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Synonyms

Distributed hash table (DHT); Overlay network;

Decentralization; Open distributed systems; Consistent

hashing

Definition

The term peer-to-peer (pp) is ambiguous, and is used

in a variety of different contexts, such as:

● In popular media coverage, pp is often synony-

mous to software or protocols that allow users to

“share” files (music, software, books, movies, etc.).

pp file sharing is very popular and a large fraction

of the total Internet traffic is due to pp.

● In academia, the term pp is used mostly in two

ways. A narrow view essentially defines pp as

the “theory behind file-sharing protocols.” In other

words, how do Internet hosts need to be organized

in order to deliver a search engine to find (share)

content (files) efficiently? A popular term is “dis-

tributed hash table” (DHT), a distributed data struc-

ture that implements such a content search engine.

A DHT should support at least a search (for a

key) and an insert(key, object) operation. A DHT

has many applications beyond file sharing, e.g., the

Internet domain name system (DNS).

● A broader view generalizes pp beyond file shar-

ing: Indeed, there is a growing number of applica-

tions operating outside the juridical gray area, e.g.,

pp Internet telephony à la Skype, pp mass player

games, pp live audio&video streaming as in PPLive,

StreamForge or Zattoo, or pp social storage and

cloud computing systems such as Wuala. Trying to

account for the new applications beyond file shar- 

ing, onemight define pp as a large-scale distributed 

system that operates without a central server bottle- 

neck. However, with this definition almost “every- 

thing decentralized” is pp! 

● From a different viewpoint, the term pp may also 

be synonymous for privacy protection, as various 

pp systems such as Freenet allow publishers of 

information to remain anonymous and uncensored. 

In other words, there is no single well-fitting defini- 

tion of pp, as some definitions in use today are even 

contradictory. In the following, an academic viewpoint 

is assumed (second and third definition above). 

Discussion 

The Paradigm 

At the heart of pp computing lies the idea that each 

network participant serves both as a producer (“server”) 

and consumer (“client”) of services. Depending on the 

application, the shared resources can be data (files), 

CPU power, disk storage, or network bandwidth. Often 

pp systems have an open clientele, and do not rely on 

the availability of specific individual machines; rather 

they candeal with dynamic resources and do not exhibit 

single points of failure or bottlenecks. 

Compared to centralized solutions, the pp paradigm 

features a better scalability because the amount of 

resources grows with the network size, availability 

(avoiding a single point of failure), reliability, fair- 

ness, cooperation incentives, privacy, and security – 

just about everything researchers expect from a future 

Internet architecture. As such, it is not surprising that 

new “clean slate” Internet architecture proposals often 

revolve around pp concepts. 

Onemight naively assume that for instance scalabil- 

ity is not an issue in today’s Internet, as even most pop- 

ular web pages are generally highly available. However, 

this is not necessarily due to our well-designed Internet 
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architecture, but rather due to the help of so-called over-

lay networks: The Google Web site for instance man-

ages to respond so reliably and quickly because Google

maintains a large distributed infrastructure, essentially

a pp system. Similarly, companies likeAkamai sell “pp

functionality” to their customers to make today’s user

experience possible in the first place. Quite possibly

today’s pp applications are just testbeds for tomorrow’s

Internet architecture.

Implications

pp networks are often highly dynamic in nature.While

traditional computer systems are typically based on

fixed infrastructures and are under a single adminis-

trative domain (e.g., owned and maintained by a single

company or corporation), the participating machines in

pp networks are under the control of individual (and

to some extent: anonymous) users who can join and

leave at any time and concurrently. In pp parlor, such

membership changes are called churn.

A second implication of the autonomy of the

machines in pp networks is that the network consists

of different stakeholders. Users can have various reasons

for joining the network. For instance, an (anonymous)

user may not voluntarily contribute his or her band-

width, disk space, or CPU cycles to the system, but

prefer to free ride. This adds a socioeconomic aspect

to pp computing. As the pp paradigm relies on the

contributions of the participating machines, effective

incentive mechanisms have to be designed, which foster

cooperation and punish free riders.

Another source of inequality in pp systems apart

from selfishness is heterogeneity: Due to the openmem-

bership, different machines run different operating sys-

tems, have different Internet connections, and so on.

