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Synonyms

Distributed hash table (DHT); Overlay network;

Decentralization; Open distributed systems; Consistent

hashing

Definition

The term peer-to-peer (pp) is ambiguous, and is used

in a variety of different contexts, such as:

● In popular media coverage, pp is often synony-

mous to software or protocols that allow users to

“share” files (music, software, books, movies, etc.).

pp file sharing is very popular and a large fraction

of the total Internet traffic is due to pp.

● In academia, the term pp is used mostly in two

ways. A narrow view essentially defines pp as

the “theory behind file-sharing protocols.” In other

words, how do Internet hosts need to be organized

in order to deliver a search engine to find (share)

content (files) efficiently? A popular term is “dis-

tributed hash table” (DHT), a distributed data struc-

ture that implements such a content search engine.

A DHT should support at least a search (for a

key) and an insert(key, object) operation. A DHT

has many applications beyond file sharing, e.g., the

Internet domain name system (DNS).

● A broader view generalizes pp beyond file shar-

ing: Indeed, there is a growing number of applica-

tions operating outside the juridical gray area, e.g.,

pp Internet telephony à la Skype, pp mass player

games, pp live audio&video streaming as in PPLive,

StreamForge or Zattoo, or pp social storage and

cloud computing systems such as Wuala. Trying to

account for the new applications beyond file shar- 

ing, onemight define pp as a large-scale distributed 

system that operates without a central server bottle- 

neck. However, with this definition almost “every- 

thing decentralized” is pp! 

● From a different viewpoint, the term pp may also 

be synonymous for privacy protection, as various 

pp systems such as Freenet allow publishers of 

information to remain anonymous and uncensored. 

In other words, there is no single well-fitting defini- 

tion of pp, as some definitions in use today are even 

contradictory. In the following, an academic viewpoint 

is assumed (second and third definition above). 

Discussion 

The Paradigm 

At the heart of pp computing lies the idea that each 

network participant serves both as a producer (“server”) 

and consumer (“client”) of services. Depending on the 

application, the shared resources can be data (files), 

CPU power, disk storage, or network bandwidth. Often 

pp systems have an open clientele, and do not rely on 

the availability of specific individual machines; rather 

they candeal with dynamic resources and do not exhibit 

single points of failure or bottlenecks. 

Compared to centralized solutions, the pp paradigm 

features a better scalability because the amount of 

resources grows with the network size, availability 

(avoiding a single point of failure), reliability, fair- 

ness, cooperation incentives, privacy, and security – 

just about everything researchers expect from a future 

Internet architecture. As such, it is not surprising that 

new “clean slate” Internet architecture proposals often 

revolve around pp concepts. 

Onemight naively assume that for instance scalabil- 

ity is not an issue in today’s Internet, as even most pop- 

ular web pages are generally highly available. However, 

this is not necessarily due to our well-designed Internet 
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architecture, but rather due to the help of so-called over-

lay networks: The Google Web site for instance man-

ages to respond so reliably and quickly because Google

maintains a large distributed infrastructure, essentially

a pp system. Similarly, companies likeAkamai sell “pp

functionality” to their customers to make today’s user

experience possible in the first place. Quite possibly

today’s pp applications are just testbeds for tomorrow’s

Internet architecture.

Implications

pp networks are often highly dynamic in nature.While

traditional computer systems are typically based on

fixed infrastructures and are under a single adminis-

trative domain (e.g., owned and maintained by a single

company or corporation), the participating machines in

pp networks are under the control of individual (and

to some extent: anonymous) users who can join and

leave at any time and concurrently. In pp parlor, such

membership changes are called churn.

A second implication of the autonomy of the

machines in pp networks is that the network consists

of different stakeholders. Users can have various reasons

for joining the network. For instance, an (anonymous)

user may not voluntarily contribute his or her band-

width, disk space, or CPU cycles to the system, but

prefer to free ride. This adds a socioeconomic aspect

to pp computing. As the pp paradigm relies on the

contributions of the participating machines, effective

incentive mechanisms have to be designed, which foster

cooperation and punish free riders.

Another source of inequality in pp systems apart

from selfishness is heterogeneity: Due to the openmem-

bership, different machines run different operating sys-

tems, have different Internet connections, and so on.

