
metrics, after which they remain relatively stable. This is not the case for
the reverse dependency metrics, where the downward trend continues. It is710

also apparent that the values for both reverse dependency-based metrics are
virtually identical.

From Figure 9, three distinct periods in dependency behaviour can be
seen: the “early period” until 2005, a “transitional period” in 2006–2008
marked by the sudden growth of Bioconductor, and the “current period”,715

beginning in 2008/09 up to 2015. The number of packages in the “deeper”
positions has increased over the packages published before 2008, but that
that growth has stalled since, and the figures for the last five years are more
or less stable both for the forward as for the reverse dependencies. Given the
explosion in packages published in the same period, this is remarkable, and720

possibly indicates that the “food chains” in R have reached their maximum
level. It is open to question why this is so. This level could represent a
maximum sustainable complexity level for the ecosystem in terms of a balance
of forces, i.e., reuse of other packages versus the effort needed to maintain
them on account of their complex dependency structure. Alternatively, given725

the relatively narrow focus of the R ecosystem, it is may simply represent a

29



maximum necessary level.
Part of the answer certainly lies in another observation: the most fre-

quently re-used packages, i.e., those with high RevDeps, are mainly located
very near the core: of the 410 packages with more than 10 RevDeps across730

the ecosystem, 35.8% have MaxDepthDep of level 0, 18.3% of level 1, and
13.4% of level 2.

Figure 10: Distribution of packages published each year, grouped by the number of the
reverse dependencies (RevDeps) upon them, in absolute numbers (top) and as proportion
within each year (below)

6.3.2. Emergence of the Dependency Network

To determine how the present dependency network was built up, we ex-
amined the packages with RevDeps >0 according to their age, as shown in735

Figure 10, on the basis that packages with many reverse dependencies are
those that by definition have supported the expansion of the ecosystem. It
is apparent that the rate of new packages with reverse dependencies has

30



dropped significantly in the 2013–2015 period across all categories. This is
possibly due to the fact that more recent packages have not yet become estab-740

lished and well-known so that they are more frequently reused, a supposition
supported by plots B and D of Figure 9, where (the probability of) reuse
appears to rise with package age.

The lower chart of Figure 10 furthermore indicates that reuse has been
declining in relative terms as well for an even longer time, especially among745

the high-reuse categories. While it is clear that the present dependency
network is a gradual evolution, with “important” packages continuing to be
added over time to the present day, given that the CRAN repository more
than doubled in size in the 2013–3015 period, the drop in reuse of packages
published during the same period is significant.750

It appears therefore that the essentials of the R dependency network (the
packages with more than 10 RevDeps), as it was at the end of 2015, had
been in place already at the end of 2012. 2012 itself represents a significant
outlier in this regard: as can be seen in Figure 2, there was an abrupt spike
in the number of new entries into the ecosystem, and Figure 10 makes clear755

that these new arrivals also included much new functionality, that quickly
became reused.

6.3.3. Dependency-driven Package Obsolescence

In this regard we also examined whether possible changes in the depen-
dency network played a role in the deprecation of the “archived” packages.760

We discovered that no “archived” package depended on another deprecated
package, and that the dependencies used by the now “archived” packages
throughout are essentially the same as those used by the currently active
ones. Even for the four packages—fEcofin, rcom, RGtk, and Rlibstree—
removed altogether rather than archived, the situation is mixed: of the 18765

packages dependent upon them, half remained marked as active, including
one case (R2PPT ) where the sole dependency was to a removed package
(rcom). The only common feature of the archived packages in this group was
the fact that they had last been updated no later than 2010, whereas the
packages marked as still active had their last release version in 2012 or later.770

This eliminates the mere “archiving” of dependencies as a reason for the
deprecation of packages, and implies that the reason for package deprecation
is lack of maintenance on behalf of their developers in order to keep their
contributions up-to-date with the packages they depend on, or, more impor-
tantly, the latest R releases. It would therefore appear that the main force775

31



for package deprecation in the R ecosystem comes from the R platform itself,
rather than changes in the marketplace. Overall, the “archived” packages
did not differ in any way in their dependency metrics from their currently
active siblings, except in so far as mirroring the trends shown in Figure 8
and having lower average values.780

Summing up, we have demonstrated the dominant role of a relative hand-
ful of packages, that were published early in the ecosystem’s lifecycle and have
persisted since. We have also shown that the R marketplace has a mostly
shallow dependency structure, whose growth has levelled out, but is capable
of supporting a large number of add-on packages. A high turnover rate ex-785

ists among packages, but this does not affect the dependency network, whose
members are rarely removed. It also suggests that breaks in compatibility
with the R platform, but not dependency obsolescence, are responsible for
package deprecation.

7. Community Characteristics790

7.1. Community Composition and Evolution

The first step towards addressing RQ2 is assessing the size and structure
of the R ecosystem’s community. After cleaning up our author data, we
determined the presence of 10,972 authors in the CRAN community and
1,700 in the Bioconductor community. 133 authors were involved in the 45795

packages published in both repositories. Since the versions published in each
repository had documentation of varying completeness, 64 of them appeared
only in CRAN and 123 only in Bioconductor; only 54 appeared in both
repositories. In addition, a further 342 authors contributed packages to both
repositories. These 475 authors are considered as a separate group in the800

remainder of this section, under the label “Both”. Likewise, the “CRAN”
and “Bioconductor” groups will contain the authors who have been active
only in the respective repository.

The next step involved determining the active status of community mem-
bers. As we did not consider data from sources like Github, we relied on805

indirect evidence: authors who have participated only in packages that are
not in the current release versions of the two repositories, that have been
deprecated due to lack of maintenance, are marked as “inactive”, whereas
those who are mentioned in up-to-date packages are regarded as “active”.
This obviously is less than ideal, given that out of a group of five authors810

in a package only one may be indeed active, but given the low numbers of

32



authors per package, the fact that most authors have participated in only
one package, and the tendency of less active authors to work closely in rel-
atively self-contained groups (see below), we feel that this still represents a
reasonable indicator of the general community trends. For the same reason,815

we consider as the “date of departure” from the community the date of the
final contribution of an author marked as being “inactive”.

Figure 11: Acquisition (top) and turnover (below) rates for of new contributors by year in
CRAN (blue solid line) and Bioconductor (yellow dashed line). The initial years of each
repository are not included as outliers. Each node is labelled with the number of new
members (acquisition diagram) and departures (turnover diagram).

Accordingly, 88.3% of authors in both CRAN and Bioconductor commu-
nities were marked as “active”. From this, we calculated acquisition and
turnover rates for the communities of the two repositories, as can be seen820

in Figure 11. For CRAN, the annual acquisition rate in the community has
remained stable since 2006 at ca. 31%, with an annual turnover rate of ca.
2%. Bioconductor also appears to have achieved a relatively stable acquisi-
tion rate at ca. 25% with a turnover rate that is fluctuating but generally is
of the same level as for CRAN. What is interesting here is that both reposi-825

tory communities took some time to settle into these rates, and the obvious
conclusion is that in terms of community growth, both have entered a “ma-
ture” period since ca. 2007. 2012 represents an outlier here just as in the
dependency metrics.

33



Regarding the turnover rate, due to the way we calculated “active” au-830

thors it reflects more on package management in R, where a package is
retained as “active” regardless of other factors as long as it is considered
compatible with the latest R release, rather than on actual level of partici-
pation in the ecosystem. However, given that a majority of CRAN as well as
Bioconductor packages are developed as single-author packages, as demon-835

strated in the next section, the low turnover rate remains indicative of a
strong commitment by the community to the ecosystem.

A further criterion we used to categorize authors is the type of their con-
tributions, e.g., their role in creating or maintaining a package, the frequency
and size of their commits, etc. As the available documentation in this regard840

varies considerably in content, style, form, and level of detail across the vari-
ous packages, or even within the same version of a package, we were only able
to assign a simple role distinction between “contributor” and “maintainer”,
meaning someone mentioned explicitly in the “maintainers” field, to which
was added a qualification of “author” when a contributor was present in the845

very first release version of a package. This classification is neither exhaustive
nor perfect, but it allowed a basic categorization of author behaviour. Other
than that, the degree of contribution and the actual role of each contributor,
e.g., whether an author was the original creator of a package written in S,
ported by a second author into R with the possible assistance of further con-850

tributors, were not examined further. Such distinctions are interesting, but
would have required far more effort at parsing the available documentation,
and would exceed the scope of this study.

Based on this rough classification, 44.8% of CRAN members, 49% of
Bioconductor members, and 68.8% of members active in both repositories855

were classed as both “authors” and “maintainers” of packages, while 40.8%
in CRAN, 42.7% in Bioconductor, and 25.7% in the “Both” category were
present as simple “authors”. The first group represents the true mainstay
of the community, indicating members with a very close relationship, to the
point of ownership, of a package. The “authors” group is also important,860

but includes an undetermined number of people who were only casual or
secondary contributors to a package, or whose work was reused, and more
effort has to be expended to determine the true extent of their contributions
to the ecosystem. Among the remainder, contributors who came along later
in a package’s lifecycle, an interesting subgroup are the 1.5–2% of the overall865

community who eventually became “maintainers”.