Applications

The best-known representatives of pp technology are

probably the numerous file-sharing applications such as

Napster, Gnutella, KaZaA, eMule, or BitTorrent. Also,

the Internet telephony tool Skype is very popular and

used by millions everyday. Zattoo, PPLive, and Stream-

Forge, amongmany others, use pp principles to stream

video or audio content. The cloud computing service

Wuala offers free online storage by exploiting the par-

ticipants’ disks and Internet connections to improve

performance. Recently, the power and anonymity of 

decentralized Internet working has gained the atten- 

tion of operators of botnets in order to attack cer- 

tain infrastructure components by a denial-of-service 

attack. Finally, pp technology is used for large-scale 

computer games. 

Architecture Variants 

Several pp architectures are known: 

● Client/Server goes pp: Even though Napster is 

known to the be first pp system (), by today’s 

standards its architecture would not deserve the 

label pp anymore. Napster clients accessed a cen- 

tral server that managed all the information of the 

shared files, i.e., which file was to be found on 

which client. Only the downloading process itself 

was between clients (“peers”) directly, hence pp. 

In the early days of Napster the load of the server 

was relatively small, so the simple Napster architec- 

ture was sufficient. Over time, it turned out that the 

server may become a bottleneck – and an attractive 

target for an attack. Indeed, eventually a judge ruled 

the server to be shut down (a “juridical denial of ser- 

vice attack”). However, it remains to note that many 

popular PP networks today still include centralized 

components, e.g., KaZaA or the eDonkey network 

accessed by the eMule client. Also, the peer swarms 

downloading the same file in the BitTorrent network 

are organized by a so-called tracker whose function- 

ality today is still centralized (although initiatives 

exist to build distributed trackers). 

● Unstructured pp: The Gnutella protocol is the 

antithesis of Napster, as it is a fully decentralized sys- 

tem, with no single entity having a global picture. 

Instead each peer connects to a random sample of 

other peers, constantly changing the neighbors of 

this virtual overlay network by exchanging neigh- 

bors with neighbors of neighbors. (Any unstruc- 

tured system also needs to solve the so-called 

bootstrap problem, namely how to discover a first 

neighbor in a decentralizedmanner. A popular solu- 

tion is the use of well-known peer lists.) The fact 

that users often turn off their clients once they 

downloaded their content implies high levels of 

churn (peers joining and leaving at high rates), and 

hence selecting the right “random” neighbors is an 
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interesting research problem. The Achilles’ heal of

unstructured pp architectures such as Gnutella is

the cost of searching. A search request is typically

flooded in the network and each search operation

will costmmessages,m being the number of virtual

edges in the architecture. In other words, such an

unstructured pp architecture will not scale. Indeed,

when Napster was unplugged, Gnutella broke down

as well soon afterward due to the inrush of former

Napster users.

● Hybrid pp: The synthesis of client/server archi-

tectures such as Napster and unstructured archi-

tectures such as Gnutella are hybrid architectures.

Some powerful peers are promoted to so-called

superpeers (or, similarly, trackers). The set of super-

peers may change over time, and taking down

a fraction of superpeers will not harm the sys-

tem. Search requests are handled on the superpeer

level, resulting in much less messages than in flat/

homogeneous unstructured systems. Essentially, the

superpeers together provide a more fault-tolerant

version of the Napster server, as all regular peers

connect to a superpeer. As of today, almost all pop-

ular pp systems have such a hybrid architecture,

carefully trading off reliability and efficiency.

● Structured pp: Inspired by the early success of

Napster, the academic world started to look into

the question of efficient file sharing. Indeed, even

earlier, in , Plaxton et al. [] proposed a

hypercubic architecture for pp systems. This was a

blueprint for many so-called structured pp archi-

tecture proposals, such as Chord [], CAN [],

Pastry [], Tapestry [], Viceroy [], Kadem-

lia [], Koorde [], SkipGraph [], and Skip-

Net []. Maybe surprisingly, in practice, structured

pp architectures did not take off yet, apart fromcer-

tain exceptions such as the Kad architecture (from

Kademlia []), which is accessible with the eMule

client.

Scientific Origins

The scientific foundations of pp computing were laid

many years before the most simple “real” pp systems

like Napster emerged. As already mentioned, in ,

a blueprint for structured systems has been proposed

in []. Indeed, also the [] paper was standing on the

shoulders of giants. Some of its eminent precursors are 

the following: 

● Research on linear and consistent hashing, e.g., []. 