Applications

The best-known representatives of pp technology are

probably the numerous file-sharing applications such as

Napster, Gnutella, KaZaA, eMule, or BitTorrent. Also,

the Internet telephony tool Skype is very popular and

used by millions everyday. Zattoo, PPLive, and Stream-

Forge, amongmany others, use pp principles to stream

video or audio content. The cloud computing service

Wuala offers free online storage by exploiting the par-

ticipants’ disks and Internet connections to improve

performance. Recently, the power and anonymity of 

decentralized Internet working has gained the atten- 

tion of operators of botnets in order to attack cer- 

tain infrastructure components by a denial-of-service 

attack. Finally, pp technology is used for large-scale 

computer games. 

Architecture Variants 

Several pp architectures are known: 

● Client/Server goes pp: Even though Napster is 

known to the be first pp system (), by today’s 

standards its architecture would not deserve the 

label pp anymore. Napster clients accessed a cen- 

tral server that managed all the information of the 

shared files, i.e., which file was to be found on 

which client. Only the downloading process itself 

was between clients (“peers”) directly, hence pp. 

In the early days of Napster the load of the server 

was relatively small, so the simple Napster architec- 

ture was sufficient. Over time, it turned out that the 

server may become a bottleneck – and an attractive 

target for an attack. Indeed, eventually a judge ruled 

the server to be shut down (a “juridical denial of ser- 

vice attack”). However, it remains to note that many 

popular PP networks today still include centralized 

components, e.g., KaZaA or the eDonkey network 

accessed by the eMule client. Also, the peer swarms 

downloading the same file in the BitTorrent network 

are organized by a so-called tracker whose function- 

ality today is still centralized (although initiatives 

exist to build distributed trackers). 

● Unstructured pp: The Gnutella protocol is the 

antithesis of Napster, as it is a fully decentralized sys- 

tem, with no single entity having a global picture. 

Instead each peer connects to a random sample of 

other peers, constantly changing the neighbors of 

this virtual overlay network by exchanging neigh- 

bors with neighbors of neighbors. (Any unstruc- 

tured system also needs to solve the so-called 

bootstrap problem, namely how to discover a first 

neighbor in a decentralizedmanner. A popular solu- 

tion is the use of well-known peer lists.) The fact 

that users often turn off their clients once they 

downloaded their content implies high levels of 

churn (peers joining and leaving at high rates), and 

hence selecting the right “random” neighbors is an 
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interesting research problem. The Achilles’ heal of

unstructured pp architectures such as Gnutella is

the cost of searching. A search request is typically

flooded in the network and each search operation

will costmmessages,m being the number of virtual

edges in the architecture. In other words, such an

unstructured pp architecture will not scale. Indeed,

when Napster was unplugged, Gnutella broke down

as well soon afterward due to the inrush of former

Napster users.

● Hybrid pp: The synthesis of client/server archi-

tectures such as Napster and unstructured archi-

tectures such as Gnutella are hybrid architectures.

Some powerful peers are promoted to so-called

superpeers (or, similarly, trackers). The set of super-

peers may change over time, and taking down

a fraction of superpeers will not harm the sys-

tem. Search requests are handled on the superpeer

level, resulting in much less messages than in flat/

homogeneous unstructured systems. Essentially, the

superpeers together provide a more fault-tolerant

version of the Napster server, as all regular peers

connect to a superpeer. As of today, almost all pop-

ular pp systems have such a hybrid architecture,

carefully trading off reliability and efficiency.

● Structured pp: Inspired by the early success of

Napster, the academic world started to look into

the question of efficient file sharing. Indeed, even

earlier, in , Plaxton et al. [] proposed a

hypercubic architecture for pp systems. This was a

blueprint for many so-called structured pp archi-

tecture proposals, such as Chord [], CAN [],

Pastry [], Tapestry [], Viceroy [], Kadem-

lia [], Koorde [], SkipGraph [], and Skip-

Net []. Maybe surprisingly, in practice, structured

pp architectures did not take off yet, apart fromcer-

tain exceptions such as the Kad architecture (from

Kademlia []), which is accessible with the eMule

client.

Scientific Origins

The scientific foundations of pp computing were laid

many years before the most simple “real” pp systems

like Napster emerged. As already mentioned, in ,

a blueprint for structured systems has been proposed

in []. Indeed, also the [] paper was standing on the

shoulders of giants. Some of its eminent precursors are 

the following: 

● Research on linear and consistent hashing, e.g., []. 