34



7.2. Author Activity Metrics

Next we proceeded to examine author activity, i.e., how authors interact
with the ecosystem. In this context the ecosystem is represented by two net-
works: the author collaboration network between authors, and the bipartite870

author contributions network between authors and packages.
In the author collaboration network, we assess the individual developer’s

collaboration with other developers. The primary metrics extracted from our
data were:

• Collaboration instances (ClbInsts), i.e., an occasion of two authors col-875

laborating in a specific package.

• Collaboration cases (ClbCases), i.e., a package with at least two authors
collaborating.

• Collaboration pairs (ClbPairs) represents a unique pairing of authors,
which can have many collaboration instances across several packages.880

Of interest here are particularly two types of collaboration patterns,
namely ClbPairs that are present in different packages over time, indicat-
ing a work team, and developers who have many different ClbPairs across
different packages. The latter represent a distinct group of community mem-
bers: networkers, members who bind the community together.885

To assess each author’s position in the community, a number of metrics
are used. Thus a high number of ClbInsts or ClbPairs is indicative of a
high degree centrality, indicating a developer with strong social ties in his or
her immediate community. Furthermore, closeness centrality and between-
ness centrality can be used to quantify an author’s position in the overall890

community.
In the author contribution network, we assess the individual developer’s

participation in and impact on the marketplace. The primary metric here are
the number of packages contributed to (Ctbs). It is a metric that illustrates
the connections between the developer community and the marketplace, and895

hence of considerable importance for the evolution of the ecosystem. From
the ranking of packages by reverse dependencies and downloads that we un-
dertook in Section 6, we can also broadly measure each author’s impact on
the ecosystem. In addition, it also serves as an indicator of developer in-
volvement with the ecosystem, because developers who contribute to many900

packages over time have a higher stake in the ecosystem’s success.

35



In order to test whether the involvement suggested by frequent collabo-
rations (“networking”) and numerous contributions (“productivity”) is truly
indicative of a commitment to the ecosystem, we correlate the above metrics
with author age and author active status. We expect authors who have been905

active in the ecosystem longer, and remain active, to also display correspond-
ingly higher productivity and networking activity.

7.3. Collaboration Network

The overall author collaboration data for the community are summarized
in Table 7.910

CRAN Bioconductor Both

Authors 10,566 1,235 475

Authors with ClbInsts 9,135 (86.5%) 1,090 (88.3%) 462 (97%)

Total ClbInsts 51,704 8,184 11,881

Total ClbPairs 47,650 2,679 6,118

Total ClbCases 4,776 2,022 2,364

ClbInsts per author
quartiles

1–3–6 1–3–4 4–8–18

ClbPairs per author
quartiles

1–3–5 1–2–4 3–6–14

Table 7: Overview of author collaboration metrics, by author community

CRAN Bioconductor Both

Authors 2,330 306 369

Total ClbInsts 15,365 6,439 9,041

Total ClbPairs 11,311 934 3,278

Total ClbCases 2,593 1,542 2,121

ClbInsts per author
quartiles

2–5–10 3–5–9 3–8–16

ClbPairs per author
quartiles

2–3–6 2–3–5 2–5–10

Table 8: Overview of author collaboration metrics for the reduced collaboration network,
by author community

36



In all communities, a very high proportion of authors had at least some
form of collaboration with another author, or, at least, reused and referenced
someone else’s work in their own package. The “average” author in CRAN
and Bioconductor has collaborated at least three times (ClbInsts), with three
other authors (ClbPairs). Inevitably, there is some overlap in the data: there915

are 9,073 ClbInsts, 5,074 ClbPairs, and 2,114 ClbCases where one author
is active exclusively in CRAN or Bioconductor and the other is active in
both repositories. The data is further skewed due to the presence of a few
big outliers in CRAN, such as spatstat with its 167 listed authors, many of
whom only appear in this one package, and which alone accounts for 13,875920

ClbInsts. spatstat is a “comprehensive open-source toolbox” with over 2,000
functions, and its authors include statisticians whose work is used, as well as
some R developers whose packages are imported. Obviously the majority of
these “authors” are not in reality R developers. Furthermore, 7,681 authors,
or 62.5% of the entire R community, only collaborate with other authors in925

a single package.
To detect the core of R’s collaborative network and avoid such outliers,

we examined a reduced collaboration network of authors who have collabo-
rated with others in more than one package. The reduced network comprises
3,005 authors active in 9,832 packages. The metrics for this are presented in930

Table 8.
Over 80% of the authors in the reduced network had some collaboration

outside it, but only 139 authors had collaborations exclusively with people
outside the network (in 2–4 different packages). While ClbPairs dropped
precipitously, the ClbCases of each author remained relatively stable: 2,060935

authors remained unaffected, 627 authors lost one package, 247 lost two, and
71 lost between three and seven. This shows that the technique is effective
in isolating the core collaborative network of the R ecosystem.

A ranking of importance within this network can be undertaken by any
of the metrics introduced above. However, ClbInsts per author is imprecise,940

as it measures volume of collaboration but not variety. The same applies
to ClbCases per author, as can be seen in the following example. The top
global contributor in the R ecosystem is Bioconductor’s Manhong Dai with
1,207 packages, followed by the “Bioconductor Core Team” (1,161 packages).
All 461 ClbCases of Manhong Dai in the Bioconductor repository were with945

the “Bioconductor Core Team” alone. Furthermore, although we know the
members of the “Bioconductor Core Team”, in many Bioconductor packages
this was the only author information included, and we were forced to con-

37



sider the “Bioconductor Core Team” as a separate author. Consequently,
packages where the “Bioconductor Core Team” alone or the “Bioconductor950

Core Team” and one or more other authors are listed as authors, it is impos-
sible to know, without examining their commit history, how many authors
collaborated in reality.

Author Joined Pkgs ClbInsts ClbPairs ClbCases Repo

M. Mächler 1999 62 572 418 56 Both

A. Zeileis 2000 48 486 380 46 CRAN

B. Ripley 1998 44 454 363 41 CRAN

K. Hornik 1998 71 412 308 63 CRAN

R. Bivand 2000 23 351 307 20 CRAN

A. Baddeley 2002 6 294 281 6 CRAN

B. Rowlingson 2000 18 321 279 17 Both

M. Kuhn 2006 14 297 278 12 CRAN

M. Stevenson 2006 3 270 265 3 CRAN

R. Turner 2002 9 281 263 5 CRAN

Table 9: Overview of the top networkers in the R ecosystem, ranked by ClbPairs

Due to the unreliability of our dataset, and since our purpose is to find the
authors who “bind the community together”, the main collaboration metric955

we use is ClbPairs per author, in other words, the number of individual
community members with whom an author has collaborated. Table 9 shows
the top ten networkers of the R ecosystem, ranked by ClbPairs, with the
relevant author activity metrics.

Focusing on the ClbPairs metric, we have determined 51,249 individual960

author pairings in our dataset. Almost 94% are active in a single package,
leaving 3,166 pairs, involving 2,156 individual authors, as work groups who
collaborate frequently across several packages. A more detailed examination
is given at Table 10.

Once more it is apparent that a small core of highly active authors, dis-965

proportionately drawn from older members of the community, form the most
active element of the collaboration network. This is all the more so since the
majority of authors present in the most active pairs are also present in the
less active ones as well.

As shown in Table 7, a number of community members had no collab-970

orations with the rest of the community, throughout the period examined.

38



Pairs
Individual

Authors
Author Join Date

Age

Difference

in 1 package 48,083 2,156
2010-02 – 2012-11 –

2014-09

178–920–
2,168

in 2–5
packages

2,932 2,129
2007-05 – 2010-12 –

2013-02
22–626–1,617

in over 5
packages

234 155
2003-05 – 2006-05 –

2009-06
77–397–1,079

Table 10: Overview of the author pairs in the R ecosystem

About 13% fall in this category, representing the proverbial “lone wolves”,
90% of whom were active in CRAN, and 80% of whom joined the ecosystem
after 2010. The remainder of the community comprised a giant compo-
nent (“central community”) that included 47.5% of authors, and a remain-975

ing 39.5% of authors who formed 1,413 smaller clusters. These clusters were
mostly small, with an average of 2.65 ClbPairs per author, and quartiles at
2–3–4 authors per cluster. The two largest clusters had 21 authors. As a
result, this part of the community has a very high clustering coefficient of
0.991.980

The central community comprised some 84% CRAN authors and 10% Bio-
conductor authors, with the remainder falling under the “Both” category. It
had a surprisingly high clustering coefficient at 0.836, with an average of 15.35
ClbPairs per author. This is largely attributable to the presence of packages
such as spatstat (167 authors), DescTools (92 authors), and other packages985

with a large number of authors—19 packages had 20 or more authors, and
134 had 10 or more—many of whom only appear there, and form tightly
knit clusters. With the aid of GEPHI we performed a betweenness central-
ity, closeness centrality, and eigenvector centrality (PageRank) analysis on
the central community. Table 11 presents the quartiles calculated for each990

method. While the CRAN and Bioconductor communities are again compa-
rable, the “Both” group deviates markedly. Its members have a far higher
betweenness centrality, which is partly due to the fact that the members of
this group link Bioconductor to CRAN, but also because of the considerably
higher contribution volume of this group, as will be seen in the next section,995

and which leads to more opportunities for collaboration. They are also a
more interconnected group, as shown by their higher eigenvector centrality

39



values.