● Research on locating shared objects, e.g., [] or []. 

● Research on so-called compact routing: The idea is 

to construct routing tables such that there is a trade- 

off between memory (size of routing tables) and 

stretch (quality of routes), e.g., [] or []. 

● … and even earlier: hypercubic networks, see 

below! 

Hypercubic Overlays and Consistent 

Hashing 

Every application run on multiple machines needs a 

mechanism that allows the machines to exchange infor- 

mation. A naive solution is to store at each machine the 

domain name or IP address of every other machine. 

While this may work well for a small number of 

machines, large-scale distributed applications such as 

file sharing, grid computing, cloud computing, or data 

center networking systems need a different, more scal- 

able approach: instead of forming a clique (where every- 

body knows everybody else), each machine should 

only be required to know some small subset of other 

machines. This graph of knowledge can be seen as a 

logical network interconnecting the machines; it is also 

known as an overlay network. A prerequisite for an over- 

lay network to be useful is that it has good topological 

properties. Among the most important are small peer 

degree, small network diameter, robustness to churn, or 

absence of congestion bottlenecks. 

The most basic network topologies used in practice 

are trees, rings, grids, or tori. Many other suggested net- 

works are simply combinations or derivatives of these. 

The advantage of trees is that the routing is very easy: for 

every source-destination pair there is only one possible 

path. However, the root of a tree can be a severe bottle- 

neck. An exception is a pp streaming systemwhere the 

single content provider forms the network root. How- 

ever, trees are also highly vulnerable, e.g., with respect 

to membership changes. 

Essentially all state-of-the-art pp networks today 

have some kind of hypercubic topology (e.g., Chord, 

Pastry, Kademlia). Hypercube graphs have many inter- 

esting properties, e.g., they allow for efficient routing: 

although each peer only needs to store a logarithmic 
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Peer-to-Peer. Fig.  A simplified pp topology: a

three-dimensional hypercube. Each peer has a three-bit

identifier. For example, peer  is connected to the three

peers , ,  whose identifiers differ at exactly one

position. In order to route a message from peer  to say

peer , one bit is fixed after the other. One possible

routing path is depicted in the figure: → → →

. An alternative path could be → → → 

number of other peers in the system (the peers’ neigh-

bors), by a simple routing scheme, a peer can reach each

other peer in a logarithmic number of steps (or “hops”).

In a nutshell, this is achieved by assigning each peer a

unique d-bit identifier. A peer is connected to all d peers

that differ from its identifier at exactly one bit position.

In the resulting hypercube network, routing is done by

adjusting the bits in which the source and the destina-

tion peers differ – one at a time (at most dmany). Thus,

if the source and the destination differ by k bits, there

are k! routes with k hops. Figure  gives an example.

Given a hypercubic topology, it is then simple to

construct a distributed hash table (DHT): Assume there

are n = d peers that are connected in a hypercube

topology as described above. Now a globally known

hash function f is used, mapping file names to long

bit strings. Let fd denote the first d bits (prefix) of

the bitstring produced by f . If a peer is searching for

file name X, it routes a request message f (X) to peer

fd(X). Clearly, peer fd(X) can only answer this request

if all files with hash prefix fd(X) have been previously

registered at peer fd(X).

There are some additional issues to be addressed

in order to design a DHT from a hypercubic topol-

ogy, in particular how to allow peers to join and leave

without notice. To deal with churn the system needs

some level of replication, i.e., a number of peers, which

are responsible for each prefix such that failure of some

peerswill not compromise the system. In addition, there 

are security and efficiency issues that can be addressed 

to improve the system. 

There are many hypercubic networks that are 

derived from the hypercube: among these are the but- 

terfly, the cube-connected-cycles, the shuffle-exchange, 

and the de Bruijn graph. For example, the butter- 

fly graph is basically a “rolled out” hypercube (hence 

directly providing replication!) of constant degree. 

Another important class of hypercubic topologies are 

skip graphs [, ]. 