● Research on locating shared objects, e.g., [] or []. 

● Research on so-called compact routing: The idea is 

to construct routing tables such that there is a trade- 

off between memory (size of routing tables) and 

stretch (quality of routes), e.g., [] or []. 

● … and even earlier: hypercubic networks, see 

below! 

Hypercubic Overlays and Consistent 

Hashing 

Every application run on multiple machines needs a 

mechanism that allows the machines to exchange infor- 

mation. A naive solution is to store at each machine the 

domain name or IP address of every other machine. 

While this may work well for a small number of 

machines, large-scale distributed applications such as 

file sharing, grid computing, cloud computing, or data 

center networking systems need a different, more scal- 

able approach: instead of forming a clique (where every- 

body knows everybody else), each machine should 

only be required to know some small subset of other 

machines. This graph of knowledge can be seen as a 

logical network interconnecting the machines; it is also 

known as an overlay network. A prerequisite for an over- 

lay network to be useful is that it has good topological 

properties. Among the most important are small peer 

degree, small network diameter, robustness to churn, or 

absence of congestion bottlenecks. 

The most basic network topologies used in practice 

are trees, rings, grids, or tori. Many other suggested net- 

works are simply combinations or derivatives of these. 

The advantage of trees is that the routing is very easy: for 

every source-destination pair there is only one possible 

path. However, the root of a tree can be a severe bottle- 

neck. An exception is a pp streaming systemwhere the 

single content provider forms the network root. How- 

ever, trees are also highly vulnerable, e.g., with respect 

to membership changes. 

Essentially all state-of-the-art pp networks today 

have some kind of hypercubic topology (e.g., Chord, 

Pastry, Kademlia). Hypercube graphs have many inter- 

esting properties, e.g., they allow for efficient routing: 

although each peer only needs to store a logarithmic 
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Peer-to-Peer. Fig.  A simplified pp topology: a

three-dimensional hypercube. Each peer has a three-bit

identifier. For example, peer  is connected to the three

peers , ,  whose identifiers differ at exactly one

position. In order to route a message from peer  to say

peer , one bit is fixed after the other. One possible

routing path is depicted in the figure: → → →

. An alternative path could be → → → 

number of other peers in the system (the peers’ neigh-

bors), by a simple routing scheme, a peer can reach each

other peer in a logarithmic number of steps (or “hops”).

In a nutshell, this is achieved by assigning each peer a

unique d-bit identifier. A peer is connected to all d peers

that differ from its identifier at exactly one bit position.

In the resulting hypercube network, routing is done by

adjusting the bits in which the source and the destina-

tion peers differ – one at a time (at most dmany). Thus,

if the source and the destination differ by k bits, there

are k! routes with k hops. Figure  gives an example.

Given a hypercubic topology, it is then simple to

construct a distributed hash table (DHT): Assume there

are n = d peers that are connected in a hypercube

topology as described above. Now a globally known

hash function f is used, mapping file names to long

bit strings. Let fd denote the first d bits (prefix) of

the bitstring produced by f . If a peer is searching for

file name X, it routes a request message f (X) to peer

fd(X). Clearly, peer fd(X) can only answer this request

if all files with hash prefix fd(X) have been previously

registered at peer fd(X).

There are some additional issues to be addressed

in order to design a DHT from a hypercubic topol-

ogy, in particular how to allow peers to join and leave

without notice. To deal with churn the system needs

some level of replication, i.e., a number of peers, which

are responsible for each prefix such that failure of some

peerswill not compromise the system. In addition, there 

are security and efficiency issues that can be addressed 

to improve the system. 

There are many hypercubic networks that are 

derived from the hypercube: among these are the but- 

terfly, the cube-connected-cycles, the shuffle-exchange, 

and the de Bruijn graph. For example, the butter- 

fly graph is basically a “rolled out” hypercube (hence 

directly providing replication!) of constant degree. 

Another important class of hypercubic topologies are 

skip graphs [, ]. 