Total CRAN Bioconductor Both

Betweenness
centrality
quartiles

0–0–1,736 0–0–26.7 0–0–0.5
1,006–11,670–

48,430

Closeness
centrality
quartiles

0.1668–0.1957–
0.2241

0.1667–0.1961–
0.225

0.1633–0.1872–
0.2078

0.1700–0.2056–
0.2334

PageRank
quartiles

8.866 × 10−5–
1.327 × 10−4–
1.897 × 10−4

8.783 × 10−5–
1.307 × 10−4–
1.851 × 10−4

8.025 × 10−5–
1.155 × 10−4–
1.538 × 10−4

1.417 × 10−4–
2.144 × 10−4–
3.326 × 10−4

Table 11: Overview of centrality metrics for the central CRAN–Bioconductor author com-
munity

In total, 1,718 members had a betweenness centrality value over 0 in the
central community. The top 10 are presented in Table 12, and are mostly1000

names familiar from Table 9.
We consider these 1,718 authors as the networkers of the R community.

It is notable that Bioconductor authors are under-represented in this group
in relation to their numbers in the core community, with only 148 authors,
and most of them found in the lower ranks. Conversely, the “Both” group1005

are considerably over-represented with 278 authors, including, as can be seen
in the table, among the top members.

7.4. Contribution Network

The contribution network is a bipartite network, with the authors on the
one side and the packages they contributed to on the other. Table 13 sum-1010

marizes basic author contribution metrics in terms of contributions (Ctbs)
and number of authors per package, by community, at the date of our data
collection. The CRAN and Bioconductor communities display a very simi-
lar behaviour overall, while the authors present in both repositories are, as
is to be expected, more productive. The pattern that emerges in Table 101015

for the contributions of author pairs is repeated here: the large majority of
ecosystem members is active in one package—indeed, a significant portion of
packages have only a single author—and only a small percentage of authors
is active in many packages.

40



Author Joined ClbInsts ClbPairs
Betw.

Centr.
PageRank Repo

M. Mächler 1999 572 418 2,095,265 2.82 × 10−3 Both

B. Ripley 1998 454 363 1,224,752 2.06 × 10−3 CRAN

R Core Team 2005 171 147 1,127,202.3 1.74 × 10−3 CRAN

K. Hornik 1998 413 309 885,019.4 1.85 × 10−3 CRAN

W. Huber 2004 212 91 868,497.4 1.49 × 10−3 Both

A. Zeileis 2000 486 380 864,524.9 2.26 × 10−3 CRAN

D.
Eddelbuettel

2002 245 202 840,108.2 1.71 × 10−3 CRAN

R. Gentleman 2001 268 111 839,046.7 1.52 × 10−3 Both

B. Bolker 2001 338 228 727,639.4 1.6× 10−3 CRAN

H. Bengtsson 2005 132 114 686,013.4 1.12 × 10−3 Both

Table 12: Overview of the top authors, ranked by betweenness centrality, in the CRAN–
Bioconductor core community

The Ctbs metric gives a good idea of an author’s direct involvement in1020

the ecosystem, but not of his or her impact. For instance, an author may
have only contributed in a single package, but this may be a heavily reused
package, requiring constant maintenance in turn. Consequently we tried to
quantify the individual author’s impact on the marketplace by using the met-
rics of the packages he or she has contributed to: the average daily downloads1025

(AvgDls) of a package, and reverse dependencies (RevDeps) on a package.
The distribution of the tallied figures is given in the lower part of Table 13.
This shows that the vast majority of authors have a negligible impact on the
ecosystem, especially when one considers that the actual numbers in many
cases would have to be “shared” among the many authors of a package.1030

The disparity is even more pronounced when examining impact of each
of the main collaboration network groups in Table 14. The data show a
very strong correlation between membership in the core community, higher
contribution, and, most importantly, usefulness to the ecosystem in terms
of frequently reused and downloaded packages. This does not mean that1035

there are no such contributions in the other groups—for instance, the “lone
wolves” contributions include package snowfall with 45 RevDeps, and the
“independent clusters” the MeSHDbi package with 208 RevDeps—but they

41



CRAN Bioconductor Both

Authors 10,566 1,235 475

with 1 Ctbs 7,513 (71%) 855 (69.2%) 45 (9.5%)

with 2 Ctbs 1,580 (14.9%) 193 (15.6%) 121 (25.5%)

with >5 Ctbs 380 (3.6%) 68 (5.5%) 125 (26.3%)

Packages contributed to
by resp. community

8,510 3,196 3,136

with 1 author 3,801 (44.7%) 1,357 (42.5%) 772 (24.6%)

with 2 authors 2,237 (26.3%) 861 (26.9%) 1065 (34%)

with >5 authors 405 (4.8%) 207 (6.5%) 303 (9.7%)

RevDeps per author
quartiles

0–0–1 0–0–2 0–3–24

AvgDls per author
quartiles

7.38–9.89–23.2
8.31–13.36–

30.78
17.89–35.77–

127.8

Table 13: Overview of basic author productivity metrics, by author community

are the exception rather than the rule.
Finally, another factor affecting author contribution metrics is the ten-1040

dency of authors to create clusters of related packages. We found that in
the R ecosystem, in 17.6% of all dependency pairings, these were between
packages that had at least one author in common.

7.5. Author Activity Trends

The development of the basic author activity metrics over time is shown1045

in Figure 12, where the collaboration metrics have been condensed to whether
a new author is engaged in collaboration or not. From the chart emerges a
twin trend of fewer authors per package and declining levels of collaboration
over time.

To test the hypothesis that older community members are also more ac-1050

tive, we divided the authors dataset in cohorts by year of joining the R
community. Figure 13 shows the distributions of author productivity and
networking metrics by repository. To compare the different communities
on an equal footing, we divided each author’s productivity metric with the
number of packages contributed to by the respective community from Ta-1055

ble 13, and each author’s networking metric with the respective number of

42



Central

community
Lone wolves

Independent

clusters

Authors 5,837 1,589 4,850

with 1 Ctbs 3,443 1,276 3,694

with >5 Ctbs 509 11 56

Packages contributed 7,486 (58.5%) 2,083 (16.3%) 3,149 (24.6%)

corresp. RevDeps 29,947 (93.8%) 557 (1.7%) 1,410 (4.4%)

RevDeps per author
quartiles

0–1–6 0–0–0 0–0–0

corresp. AvgDls
214,887.6
(81%)

19,375.33
(7.3%)

30,512.07
(11.5%)

AvgDls per author
quartiles

8.39–16.23–
53.33

6.64–7.98–10.8 7.14–8.56–13.52

Table 14: Overview of author impact metrics by network groups

collaboration pairs generated by the respective community in Table7.
Disregarding the outliers represented by the early data and some packages

like spatstat (visible as a line of outliers across the year cohorts in the CRAN
column in Figure 12), all three communities share the trends of reduced1060

collaborations and contributions among the newer contributors, particularly
when compared with the older community members. This broad tendency
of the R community is confirmed by a probability of superiority analysis by
year of the authors’ joining the community, as shown in Figure 14.

In part this is to be expected, as contributors who joined early have nat-1065

urally been around longer and have had time to become more involved and
contribute more, but at least in terms of productivity, the increasing predom-
inance of one-package authors indicates a shift in composition of the com-
munity: instead of first-generation “ecosystem-builders”, newer users tend to
“live off” the already established ecosystem, publishing one or two packages1070

for their own needs. This is demonstrated not only in the increasing presence
of “lone wolves”, as demonstrated in Section 7.3, but also in the dependency
flows between packages examined in Section 6.2.

Furthermore, Figure 15 shows that in the more recent years, the number
of collaborations from within the same age cohort has steadily increased both1075

in absolute terms and as a proportion of the total number of collaborations.

43



Figure 12: Author contributions (as percentage of total Ctbs) and collaborations (as per-
centage of total ClbPairs) for authors active in CRAN (left), Bioconductor (centre), and
both repositories (right), grouped by year of entering the R ecosystem.

On the one hand, this can mean that the number of collaborative packages
is increasing, or that perhaps the average size of the author group has been
growing. Our data, as shown in Figure 13, disproves this supposition; quite
the contrary, single-author packages are on the rise. Of course, given the1080

growing number of packages published in the last few years, it is natural
that the absolute number of collaborations in the same cohort rises, even
if the latter’s overall proportion is reduced. The rapidly growing “relative”
presence of same-year collaborations however, seems to corroborate the more
“self-centred” nature of the newer members’ contribution, who limit their1085

involvement in the ecosystem to their own few contributed packages and
their co-authors.