A simple, interesting way to design dynamic pp 

systems is the continuous–discrete approach described 

by Naor and Wieder []. This approach is based on a 

“think continuously, act discretely” strategy, and can be 

used to design a variety of hypercubic topologies. The 

continuous–discrete approach gives a unified method 

for performing join/leave operations and for dealing 

with the scalability issue, thus separating it from the 

actual network. The idea is as follows: Let I be a 

Euclidean space, e.g., a (cyclic) one-dimensional space. 

Let Gc be a graph where the vertex set is the continu- 

ous set I. Each point in I is connected to some other 

points. The actual network then is a discretization of 

this continuous graph based on a dynamic decompo- 

sition of the underlying space I into cells where each 

“server” is responsible for a cell. Two cells are connected 

if they contain adjacent points in the continuous graph. 

Clearly, the partition of the space into cells should be 

maintained in a distributed manner. When a join oper- 

ation is performed, an existing cell splits, when a leave 

operation is performed two cells are merged into one. 

The task of designing a dynamic and scalable network 

follows these design rules: () Choose a proper con- 

tinuous graph Gc over the continuous space I. Design 

the algorithms in the continuous setting, which is often 

simpler (also in terms of analysis) than in the discrete 

case. () Find an efficient way to discretize the con- 

tinuous graph in a distributed manner, such that the 

algorithms designed for the continuous graph would 

perform well in the discrete graph. The discretization is 

done via a decomposition of I into the cells. If the cells 

that compose I are allowed to overlap, then the resulting 

graph would be fault tolerant. 

To give an example, in order to build a dynamic de 

Bruijn network (a so-called Distance Halving DHT), a 

peer at position x ∈ [, ) (in binary form bb... such 
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Peer-to-Peer. Fig.  The continuous–discrete approach

for the dynamic de Bruijn graph. Peers are indicated using

circles, files using rectangles. In the continuous setting, the

peer at position xi = . (in binary notation) is

connected to positions xi/ and ( + xi)/. In the discrete

setting, it is responsible for the cell (i.e., the connections

and files that are mapped there) between positions

xi and xi+

that x = ∑∞i= −bi ) connects to positions l(x) := x/ ∈

[, ) and r(x) := ( + x)/ ∈ [, ) in Gc (out-degree

two per peer). Observe that if position x is written in

binary form, then l(x) effectively shifts in a “” from the

left and r(x) shifts in a “” from the left. Thus, routing

is straightforward: based solely on the current position

and the destination (without the overhead of maintain-

ing routing tables), a message can be forwarded by a

peer by fixing one bit per hop. The set of peers in the

cyclic [, ) space then define the pp network: Let xi

denote the position of the ith peer (ordered in increas-

ing order with respect to position). Peer i is responsible

for the cell [xi , xi+), computed in a modulo manner,

i.e., this peer is responsible to store the data mapped to

this cell plus for the establishment of the corresponding

connections defined in Gc. Figure  gives an example.

Dealing with Churn

A distinguishing property of pp systems are the fre-

quent membership changes. Measuring the churn lev-

els of existing pp systems is challenging and one has

to be careful when generalizing a given measurement

to entire application classes (e.g., []). Nevertheless,

several insightful measurement studies have been con-

ducted. For instance, [, ] reported on the dynamic

nature of early pp networks such as Napster and 

Gnutella, and [] analyzed low-level data of a large 

Internet Service Provider (ISP) to estimate churn. Also 

the Kad DHT has been subject to measurement studies, 

and the reader is referred to the results in [] and []. 

It is widely believed that hypercubic structures are a 

good basis for churn-resilient pp systems. As written 

earlier, a DHT is essentially a hypercubic structure with 

peers having identifiers such that they span the ID space 

of the objects to be stored. A simple approach tomap the 

ID space onto the peers has already been described for 

the hypercube. To give another example, in the butterfly 

network, we may use its layers for replication, i.e., all 

peers with the same ID redundantly store the data of the 

same hash prefix. Other hypercubic DHTs can be more 

difficult to design, e.g., networks based on the pancake 

graph []. 

For many well-known systems, theoretic analyses 

exist showing that the networks remain well-structured 

after some joins, leaves, or failures occur. In order to 

evaluate the robustness formally, metrics such as the 

network expansion (for deterministic failures) or the 

span [] (for randomized failures) are used. Unfortu- 

nately, the span is difficult to compute, and the span 

value is known only for the most simple topologies. 