A simple, interesting way to design dynamic pp 

systems is the continuous–discrete approach described 

by Naor and Wieder []. This approach is based on a 

“think continuously, act discretely” strategy, and can be 

used to design a variety of hypercubic topologies. The 

continuous–discrete approach gives a unified method 

for performing join/leave operations and for dealing 

with the scalability issue, thus separating it from the 

actual network. The idea is as follows: Let I be a 

Euclidean space, e.g., a (cyclic) one-dimensional space. 

Let Gc be a graph where the vertex set is the continu- 

ous set I. Each point in I is connected to some other 

points. The actual network then is a discretization of 

this continuous graph based on a dynamic decompo- 

sition of the underlying space I into cells where each 

“server” is responsible for a cell. Two cells are connected 

if they contain adjacent points in the continuous graph. 

Clearly, the partition of the space into cells should be 

maintained in a distributed manner. When a join oper- 

ation is performed, an existing cell splits, when a leave 

operation is performed two cells are merged into one. 

The task of designing a dynamic and scalable network 

follows these design rules: () Choose a proper con- 

tinuous graph Gc over the continuous space I. Design 

the algorithms in the continuous setting, which is often 

simpler (also in terms of analysis) than in the discrete 

case. () Find an efficient way to discretize the con- 

tinuous graph in a distributed manner, such that the 

algorithms designed for the continuous graph would 

perform well in the discrete graph. The discretization is 

done via a decomposition of I into the cells. If the cells 

that compose I are allowed to overlap, then the resulting 

graph would be fault tolerant. 

To give an example, in order to build a dynamic de 

Bruijn network (a so-called Distance Halving DHT), a 

peer at position x ∈ [, ) (in binary form bb... such 
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Peer-to-Peer. Fig.  The continuous–discrete approach

for the dynamic de Bruijn graph. Peers are indicated using

circles, files using rectangles. In the continuous setting, the

peer at position xi = . (in binary notation) is

connected to positions xi/ and ( + xi)/. In the discrete

setting, it is responsible for the cell (i.e., the connections

and files that are mapped there) between positions

xi and xi+

that x = ∑∞i= −bi ) connects to positions l(x) := x/ ∈

[, ) and r(x) := ( + x)/ ∈ [, ) in Gc (out-degree

two per peer). Observe that if position x is written in

binary form, then l(x) effectively shifts in a “” from the

left and r(x) shifts in a “” from the left. Thus, routing

is straightforward: based solely on the current position

and the destination (without the overhead of maintain-

ing routing tables), a message can be forwarded by a

peer by fixing one bit per hop. The set of peers in the

cyclic [, ) space then define the pp network: Let xi

denote the position of the ith peer (ordered in increas-

ing order with respect to position). Peer i is responsible

for the cell [xi , xi+), computed in a modulo manner,

i.e., this peer is responsible to store the data mapped to

this cell plus for the establishment of the corresponding

connections defined in Gc. Figure  gives an example.

Dealing with Churn

A distinguishing property of pp systems are the fre-

quent membership changes. Measuring the churn lev-

els of existing pp systems is challenging and one has

to be careful when generalizing a given measurement

to entire application classes (e.g., []). Nevertheless,

several insightful measurement studies have been con-

ducted. For instance, [, ] reported on the dynamic

nature of early pp networks such as Napster and 

Gnutella, and [] analyzed low-level data of a large 

Internet Service Provider (ISP) to estimate churn. Also 

the Kad DHT has been subject to measurement studies, 

and the reader is referred to the results in [] and []. 

It is widely believed that hypercubic structures are a 

good basis for churn-resilient pp systems. As written 

earlier, a DHT is essentially a hypercubic structure with 

peers having identifiers such that they span the ID space 

of the objects to be stored. A simple approach tomap the 

ID space onto the peers has already been described for 

the hypercube. To give another example, in the butterfly 

network, we may use its layers for replication, i.e., all 

peers with the same ID redundantly store the data of the 

same hash prefix. Other hypercubic DHTs can be more 

difficult to design, e.g., networks based on the pancake 

graph []. 

For many well-known systems, theoretic analyses 

exist showing that the networks remain well-structured 

after some joins, leaves, or failures occur. In order to 

evaluate the robustness formally, metrics such as the 

network expansion (for deterministic failures) or the 

span [] (for randomized failures) are used. Unfortu- 

nately, the span is difficult to compute, and the span 

value is known only for the most simple topologies. 