We also found that of the ClbPairs in CRAN, 8,150 (17%) are between
authors who “joined” on the same day, in the same package(s). Excluding
these values, the median distance between the dates where two collaborating1090

authors joined is 1,256 days (3.4 years). The precise result is skewed by the

44



Figure 13: Evolution of contributor statistics by year cohort in CRAN (solid line) and
Bioconductor (dashed line).

Figure 14: Probability of superiority P̂ (x ≥ y) (in the upper triangles, with the corre-
sponding p-values in the lower triangles) for the number of packages contributed (left)
and the authors collaborated with (right) by year groups.

predominance of recent authors in the data set, but even when examining
the community by yearly author cohorts, as shown in Figure 15, it is evident
that even older authors, from the 1997–2000 period, collaborate frequently
with newer ones of the 2012–2015 period. In our view, this is a positive1095

45



Figure 15: Collaboration between author cohorts by year in CRAN

indicator for a community where the older members are not only active, but
also willing to welcome newer ones; conversely, the newer members of the
community show willingness to collaborate with the older members and, more
more importantly, to get involved in developing and maintaining already
extant packages, as is demonstrated in Figure 16. Even the 61 authors who1100

joined before 2000 in CRAN had about 25% of their work done with members
who joined in 2012 or later, although in this case this is mostly due to a small
set of authors, namely the members of the “R Core Community”. These are
the members of the “R Foundation”, who have played a central role in the
growth and maintenance of the R ecosystem, being responsible not only1105

for the R core packages, but also for many of the most reused packages in
CRAN as well [55]. An analogous role has been played in Bioconductor by
the members of the “Bioconductor Core Team”.

By way of summing up, in Figure 17 we have compared the basic author

46



Figure 16: Instances of authors contributing to packages by year of author joining (x-axis)
and year of package release (y-axis) in CRAN

activity metrics of the developer community from CRAN and Bioconductor1110

with the most important groups we have identified so far: “networkers”, “lone
wolves”, and the “core teams”, the members of the “R Core Community”
and the “Bioconductor Core Team”.

8. Linking Metrics with Ecosystem Condition

As we have pointed out in Section 4, our ultimate aim is to extract qual-1115

itative insights and laws of behaviour that will allow us to model ecosystem
dynamics and that will be applicable for all ecosystems. To begin with, to
examine RQ3 we will study the state and condition of the R ecosystem as
it emerges from the metrics we have gathered.

8.1. Metrics Summarized1120

Understanding and modelling a software ecosystem is done in two levels:
one internal, concerning individual ecosystem members, software packages

47



Figure 17: Author activity metrics (year of joining, packages contributed, collaborations
with other authors) by author group: members of the CRAN and Bioconductor core teams
(blue, outer left), “lone wolves” (yellow, centre left), “networkers” (green, centre right),
and the total community (red, outer right) for comparison.

and community members, and one external, the ecosystem regarded in its
entirety. Both approaches entail two types of metrics: static metrics describe
the characteristics of the ecosystem and its components at a given time; dy-1125

namic metrics describe the evolution of the ecosystem’s characteristics over
a period of time. In our case, the static metrics (cf. Figure 18) were derived
from a package documentation and content, and their aggregation over time
by the timestamps of the individual versions gave us their dynamic dimen-
sion. The metrics in Figure 18 represent the main attributes of a software1130

ecosystem’s members (software components and community members) and
their activities and interactions. Similar metrics can be found in the frame-
works proposed in literature [42, 31].

The basic quantitative metrics we gathered or calculated for the ecosys-
tem are shown in Table 15. It is obvious that the marketplace and community1135

members can be analysed in pretty much the same way, but the data avail-
able did not allow us to do this, e.g., we did not know when archived packages
were removed from the “active” list. The quantitative metrics for individual
packages are shown in Table 16, and for the community members in Ta-
ble 17. Community members are further categorized by role, as discussed in1140

48



Figure 18: Diagram of the primary metrics and the relationships between them, for the
study of a software ecosystem. In this study, end-user impact is only examined indirectly
through package downloads.

Metric Definition

Overall marketplace size number of packages

Active marketplace size number of packages

Archived marketplace size number of packages

Marketplace acquisition rate
(Growth in size)

new packages over ∆T=Tb−Ta

extant packages at Ta

Developer community size contributors

Community acquisition rate
(Community growth)

new contributors over ∆T=Tb−Ta

extant contributors at Ta

Community turnover rate
(Author departures)

inactive contributors over ∆T=Tb−Ta

extant contributors at Ta

Table 15: Ecosystem-level quantitative metrics

Section 7.

49



Metric Range Quartiles SD

Number of authors 0 – 167 1–2–3 2.668

Number of versions 1 – 182 2–3–7 8.805

Date of version release
1997-10-08 –
2015-12-31

2007-12-01–
2012-01-16–
2014-04-01

–

Avg. time (days) between
versions (Update frequency)

0 – 1,539 2–100–273 154.926

Number of versions w. source
code changes

1 – 182 1–3–6 8.600

Avg. time (days) between
versions w. source code
changes

0 – 2,064 0–80–183 194.525

Time (days) between first
release and date of collection
(Lifespan)

0 – 6,658
638–1,774–

2,952
–

Avg. download rate per day
(AvgDls)

0 – 2,501
2.153–

7.405–9.647
106.336

Number of dependencies
(Deps)

0 – 47 0–1–3 3.932

Max. depth of dependency
chain (MaxDepthDeps)

0 – 15 0–2–6 3.143

Number of rev. dependencies
(RevDeps)

0 – 1,029 0–0–0 22.312

Number of transitive reverse
dependencies (TrRevDeps)

0 – 5819 0–0–0 156.721

Max. depth of reverse
dependency chain
(MaxDepthRevDeps)

0 – 15 0–0–0 1.379

Transitive impact (TrImpact) 0 – 529 0–0–0 15.904

Current/historical R code
size (LLOC)

0 – 156,200
95–435–
1232

3,288.827

Current/historical C code
size (LLOC)

0 – 470,600
120–492–

1529
15,862.45

R code size difference
between current and original
version (LLOC)

-56,730 – +75,970
0 – +4 –
+166

1,961.782

C code size difference
between current and original
version (LLOC)

-88,000 – +177,600 0 – 0 – +74 8,405.324

Table 16: Package quantitative metrics for the R ecosystem (CRAN and Bioconductor
repositories)

50



Metric Range Quartiles SD

Active status True/False – –

Dates of activity (version
releases)

1997-12-10 –
2015-12-31

2010-04-01–
2012-12-21–
2014-09-19

–

Productivity (Ctbs) 1 – 1,207 1–1–2 16.440

Networking activity
(ClbPairs)

0 – 2,013 1–3–6 38.853

Table 17: Community member quantitative metrics for the R ecosystem (CRAN and
Bioconductor repositories)

8.2. Classifying the Ecosystem

Before beginning any attempt to examine the qualitative aspects of the R
ecosystem based on the metrics above, it is important to place it in context.
A common and “obvious” classification of SECOs, which we will adopt here1145

as well, is by their business aspects, based on three criteria [49]:

1. What motivates the establishment and/or participation in a software
ecosystem. Is it done for (monetary) profit or other reasons?

2. How open is a software ecosystem, i.e., how easily are new partic-
ipants and their applications are allowed into the ecosystem by its1150

owner/maintainer?

3. Who owns the software ecosystem and its components, are they pro-
prietary or open-source?

These three classifications operate in parallel, highlighting different aspects
of the SECO. The classification ranges from entirely closed, for-profit and1155

proprietary ecosystems on the one extreme to fully open, non-profit and
open-source ecosystems on the other, with every kind of hybrid in between.
In some cases, e.g., OS-based ecosystems, various layers of the platform may
be characterized by different levels of the above characteristics.

In R we have a case of a programming language-based, fully open-source1160

ecosystem, which is ”prima facie” non-profit, although of course many of the
contributors act out of personal interest, they create or help maintain func-
tionality that is of use to themselves, and the monetization of some aspects
can not be excluded, as can be seen in Microsoft’s entry into the R ecosys-

51



tem. Nevertheless, the fundamental nature of R is that of a community-1165

driven, open-source ecosystem largely “developed by statisticians for statis-
ticians”, whose use does not require advanced programming skills [60], hence
an ecosystem driven to satisfy specific user needs, rather than oriented to-
wards offering tools and frameworks for developers to build upon.

As regards openness, both CRAN [15] and Bioconductor [1, 3] offer guide-1170

lines as to package content, structure, documentation, and compatibility
that the member packages have to observe. Both repositories also provide
a screening and monitoring process, at the beginning as well as at regular
intervals in a package’s lifecycle, which removes packages that are no longer
up-to-date. Nevertheless this is not a high threshold, nor is there a tight1175

oversight of developers’ activities between releases, or of any changes that
might break dependencies to other packages.