The continuous–discrete approach [] already 

mentioned constitutes the basis of several dynamic sys- 

tems. For example, the SHELL system [] is robust 

to certain attacks by connecting older or more reliable 

peers in a core network where access can be controlled; 

SHELL also allows to organize heterogeneous peers in 

an efficient topology. 

Many systems proposed in the literature offer a 

high robustness in the average case, i.e., they provide 

probabilistic guarantees that hold with high probabil- 

ity. Robustness under attacks or worst-case dynamics 

is less well understood. In [], a system is developed 

that achieves an optimal worst-case robustness in the 

sense that there is no alternative system that can toler- 

ate higher churn rates without disconnecting. The basic 

idea is to simulate a hypercube: each peer is part of a dis- 

tinct hypercube node; each hypercube node consists of a 

logarithmic number of peers. Peers have connections to 

other peers of their hypercube node and to peers of the 

neighboring hypercube nodes. After a number of joins 

and leaves, some peers may have to change to another 

hypercube node such that up to constant factors, all 
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hypercube nodes have the same cardinality at all times.

If the total number of peers grows or shrinks above or

below a certain threshold, the dimension of the hyper-

cube is increased or decreased by one, respectively. The

balancing of peers among the nodes can be seen as a

dynamic token distribution problem on the hypercube:

Each node of a graph (hypercube) has a certain number

of tokens, and the goal is to distribute the tokens along

the edges of the graph such that all nodes end up with

the same or almost the same number of tokens. Thus,

the system builds on two basic components: () an algo-

rithm, which performs the described dynamic token

distribution and () an information aggregation algo-

rithm, which is used to estimate the number of peers

in the system and to adapt the hypercube’s dimension

accordingly. These techniques also work for alternative

graphs, like pancake graphs [].

An appealing notion of robustness is topological self-

stabilization: A pp topology is called self-stabilizing

if it is guaranteed that from any weakly connected

initial state (e.g., after an attack), it will quickly con-

verge to a desirable network in the absence of fur-

ther membership changes. In contrast to the worst-case

churn considered in [], self-stabilization focuses on

the convergence time in periods without membership

changes, but allows for general initial system states.

While until recently, self-stabilizing algorithms with

guaranteed runtime have only been known for sim-

ple one-dimensional or two-dimensional linearization

problems [], recently a construction for a variation of

skip graphs, namely SKIP+ graphs [], has been pro-

posed. Single joins and leaves in SKIP+ can be handled

locally, and require logarithmic time and polylogarith-

mic work only. However, there remains the important

open question of how to provide degree guarantees

during convergence from arbitrary states.

Fostering Cooperation

The appeal of pp computing arises from the collab-

oration of the system’s constituent parts, the peers.

If all the participating peers contribute some of their

resources, highly scalable decentralized systems can

be built. However, in reality, peers may act selfishly

and strive for maximizing their own utility by ben-

efitting from the system without contributing much

themselves []. Hence, the performance of a pp sys- 

tem crucially depends on its capability of dealing with 

selfishness. 

Already in , Adar and Huberman [] noticed 

that there exists a large fraction of free riders in the 

file-sharing network Gnutella. The problem of selfish 

behavior in pp systems has been a hot topic in pp 

research ever since, and many mechanisms to encour- 

age cooperation have been proposed []. Perhaps the 

simplest fairness mechanism is to directly incorporate 

contribution monitoring into the client software. For 

instance, in the file-sharing system KaZaA, the client 

records the contribution of its user. However, such a 

solution can simply be bypassed by implementing a dif- 

ferent client that hard-wires the contribution level to the 

maximum, as it was the case with KaZaA Lite. Inspired 

by real economies, some researchers have also proposed 

the introduction of some form of virtual money, which 

is used for the transactions. 

BitTorrent has incorporated a fairness mechanism 

from the beginning and has hence been subject to 

intensive research (e.g., [, , ]). Although this 

mechanism has similarities to the well-known tit-for- 

tat scheme, the strategy employed in BitTorrent dis- 

tinguishes itself from the classic mechanism in many 

respects. For instance, it is possible for peers to obtain 

parts of a file “for free,” i.e., without reciprocating. 