The continuous–discrete approach [] already 

mentioned constitutes the basis of several dynamic sys- 

tems. For example, the SHELL system [] is robust 

to certain attacks by connecting older or more reliable 

peers in a core network where access can be controlled; 

SHELL also allows to organize heterogeneous peers in 

an efficient topology. 

Many systems proposed in the literature offer a 

high robustness in the average case, i.e., they provide 

probabilistic guarantees that hold with high probabil- 

ity. Robustness under attacks or worst-case dynamics 

is less well understood. In [], a system is developed 

that achieves an optimal worst-case robustness in the 

sense that there is no alternative system that can toler- 

ate higher churn rates without disconnecting. The basic 

idea is to simulate a hypercube: each peer is part of a dis- 

tinct hypercube node; each hypercube node consists of a 

logarithmic number of peers. Peers have connections to 

other peers of their hypercube node and to peers of the 

neighboring hypercube nodes. After a number of joins 

and leaves, some peers may have to change to another 

hypercube node such that up to constant factors, all 
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hypercube nodes have the same cardinality at all times.

If the total number of peers grows or shrinks above or

below a certain threshold, the dimension of the hyper-

cube is increased or decreased by one, respectively. The

balancing of peers among the nodes can be seen as a

dynamic token distribution problem on the hypercube:

Each node of a graph (hypercube) has a certain number

of tokens, and the goal is to distribute the tokens along

the edges of the graph such that all nodes end up with

the same or almost the same number of tokens. Thus,

the system builds on two basic components: () an algo-

rithm, which performs the described dynamic token

distribution and () an information aggregation algo-

rithm, which is used to estimate the number of peers

in the system and to adapt the hypercube’s dimension

accordingly. These techniques also work for alternative

graphs, like pancake graphs [].

An appealing notion of robustness is topological self-

stabilization: A pp topology is called self-stabilizing

if it is guaranteed that from any weakly connected

initial state (e.g., after an attack), it will quickly con-

verge to a desirable network in the absence of fur-

ther membership changes. In contrast to the worst-case

churn considered in [], self-stabilization focuses on

the convergence time in periods without membership

changes, but allows for general initial system states.

While until recently, self-stabilizing algorithms with

guaranteed runtime have only been known for sim-

ple one-dimensional or two-dimensional linearization

problems [], recently a construction for a variation of

skip graphs, namely SKIP+ graphs [], has been pro-

posed. Single joins and leaves in SKIP+ can be handled

locally, and require logarithmic time and polylogarith-

mic work only. However, there remains the important

open question of how to provide degree guarantees

during convergence from arbitrary states.

Fostering Cooperation

The appeal of pp computing arises from the collab-

oration of the system’s constituent parts, the peers.

If all the participating peers contribute some of their

resources, highly scalable decentralized systems can

be built. However, in reality, peers may act selfishly

and strive for maximizing their own utility by ben-

efitting from the system without contributing much

themselves []. Hence, the performance of a pp sys- 

tem crucially depends on its capability of dealing with 

selfishness. 

Already in , Adar and Huberman [] noticed 

that there exists a large fraction of free riders in the 

file-sharing network Gnutella. The problem of selfish 

behavior in pp systems has been a hot topic in pp 

research ever since, and many mechanisms to encour- 

age cooperation have been proposed []. Perhaps the 

simplest fairness mechanism is to directly incorporate 

contribution monitoring into the client software. For 

instance, in the file-sharing system KaZaA, the client 

records the contribution of its user. However, such a 

solution can simply be bypassed by implementing a dif- 

ferent client that hard-wires the contribution level to the 

maximum, as it was the case with KaZaA Lite. Inspired 

by real economies, some researchers have also proposed 

the introduction of some form of virtual money, which 

is used for the transactions. 

BitTorrent has incorporated a fairness mechanism 

from the beginning and has hence been subject to 

intensive research (e.g., [, , ]). Although this 

mechanism has similarities to the well-known tit-for- 

tat scheme, the strategy employed in BitTorrent dis- 

tinguishes itself from the classic mechanism in many 

respects. For instance, it is possible for peers to obtain 

parts of a file “for free,” i.e., without reciprocating. 