R is therefore in many ways a typical, volunteer-based open-source ecosys-
tem, albeit distinguished by its specialized focus and the absence (until re-
cently) of any other similar ecosystems in its chosen domain. This is im-1180

portant because free, open-source ecosystems display certain peculiar char-
acteristics that have to be taken into account. For example, as past empir-
ical studies have shown [58, 39], such ecosystems are dominated by a large
number of “lone wolves” who work alone on their projects with no explicit
interaction with other community members, and further by a large number1185

of small “work groups” of a handful of developers who co-operate. A number
of developers are more active in the community, co-operating with different
members, and serve to bind the community together, whereas the majority
focus on their own products. This is a pattern that is also encountered in R,
as discussed in Section 7.1190

The average R user is not the typical “end-user” encountered in other ar-
eas of software engineering, who is presumed to be technically ignorant and
only interacts with a system through a visual interface. Use of R requires
a minimum of technical skills and understanding of programming princi-
ples. The average R user is thus somewhere between a developer and an1195

“end-user”. Nevertheless, we observe that R perfectly fits the characteristics
Bosch [19] defined for an “End-User Programming Software Ecosystem”: it
is domain-oriented, with application developers that have a good domain un-
derstanding but not necessarily extensive programming experience, and who
are focused on the “creative composition” of extant offerings to satisfy their1200

particular needs, rather than create new functionality. This job is left to a
small team of ecosystem-builders, who have sufficient motivation to do this.

52



However, as Bosch noted, the added value that each R user can generate for
himself through the ecosystem is the main success factor for ecosystems of
this kind, and in this regard, R is undoubtedly successful.1205

8.3. Health of the R Ecosystem

Having analysed the current and past state of the R ecosystem, and de-
termined the driving factors behind its evolution, we move to the main point
of RQ3: how can the current state of the R ecosystem be qualified? For
this purpose we use the concept of “ecosystem health”, first defined by [40]1210

as comprising three aspects:

1. Productivity : “a network’s ability to consistently transform technol-
ogy and other raw materials of innovation into lower costs and new
products”.

2. Robustness : the ability to adapt to and survive unforeseen environ-1215

mental changes.

3. Niche Creation: increasing diversity through creation of new niches,
including the demise of old, well-established niches, that give birth to
new ones.

Productivity encompasses the ecosystem’s ability to grow and expand its1220

content, whether in this is the creation of new software components, addition
of functionality to existing ones, or the generation of additional ecosystem-
related knowledge in the form of manuals, tutorials, etc. [42]. Productivity is
measured by the recent activity in the ecosystem, and ideally should indicate
continuous growth in most metrics. From the metrics we have analysed so1225

far, the most relevant are the quantitative metrics marketplace acquisition
rate (Figure 2), marketplace use acquisition rate, and marketplace content
acquisition rate, all of which display steady, positive trends on the growth of
the ecosystem, including signs of “maturity”: the growth rates in both the
marketplace and the community have levelled out and are slightly declining,1230

although they are still remarkable for CRAN, which grows by between a
quarter and a third every year.

As we have not analysed any external sources, we cannot at this point
quantify the growth of peripheral, add-on and derivative products. However,
given the rise of “big data” in recent years, and the obviously growing interest1235

in R among the end-users (rise in download rates, as shown in Figure 19), as
well as the growing number of developers participating, it is not unreasonable
to expect the picture to be similar there as well. Bug fix rate is also an

53



Figure 19: Increase of the download volume per package by repository (CRAN in blue,
Bioconductor in yellow)

indication of productivity, and according to [24], R bugs are fixed usually
within a few days.1240

Robustness describes an ecosystem’s resilience in the face of external chal-
lenges, whether due to technological change or due to the emergence of com-
petitors. Ecosystem size alone is a factor ensuring a level of robustness, but
more critical is the stability and interconnectedness of the two networks that
support the ecosystem: the software component network and the developer1245

community [42]. Interconnectedness increases the contributors’ commitment
to the ecosystem, and increases the cost of leaving it in for alternatives.

Likewise, on the end-user end of the food chain, scale of use and satis-
faction are key indicators of whether the customer base remains loyal [42].
As discussed above, the ecosystem is large and growing. Section 6.2.2 shows1250

that, although the ecosystem is still rapidly growing in width and overall
complexity, it does not appear to be growing in equivalent depth, as demon-
strated by the maximum depth of dependency metrics.

While there is a significant proportion of packages with a large maximum
depth of dependency—some 22% in CRAN and 16.9% in Bioconductor have a1255

depth of five or greater—overall the depth of the dependency tree is relatively
shallow, and most of the packages actually contributing major extensions in
functionality are located in the lower levels: only three packages of those
with more than 100 RevDeps—data.table, ggplot2, and Hmisc—are located

54



Figure 20: Chord diagram of the dependency links between packages and their dependen-
cies by year in which they were published.

in levels 5 and 6. Published in 2006, 2007, and 2003, respectively, their1260

location at this depth is not a result of any increase in network complexity
in the intervening years, but was built in from the beginning. In addition
to the shallow dependency network, it is clear that the core packages of the
ecosystem, as can be seen in Section 6.3 are found among the older packages.

What this means is that the software marketplace of R has a relatively1265

static structure. It relies upon a small group of fundamental packages, and
while new such packages continue to appear over time, few large chains of re-
use appear outside this subset. Coupled with the evidence on an increasing
number of single-author and single-version packages, packages that satisfy
a specific end-user need rather than serve to expand the ecosystem, and1270

the increased presence of “lone wolves”, it reinforces the view that the R
marketplace has many leaves and minor branches (packages) but only a few

55



big branches (fundamental packages). On the one hand, this is an indica-
tion of continuity and limited obsolescence, which are seen as virtues for
an ecosystem’s robustness [30]. On the other hand, this behaviour chimes1275

with and confirms R’s nature as an end-user-oriented ecosystem. Despite
its undoubted success, therefore, the structure of the R software market is
determined and limited by its own relatively narrow scope.

One of the problems R faces is a result of its very success: its rapid ex-
pansion has overstretched the capabilities of its dependency versioning and1280

handling system [37]. As cannot load multiple versions of the same package,
backwards compatibility is often hard to maintain through updates [53]. As
Claes et al. [24] discovered, most bugs are introduced to packages via changes
in their dependencies. In view of the structure of the dependency network,
this potentially implies a heavy workload for package maintainers when they1285

depend on a package that is frequently updated; given the relatively limited
technical base of the ecosystem however, and the evidence for the contin-
ued survival of single-version packages, it is still unclear to what extent such
changes actually trigger the need for corrections across their reverse depen-
dencies. A more detailed examination of this question, which would have to1290

take into account the source code of the dependencies, is left for future work.
A further aspect related to robustness in the software network is the dep-

recation rate of packages. At least in CRAN, there appears a significant pro-
portion of packages that are removed as no longer compatible with the most
up-to-date R version, or due to other problems, but that rate is relatively1295

stable, indicating that this is a “normal”, or at least sustainable, rate for
the ecosystem. It is also noteworthy that many of the deprecated packages,
and deprecated or archived versions of packages, continue to be downloaded,
albeit in much smaller numbers than their up-to-date analogues. It would
be interesting to correlate download trends with the period where a package1300

or version is registered as “active” as opposed to the period where a package
or version is archived, but, at least for packages, we do not possess the data
on when they were marked as “archived”.

In the developer community network, a similar picture emerges. On the
one hand, R developers are generally active and collaborate with each other1305

across different age groups, while almost half of the community members
(“authors and maintainers”) have a significant role in the development and
maintenance of R packages. Furthermore, at least as far as we could see with
our limited data, the turnover rate of the ecosystem community is very low.
On the other hand, Figure 13 shows that the degree of the average developer’s1310

56



participation in the ecosystem is rapidly declining, at the same time as more
people join it. As a result, here too the community is dominated by a few
closely connected members, who not coincidentally are also members of the
core groups maintaining CRAN and/or Bioconductor. The influx of new
developers however increases the diversity of the developer pool, and is a1315

strong sign of continuing, and indeed increasing, popularity. The same trend
also emerges from the examination of overall download trends on the end-user
side of the community.

Niche creation presents a more mixed picture. Measuring niche creation
boils down to measuring diversity in an ecosystem and its self-renewal abil-1320

ity. As already discussed above, despite its growth, the R ecosystem’s scope
remains essentially the same. Within this restriction, however, there is evi-
dence for increasing variety: new fundamental packages continue to emerge
and support new extensions of the software marketplace, like RJSONIO,
dplyr, or raster, as mentioned in Section 6.2.2. New subsidiary marketplaces1325

have become available, like Bioconductor, GitHub, Omegahat, and additional
resources such as the documentation aggregator RDocumentation [10]. It is
notable that in terms of downloads, CRAN continues to be the main driv-
ing factor for R’s popularity; special-purpose offshoots like Bioconductor are
swept along in the overall growth of the ecosystem’s use, but have limited1330

potential. The situation may change, however, with the rise of GitHub as an
alternative hosting and development environment [29].

In terms of technical diversity, the R ecosystem allows developers to port
packages written in other language or languages into R. The list of the lan-
guages present in the software marketplace—we counted ninety—runs the1335

gamut, from R, C/C++ and Fortran to JavaScript and Assembly. The R
ecosystem has many tools for interfacing with databases or online data col-
lections such as those offered by the Google ecosystem (e.g., GoogleMaps).
While it is impossible to analyse the exact composition of the developer and
end-user community, surveys show that R is mostly used by academia as well1340

as by enterprise users [60], as well as by relative newcomers to data analy-
sis, benefiting from its relative ease of use, its open-source nature, and its
widespread use as a teaching tool in academia [21].