While this may be a useful property for bootstrapping 

newly joined peers, it has been shown that the Bit- 

Torrent mechanism can be exploited: the BitThief Bit- 

Torrent client [] allows to download entire files fast 

without uploading any data. It has also been demon- 

strated in [] that sharing communities are particularly 

vulnerable to such exploits. BitThief is not the only 

client cheating BitTorrent. Piatek et al. [] presented 

BitTyrant. BitTyrant’s strategy is to exploit the BitTor- 

rent protocol in order to maximize download rates. 

For instance, BitTyrant uses a smart neighbor selection 

strategy and connects to those peers with the best recip- 

rocation ratios. In contrast to BitThief, BitTyrant does 

not free ride. BitTyrant seeks to provide the minimal 

necessary contribution, and also increases the active 

neighbor set if this is beneficial to the download rate. 

The authors claim that their client provides a median 

% performance gain in certain environments. 

There can be many other forms of strategic behav- 

ior in open distributed systems. One subject that 
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has recently gained attention, especially by the game-

theoretic research community, is neighbor selection in

unstructured pp networks (e.g., []). There may be

several reasons for a peer to prefer connecting to some

peers rather than others. For instance, a peer may want

to connect to peers with high bandwidths, peers storing

many interesting files, or peers having large degrees and

hence provide quick access to many other peers. At the

same time, a selfish peer itself may not be eager to store

and maintain too many neighbors itself.

Current Trends and Outlook

One can argue that today, pp computing is already

a relatively mature (research) field; nevertheless, there

are still many active discussions and developments, also

in the context of the future Internet design. Moreover,

there exists a discrepancy between the technology of the

systems in use and what is actually known in theory.

For example, the Kad network is still vulnerable to quite

simple attacks [].

If employed by the wrong people, the flexibility and

robustness of pp technology also constitutes a threat.

Denial-of-service attacks are arguably one of the most

cumbersome problems in today’s Internet, and it is

appealing to coordinate botnets in a pp fashion. A

DHT can be used by the bots, e.g., to download new

instructions. For instance, it was estimated that in ,

the DHT-based Storm botnet [] ran on several million

computers. Apart frommechanisms to detect or prevent

attacks even before they take place, a smart redundancy

management may improve availability during the attack

itself (see, e.g., the Chameleon system []).

In terms of cooperation, there is a tension between

the goal of providing incentive compatible mechanisms

that exclude free riders and the goal of designing het-

erogeneous pp systems that also tolerate (and make

use of!) weak participants. Moreover, in addition to

design mechanisms dealing with pure selfishness, there

is a trend toward pp systems that are also resilient to

malicious behavior (see, e.g., [] or []).

Another active discussion regards the interface

between pp systems and ISPs. The large amount of

pp traffic raises the question of how ISPs should deal

with pp, e.g., by caching contents. pp networks often

employ inefficient overlay-to-ISP mappings as the logi-

cal overlay network is typically not aware of the underly-

ing “real” networks and constraints, andmuch overhead

can be avoided by improving the interface between pp 

networks and ISPs, e.g., by an oracle []. For a criti- 

cal point of view on the subject, the reader is referred 

to []. 

It seems that while a few years ago the lion’s share 

of Internet traffic was due to pp, the proportion seems 

to be declining [] now. Especially web services and 

server-based solutions such as the popular YouTube and 

RapidShare are catching up. The measured data traces 

should be interpreted with care however, as they do not 

take into account what happens behind the scenes of 

big corporations. Indeed, it is believed that there is a 

paradigm shift in pp computing: While pp retreats 

(relatively to other applications) from public Internet 

traffic, today pp technology plays a crucial role in the 

coordination andmanagement of large data centers and 

server farms of corporations such as Akamai or Google. 
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Bibliographic Notes and Further 

Reading 

Beyond the specific literature pointed to directly in 

the text, there are several recommendable introductory 

books on pp computing. In particular, the reader is 

referred to the classic books [, , ] and two more 

recent issues [, ]. The theoretically more inclined 

reader may also be interested in [], which provides an 

overview of compact routing solutions, and [] which 

discusses trade-offs in local algorithms that achieve 

global goals based on local information only and with- 

out centralized entities whatsoever. Regarding the chal- 

lenges of distributed cooperation, the recent book [] 

gives a thorough and up-to-date survey of current 
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(game-theoretic) trends, and also includes a chapter on

pp specific questions.
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