While this may be a useful property for bootstrapping 

newly joined peers, it has been shown that the Bit- 

Torrent mechanism can be exploited: the BitThief Bit- 

Torrent client [] allows to download entire files fast 

without uploading any data. It has also been demon- 

strated in [] that sharing communities are particularly 

vulnerable to such exploits. BitThief is not the only 

client cheating BitTorrent. Piatek et al. [] presented 

BitTyrant. BitTyrant’s strategy is to exploit the BitTor- 

rent protocol in order to maximize download rates. 

For instance, BitTyrant uses a smart neighbor selection 

strategy and connects to those peers with the best recip- 

rocation ratios. In contrast to BitThief, BitTyrant does 

not free ride. BitTyrant seeks to provide the minimal 

necessary contribution, and also increases the active 

neighbor set if this is beneficial to the download rate. 

The authors claim that their client provides a median 

% performance gain in certain environments. 

There can be many other forms of strategic behav- 

ior in open distributed systems. One subject that 
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has recently gained attention, especially by the game-

theoretic research community, is neighbor selection in

unstructured pp networks (e.g., []). There may be

several reasons for a peer to prefer connecting to some

peers rather than others. For instance, a peer may want

to connect to peers with high bandwidths, peers storing

many interesting files, or peers having large degrees and

hence provide quick access to many other peers. At the

same time, a selfish peer itself may not be eager to store

and maintain too many neighbors itself.

Current Trends and Outlook

One can argue that today, pp computing is already

a relatively mature (research) field; nevertheless, there

are still many active discussions and developments, also

in the context of the future Internet design. Moreover,

there exists a discrepancy between the technology of the

systems in use and what is actually known in theory.

For example, the Kad network is still vulnerable to quite

simple attacks [].

If employed by the wrong people, the flexibility and

robustness of pp technology also constitutes a threat.

Denial-of-service attacks are arguably one of the most

cumbersome problems in today’s Internet, and it is

appealing to coordinate botnets in a pp fashion. A

DHT can be used by the bots, e.g., to download new

instructions. For instance, it was estimated that in ,

the DHT-based Storm botnet [] ran on several million

computers. Apart frommechanisms to detect or prevent

attacks even before they take place, a smart redundancy

management may improve availability during the attack

itself (see, e.g., the Chameleon system []).

In terms of cooperation, there is a tension between

the goal of providing incentive compatible mechanisms

that exclude free riders and the goal of designing het-

erogeneous pp systems that also tolerate (and make

use of!) weak participants. Moreover, in addition to

design mechanisms dealing with pure selfishness, there

is a trend toward pp systems that are also resilient to

malicious behavior (see, e.g., [] or []).

Another active discussion regards the interface

between pp systems and ISPs. The large amount of

pp traffic raises the question of how ISPs should deal

with pp, e.g., by caching contents. pp networks often

employ inefficient overlay-to-ISP mappings as the logi-

cal overlay network is typically not aware of the underly-

ing “real” networks and constraints, andmuch overhead

can be avoided by improving the interface between pp 

networks and ISPs, e.g., by an oracle []. For a criti- 

cal point of view on the subject, the reader is referred 

to []. 

It seems that while a few years ago the lion’s share 

of Internet traffic was due to pp, the proportion seems 

to be declining [] now. Especially web services and 

server-based solutions such as the popular YouTube and 

RapidShare are catching up. The measured data traces 

should be interpreted with care however, as they do not 

take into account what happens behind the scenes of 

big corporations. Indeed, it is believed that there is a 

paradigm shift in pp computing: While pp retreats 

(relatively to other applications) from public Internet 

traffic, today pp technology plays a crucial role in the 

coordination andmanagement of large data centers and 

server farms of corporations such as Akamai or Google. 
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Bibliographic Notes and Further 

Reading 

Beyond the specific literature pointed to directly in 

the text, there are several recommendable introductory 

books on pp computing. In particular, the reader is 

referred to the classic books [, , ] and two more 

recent issues [, ]. The theoretically more inclined 

reader may also be interested in [], which provides an 

overview of compact routing solutions, and [] which 

discusses trade-offs in local algorithms that achieve 

global goals based on local information only and with- 

out centralized entities whatsoever. Regarding the chal- 

lenges of distributed cooperation, the recent book [] 

gives a thorough and up-to-date survey of current 
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(game-theoretic) trends, and also includes a chapter on

pp specific questions.
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