That said, the basic structure of the ecosystem has not changed, and the
great age of the fundamental packages shows that whatever changes are oc-1345

casioned as a result of changes in the platform and/or the wider technical
environment tend to happen within these same packages, rather than through
their substitution by newer rivals. This is mirrored in the community, where

57



the older members and the core groups, which these members are commonly
part of, play a major role, precisely due the close association of these con-1350

tributors with the small subset of packages sustaining the ecosystem. It is
clear that the majority of the community focuses towards satisfying their
own particular needs, rather than developing the ecosystem further. While
this has not inhibited R so far, it may become a problem as general-purpose
programming languages like Python, and newer rivals like Go, have come to1355

offer an equally rich suite of analytical tools.

9. Discussion

9.1. Threats to Validity

Our work represents a high-level examination of the composition and
history of the R ecosystem, with the aim of detecting trends and patterns1360

among the ecosystem members, and examine, as far as possible, their origin
and significance for the ecosystem.

9.1.1. Internal Validity

As with all data-driven analyses, the quality of our work is determined
by the quality of our data. In so far as the packages were available online,1365

we were able to retrieve the entire content of both repositories.
The dataset we obtained was rich, but had its limitations. Documen-

tation was often missing or contained format and content errors, which we
tried to address by several iterations of clean-up and correction phases, as
described in Section 5. For instance, despite guidelines by the R Foundation,1370

version numbering was extremely inconsistent across packages, which pre-
cluded us from using this information for analysis of package evolution. The
large variety of author name formats and role documentation, even within
the same document, meant that our automated parsing of author names in
particular had to be coarse-grained. It is likely to have missed some names1375

or counted some variants of the same name as different authors, and was
unable to distinguish the scale and importance of each author’s contribution
to a package.

In addition, the package data we obtained was relatively coarse-grained.
It would have been useful to examine the evolution of a package across all1380

its changes, and not only those present at every uploaded version. In CRAN
this presents the problem that we cannot judge why a specific version was
uploaded to the repository and one or more intermediate ones (if they existed

58



at all) were not. However, for the purposes of our analysis of the ecosystem
as it is offered to the end-users, this is not a major limitation. Similarly,1385

Bioconductor’s versioning system affected our examination of that repository,
where many packages contained practically no changes between versions.
In addition, it skewed the release date and version data for packages and
community members alike, although our examination of community evolution
by yearly cohorts mitigated its effect on the latter. This is a problem that1390

could be solved, at least for a large part of the data set, by exploiting sources
like GitHub. Fortunately we were able to remove one of the limitations
present in our previous work, concerning the download data for Bioconductor,
because more data with respect the package download history has been made
available since by the Bioconductor project. This in turn allowed us also to1395

greatly improve the data set regarding package release dates.

9.1.2. External Validity

We have not included in this study three important data sources: detailed
data on source code structure or function calls, as well changes in the code
and their propagation through the dependency network; detailed data on1400

developer activity, e.g., commits, that could be gathered from sources like
GitHub; and finally data from subsidiary sources like message boards, bug
reports and fixes, etc. that would provide more info on community (including
end-user) interaction with the R ecosystem, and more details for the evolution
of individual packages. Such a study would require a different tool and1405

data set than the one we employed here, and focus more on the technical
aspects of the marketplace as a modular software product, or even on the
characteristics of individual packages, rather than the high-level, evolutionary
and behavioural analysis of the entire ecosystem that we undertook. Mining
and exploiting these sources, and combining them with the present approach,1410

will be the subject of future work.

9.1.3. Construct Validity

The analysis we performed was in the first instance exploratory, both in
terms of modelling the R ecosystem and in testing out various metrics for
the purpose. We were inspired by similar studies in the available literature,1415

and based on our own experience we had some ideas of what we might find.
Nevertheless we tried to let the data speak for themselves, and did not set
out to prove or disprove any preconceptions on what our results would look
like.

59



The wide scope of our data set is both an asset and a problem: on the1420

one hand, it reduces problems with individual packages to statistical insignif-
icance, but on the other, it may have obscured important trends that a more
focused examination of specific ecosystem member categories might reveal.

As mentioned in Section 6.2.1, a further limitation arises from our consid-
eration of packages and their dependencies from a quantitative rather than1425

qualitative view. As a result, interactions determined by package content,
and the nature of functionality shared via dependencies could not be mea-
sured. Our dependency network analysis therefore considers all packages
idempotent, and measures their impact by the connections to them, rather
than the content of these connections.1430

9.1.4. Conclusion Validity

The aforementioned problems in data quality affected many packages indi-
vidually, but our sample size was large enough that this was not prohibitive,
especially since our focus was on the interactions between the ecosystem
members and the relative values of the metrics we formulated. The metrics1435

we derived were mostly complete, homogeneous, and reliable.
The statistical methods we employed (see Section 5 for an overview) are

fairly standard for this type of analysis, and we took care to use methods,
such as Cliff’s δ, that are recommended as robust. We furthermore did not
rely on the results of any single test, but combined several different metrics1440

and statistical methods to examine our dataset.

9.2. Insights

In terms of understanding the behaviour and forming a model of the R
software ecosystem, the data we gathered and the resulting metrics were
more than sufficient to gain an insight into its overall structure, dynamics,1445

and evolution. Our data allowed us to determine and classify ecosystem
actors and their interactions in both the marketplace and the community,
i.e., analyse the “network level” [42] of the ecosystem. This is sufficient from
the perspective of an ecosystem manager, or a company wishing to study
an ecosystem before entering it; more work in a different direction would be1450

required to assist, for instance, a developer seeking to optimally integrate a
particular product in the ecosystem.

Our metrics allowed us to detect the presence of a few basic contributor
categories: “lone wolves”, “network builders”, the “package owners”, authors
and/or maintainers, as opposed to the occasional, or “average” community1455

60



participant. Likewise we were able to identify the most important packages
that provide the main extensions to the R core, and which form the pillars
of the ecosystem’s software marketplace. The close relationship between
these packages and the core community members was not unexpected, in
accordance with the so-called “Conway’s Law” [27], but the scale of this1460

identification was. Such results confirm Iansiti and Levien’s [41] view on the
vital role played by “keystone” members in the evolution of the ecosystem,
rather than models of collaborative development without a dominant actor.

In general, our analysis in both the marketplace and the community shows
a broad but relatively shallow network, dominated by a few “big” actors1465

that supply fundamental extensions, and which once established retain their
position. According to Bosch [19], this is a hallmark feature of end-user-
oriented ecosystems, particularly in open source ones, since any financial
reward is low to non-existent. A study of the Ruby ecosystem by Kabbedijk
and Jansen [46] also found similar results, with the core of the ecosystem1470

in both packages (“gems” in Ruby parlance) and contributors comprising
about 10% of the total. One should not jump to the conclusion, however,
that the structurally important packages are the only ones that matter in
an ecosystem, and that those with few reverse dependencies, for instance,
are unimportant or redundant. As Hornik pointed out [37], the particular1475

needs and views of the end-user communities must be taken into account,
and it is difficult to judge a package’s “usefulness” or quality even within a
community with such a relatively narrow scope as statistical software.

Of interest beyond the scope of the R ecosystem is also the evident shift
in user roles and behaviour, in terms of collaboration and contribution vol-1480

umes, once the R ecosystem hit a relatively “mature” phase, and once it
became popular, for reasons likely external to itself. Most of these newcom-
ers display a “selfish” behaviour, feeding off the ecosystem without much
involvement on their part. Of course, that is what R was designed for, and
it is probably also a common feature of software ecosystems: as the ecosys-1485

tem matures, becomes established, and its variety of offerings increases, the
rate of re-composition by developers to cater to their own specific needs in-
creases even more quickly. This points to a possibly common characteristic
of FOSS, end-user-oriented ecosystems: a small, highly-motivated and ac-
tive core community, providing a small set of stable core offerings, and a1490

large mass of very purpose-specific offerings built upon them, which experi-
ence a high rate of deprecation and renewal. It is also likely that the same
tendencies will appear in closed, industrial ecosystems that form around a

61



keystone actor or community, for much the same reasons. Thus the keystone
actor(s) will be active in maintaining and enlarging the marketplace since1495

it represents a considerable investment, whereas peripheral actors will enter
the ecosystem if they think they can profit from it (whether through mone-
tarization or through satisfying their own needs). Once this is satisfied, few
of them will seek to advance to keystone status in turn.

R also provided the opportunity to study the effects of two different mar-1500

ketplaces, one generic and a branched-off niche-oriented one, on the ecosys-
tem. We found that, although Bioconductor has a clearly distinct identity in
functionality, structure, and community, its members generally behave like
those of the parent repository, with which Bioconductor retains significant
links, both in technical dependency and in terms of overlapping communi-1505

ties. Thus Bioconductor is still mostly an extension of CRAN, rather than
an independent marketplace. A comparison with other software ecosystems
with multiple marketplaces would be interesting for arriving at a typology of
marketplaces and how their interdependencies shape their evolution.

Overall, we consider that the method we have employed to analyse the R1510

ecosystem is applicable to all ecosystems at the “network level”. The exact
composition of the marketplace and community and the particular trends
detected for the R ecosystem, are, however, the result of several unquantifi-
able factors: R’s nature as an end-user-oriented, language-based ecosystem;
the initial design decisions made by the R team; the evolution of the data1515

analytics community in recent years; or the lack, until relatively recently,
of major FOSS alternatives like GO and Python’s statistics tools; and, of
course, the fact of our measurement of the R ecosystem at a particular phase
of its development. As such, although we are able to analyze R’s “health”
with the frameworks suggested in literature, it is difficult to quantify the1520

impact of external factors, or make predictions about its future. Further-
more, it remains to be seen which of our observations in R can be transferred
to closed, commercial, or industrial ecosystems, whose the participants have
other motivations, organization structure, and skill sets, and where the tech-
nical basis and requirements of the software components differ considerably1525

from R’s.

10. Future Work

In this study, we have compared the two main repositories for the R
ecosystem, and the communities that have formed around them. We have

62



detected and measured the narrow dependency base of the R ecosystem, and1530

demonstrated the strong dependence of Bioconductor on CRAN. R is an
example where early comers have disproportionately shaped the ecosystem,
and have been able to dominate it, as focal points both of the software
marketplace, as well as of the developer community.

We have observed that newer members increasingly reuse extant offerings,1535

but that despite an explosion in the size of the ecosystem, the “fundamental”
functionality offerings increase more slowly. Instead, the same period of rapid
growth has seen the increase of offerings that are target-specific and consume
extant offerings, but do not in turn lend themselves to reuse. Furthermore,
we have discovered that, on the one hand, R developers do co-operate across1540

age cohorts, but that on the other, the collaboration rate among newer users
is falling, and the group of “lone wolves” is increasing.

As pointed out in previous sections, the lack of sources such as GitHub,
which apart from a new software development model also appears to comple-
ment, if not supplant, traditional repositories like CRAN, and which would1545

allow a more comprehensive examination of author interaction, is a deficiency
that we intend to rectify in future work. A further topic of interest could be
more detailed examination of code content, changes, and interaction, as well
as linking code metrics with the community.

In order to generalize our findings, a comparative analysis of ecosystems1550

of different types, e.g., free and commercial, OS-based and application-based,
web and mobile, or open and closed, is required, with the aim of discovering
commonalities and differences in their structure and evolution. Work in
this direction already exists in the literature, but we intend to apply our
approach to a few carefully selected software ecosystems to complement it.1555

In addition, as other ecosystems may offer more information in some areas
than R, examination of specific aspects that proved difficult in R may be
undertaken with better results there. We hope that our work will prove
useful to other studies of ecosystems as a point of comparison, and will
contribute to the emergence of a taxonomy of software ecosystems from the1560

closed, tightly controlled, limited-membership, and commercially-oriented to
the most open, free-licensed, and diverse.

At the other end of the scale, being able to identify the composition of
ecosystems, the relationships between their members, and, ultimately, be-
tween the ecosystems themselves, may also allow us to extend our work in1565

the direction of high-level application integration architectures and strategies
in a software ecosystem environment.

63



References

[1] Bioconductor Package Guidelines. https://www.bioconductor.org/

developers/package-guidelines/. Accessed: 2017-05-05.1570

[2] Bioconductor Version Numbering. https://www.bioconductor.org/

developers/version-numbering/. Accessed: 2017-05-05.

[3] Bioconductor Package Submissions. https://www.bioconductor.org/
developers/package-submission/. Accessed: 2017-05-05.

[4] CLOC - Count Lines of Code. https://github.com/AlDanial/cloc.1575

Accessed: 2017-05-05.

[5] GEPHI. https://gephi.org/. Accessed: 2017-05-05.

[6] Omegahat. http://www.omegahat.net/. Accessed: 2017-05-05.

[7] OpenRefine. openrefine.org. Accessed: 2017-05-05.

[8] R-Forge. https://R-Forge.R-project.org/. Accessed: 2017-05-05.1580

[9] R Studio. https://www.rstudio.com/. Accessed: 2017-05-05.

[10] RDocumentation. https://www.rdocumentation.org/.

[11] Related Projects. https://www.r-project.org/other-projects.

html. Accessed: 2017-05-05.

[12] Rmetrics. https://www.rmetrics.org/. Accessed: 2017-05-05.1585

[13] The 2015 Top Ten Programming Languages.
http://spectrum.ieee.org/computing/software/

the-2015-top-ten-programming-languages. Accessed: 2017-05-
05.

[14] The Comprehensive R Archive Network. https://cran.r-project.1590

org/. Accessed: 2017-05-05.

[15] Writing R Extensions. https://cran.r-project.org/doc/manuals/

r-release/R-exts.html. Accessed: 2017-05-05.

64

https://www.bioconductor.org/developers/package-guidelines/
https://www.bioconductor.org/developers/package-guidelines/
https://www.bioconductor.org/developers/version-numbering/
https://www.bioconductor.org/developers/version-numbering/
https://www.bioconductor.org/developers/package-submission/
https://www.bioconductor.org/developers/package-submission/
https://github.com/AlDanial/cloc
https://gephi.org/
http://www.omegahat.net/
openrefine.org
https://R-Forge.R-project.org/
https://www.rstudio.com/
https://www.rdocumentation.org/
https://www.r-project.org/other-projects.html
https://www.r-project.org/other-projects.html
https://www.rmetrics.org/
http://spectrum.ieee.org/computing/software/the-2015-top-ten-programming-languages
http://spectrum.ieee.org/computing/software/the-2015-top-ten-programming-languages
https://cran.r-project.org/
https://cran.r-project.org/
https://cran.r-project.org/doc/manuals/r-release/R-exts.html
https://cran.r-project.org/doc/manuals/r-release/R-exts.html


[16] D. Alami, M. Rodŕıguez, and S. Jansen. Relating health to platform suc-
cess: Exploring three e-commerce ecosystems. In Proceedings of the 20151595

European Conference on Software Architecture Workshops, ECSAW ’15,
pages 43:1–43:6. ACM, 2015.

[17] O. Barbosa and C. Alves. A systematic mapping study on software
ecosystems through a three-dimensional perspective. In M. A. C.
Slinger Jansen and S. Brinkkemper, editors, Software Ecosystems: Ana-1600

lyzing and Managing Business Networks in the Software Industry, pages
59–81. Edward Elgar Publishing, 2013.

[18] T. Berger, R.-H. Pfeiffer, R. Tartler, S. Dienst, K. Czarnecki,
A. Wsowski, and S. She. Variability mechanisms in software ecosystems.
Information and Software Technology, 56(11):1520–1535, 2014. Special1605

issue on Software Ecosystems.

[19] J. Bosch. From software product lines to software ecosystems. In Pro-
ceedings of the 13th International Software Product Line Conference,
SPLC ’09, pages 111–119, Pittsburgh, PA, USA, 2009. Carnegie Mellon
University.1610

[20] J. Bosch and P. Bosch-Sijtsema. From Integration to Composition: On
the Impact of Software Product Lines, Global Development and Eco-
systems. Journal of Systems and Software, 83(1):67–76, 2010.

[21] L. Burtch. SAS vs R vs Python: Which Tool Do Ana-
lytics Pros Prefer? http://www.burtchworks.com/2016/07/13/1615

sas-r-python-survey-2016-tool-analytics-pros-prefer/. Ac-
cessed: 2017-05-05.

[22] P. R. J. Campbell and F. Ahmed. A three-dimensional view of software
ecosystems. In Proceedings of the Fourth European Conference on Soft-
ware Architecture: Companion Volume, ECSA ’10, pages 81–84, New1620

York, NY, USA, 2010. ACM.

[23] M. Claes, T. Mens, and P. Grosjean. maintainer: A web-based dash-
board for maintainers of cran packages. In 2014 IEEE International
Conference on Software Maintenance and Evolution, pages 597–600,
Sept 2014.1625

65

http://www.burtchworks.com/2016/07/13/sas-r-python-survey-2016-tool-analytics-pros-prefer/
http://www.burtchworks.com/2016/07/13/sas-r-python-survey-2016-tool-analytics-pros-prefer/


[24] M. Claes, T. Mens, and P. Grosjean. On the maintainability of CRAN
packages. In Software Maintenance, Reengineering and Reverse Engi-
neering (CSMR-WCRE), 2014 Software Evolution Week-IEEE Confer-
ence on, pages 308–312. IEEE, 2014.

[25] M. Claes, T. Mens, N. Tabout, and P. Grosjean. An empirical study of1630

identical function clones in CRAN. In 9th IEEE International Workshop
on Software Clones, IWSC 2015, Montreal, QC, Canada, March 6, 2015,
pages 19–25. IEEE, 2015.

[26] N. Cliff. Dominance statistics: Ordinal analyses to answer ordinal ques-
tions. Psychological Bulletin, 114:494–509, 1993.1635

[27] M. E. Conway. How do Committees Invent? Datamation, 14:28–31,
1968.

[28] A. Decan, T. Mens, M. Claes, and P. Grosjean. When GitHub Meets
CRAN: An Analysis of Inter-Repository Package Dependency Problems.
In 2016 IEEE 23rd International Conference on Software Analysis, Evo-1640

lution, and Reengineering (SANER), volume 1, pages 493–504, March
2016.

[29] A. Decan, T. Mens, M. Clas, and P. Grosjean. On the development and
distribution of R packages: An empirical analysis of the R ecosystem. In
Proceedings of the 2015 European Conference on Software Architecture1645

Workshops, ECSAW ’15, pages 41:1–41:6. ACM, 2015.

[30] E. den Hartigh, M. Tol, and M. Visscher. Measuring the health of a
business ecosystem. pages 221–246, 2013.

[31] O. Franco-Bedoya, D. Ameller, D. Costal, and X. Franch. Queso: a
quality model for open source software ecosystems. pages 209–221, 2014.1650

[32] S. Fortunato,M. Barthlemy. Resolution limit in community detection.
Proceedings of the National Academy of Sciences, 104(1):36–41, July
2007.

[33] R. C. Gentleman, V. J. Carey, D. M. Bates, B. Bolstad, M. Dettling,
S. Dudoit, B. Ellis, L. Gautier, Y. Ge, J. Gentry, K. Hornik, T. Hothorn,1655

W. Huber, S. Iacus, R. Irizarry, F. Leisch, C. Li, M. Maechler, A. J.
Rossini, G. Sawitzki, C. Smith, G. Smyth, L. Tierney, J. Y. Yang, and

66



J. Zhang. Bioconductor: open software development for computational
biology and bioinformatics. Genome Biology, 5(10):R80, 2004.

[34] D. M. German, B. Adams, and A. E. Hassan. The evolution of the1660

R software ecosystem. In Proceedings of the 2013 17th European Con-
ference on Software Maintenance and Reengineering, CSMR ’13, pages
243–252, Washington, DC, USA, 2013. IEEE Computer Society.

[35] G. K. Hanssen. A longitudinal case study of an emerging software ecosys-
tem: Implications for practice and theory. J. Syst. Softw., 85(7):1455–1665

1466, July 2012.

[36] G. K. Hanssen and T. Dyb̊a. Theoretical foundations of software eco-
systems. In Proceedings of the Fourth International Workshop on Soft-
ware Ecosystems (IWSECO), pages 6–17, 2012.

[37] K. Hornik. Are there too many R packages? Austrian Journal of1670

Statistics, 41:59–66, 2012.

[38] K. Hornik. R FAQ. https://CRAN.R-project.org/doc/FAQ/R-FAQ.

html, 2015.

[39] R. Hoving, G. Slot, and S. Jansen. Python: Characteristics identification
of a free open source software ecosystem. In 2013 7th IEEE International1675

Conference on Digital Ecosystems and Technologies (DEST), pages 13–
18, July 2013.

[40] M. Iansiti and R. Levien. Strategy as ecology. Harvard Business Review,
82(3):68–81, 2004.

[41] M. Iansiti and R. Levien. The Keystone Advantage: What the New1680

Dynamics of Business Ecosystems Mean for Strategy, Innovation, and
Sustainability. Harvard Business School Press, 2004.

[42] S. Jansen. Measuring the health of open source software ecosystems: Be-
yond the scope of project health. Information and Software Technology,
56(11):1508–1519, 2014. Special issue on Software Ecosystems.1685

[43] S. Jansen, S. Brinkkemper, and A. Finkelstein. Business Network Man-
agement as a Survival Strategy: A Tale of Two Software Ecosystems.
In S. Jansen, M. A. Cusumano, and S. Brinkkemper, editors, Software

67

https://CRAN.R-project.org/doc/FAQ/R-FAQ.html
https://CRAN.R-project.org/doc/FAQ/R-FAQ.html


Ecosystems: Analyzing and Managing Business Networks in the Soft-
ware Industry, pages 29–42. Edward Elgar Publishing, 2013.1690

[44] S. Jansen and M. A. Cusumano. Defining Software Ecosystems: A
Survey of Software Platforms and Business Network Governance. In
S. Jansen, M. A. Cusumano, and S. Brinkkemper, editors, Software
Ecosystems: Analyzing and Managing Business Networks in the Soft-
ware Industry, pages 13–28. Edward Elgar Publishing, 2013.1695

[45] S. Jansen, A. Finkelstein, and S. Brinkkemper. A sense of community:
A research agenda for software ecosystems. In Software Engineering -
Companion Volume, 2009. ICSE-Companion 2009. 31st International
Conference on, pages 187–190, May 2009.

[46] J. Kabbedijik and S. Jansen. Steering Insight: An Exploration of the1700

Ruby Software Ecosystem, pages 44–55. Springer, 2011.

[47] B. Kitchenham, L. Madeyski, D. Budgen, J. Keung, P. Brereton,
S. Charters, S. Gibbs, and A. Pohthong. Robust Statistical Methods
for Empirical Software Engineering. Empirical Software Engineering,
pages 1–52, 2016.1705

[48] K. Manikas and K. M. Hansen. Reviewing the Health of Software Eco-
systems - A Conceptual Framework Proposal. In Proceedings of the 5th
International Workshop on Software Ecosystems, hosted by 4th Inter-
national Conference on Software Business (ICSOB 2013), pages 33–44,
2013.1710

[49] K. Manikas and K. M. Hansen. Software Ecosystems - A Systematic
Literature Review. J. Syst. Softw., 86(5):1294–1306, May 2013.

[50] D. G. Messerschmitt and C. Szyperski. Software Ecosystem: Under-
standing an Indispensable Technology and Industry. MIT Press, 2003.

[51] J. F. Moore. Predators and prey: a new ecology of competition. Harvard1715

Business Review, 71(3):75–86, 1993.

[52] M. E. J. Newman. Modularity and community structure in networks.
Proceedings of the National Academy of Sciences of the United States of
America, 103:8577–8582, 2006.

68



[53] J. Ooms. Possible Directions for Improving Dependency Versioning in1720

R. The R Journal, 5:197–206, 2013.

[54] S. Brin, L. Page. The Anatomy of a Large-Scale Hypertextual Web
Search Engine. In Proceedings of the seventh International Conference
on the World Wide Web (WWW1998), April 14-18, 1998, Brisbane,
Australia, pages 107–1171725

[55] K. Plakidas, S. Stevanetic, D. Schall, T. M. Ionescu, and U. Zdun. How
do Software Ecosystems Evolve? A Quantitative Assessment of the R
Ecosystem. In Proceedings of the 20th International Systems and Soft-
ware Product Line Conference, September 16-23, 2016, Beijing, China,
pages 89–98. ACM, 2016.1730

[56] R. Spauwen and S. Jansen. Towards the roles and motives of open source
software developers. In Proceedings of the 5th International Workshop
on Software Ecosystems, hosted by 4th International Conference on Soft-
ware Business (ICSOB 2013), pages 69–80, 2013.

[57] M. Kendall. A New Measure of Rank Correlation. In Biometrika,1735

30(1/2):81–93, 1938.

[58] S. Syed and S. Jansen. On Clusters in Software Ecosystems. In Proceed-
ings of the 5th International Workshop on Software Ecosystems, hosted
by 4th International Conference on Software Business (ICSOB 2013),
pages 19–32, 2013.1740

[59] M. M. M. Syeed, K. M. Hansen, I. Hammouda, and K. Manikas. Socio-
Technical Congruence in the Ruby Ecosystem. In Proceedings of The
International Symposium on Open Collaboration, OpenSym ’14, pages
2:1–2:9. ACM, 2014.

[60] The DataCamp Team. Choosing R or Python for data analysis?1745

An infographic. https://www.datacamp.com/community/tutorials/

r-or-python-for-data-analysis. Accessed: 2017-05-05.

[61] D. J. Watts, S. H. Strogatz. Collective dynamics of ’small-world’ net-
works. Nature, 393:440–442, 1998.

69

https://www.datacamp.com/community/tutorials/r-or-python-for-data-analysis
https://www.datacamp.com/community/tutorials/r-or-python-for-data-analysis

	Introduction
	Related Work
	R and its Ecosystem
	Objectives
	Data Collection and Analysis
	Marketplace and Package Characteristics
	Marketplace Size and Evolution
	Dependency Structure
	Dependency Metrics
	Dependency Network Survey
	Dependency Flows
	Assessing Package Importance

	Evolution of the Dependency Structure
	Dependency Metrics by Package Age
	Emergence of the Dependency Network
	Dependency-driven Package Obsolescence


	Community Characteristics
	Community Composition and Evolution
	Author Activity Metrics
	Collaboration Network
	Contribution Network
	Author Activity Trends

	Linking Metrics with Ecosystem Condition
	Metrics Summarized
	Classifying the Ecosystem
	Health of the R Ecosystem

	Discussion
	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity
	Conclusion Validity

	Insights

	Future Work

