1

o N wn

10
11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Encyclopedia of Parallel Computing Chapter No: 00278 Page Proof Page 1 11-11-2010 #2

Peer-to-Peer

STEFAN SCHMID', ROGER WATTENHOFER®
"Telekom Laboratories/TU Berlin, Berlin, Germany
2ETH Ziirich, Zurich, Switzerland

Synonyms

Distributed hash table (DHT); Overlay network;
Decentralization; Open distributed systems; Consistent
hashing

Definition
The term peer-to-peer (p2p) is ambiguous, and is used
in a variety of different contexts, such as:

e In popular media coverage, p2p is often synony-
mous to software or protocols that allow users to
“share” files (music, software, books, movies, etc.).
p2p file sharing is very popular and a large fraction
of the total Internet traffic is due to p2p.

e In academia, the term p2p is used mostly in two
ways. A narrow view essentially defines p2p as
the “theory behind file-sharing protocols.” In other
words, how do Internet hosts need to be organized
in order to deliver a search engine to find (share)
content (files) efficiently? A popular term is “dis-
tributed hash table” (DHT), a distributed data struc-
ture that implements such a content search engine.
A DHT should support at least a search (for a
key) and an insert(key, object) operation. A DHT
has many applications beyond file sharing, e.g., the
Internet domain name system (DNS).

e A broader view generalizes p2p beyond file shar-
ing: Indeed, there is a growing number of applica-
tions operating outside the juridical gray area, e.g.,
p2p Internet telephony a la Skype, p2p mass player
games, p2p live audio&video streaming as in PPLive,
StreamForge or Zattoo, or p2p social storage and
cloud computing systems such as Wuala. Trying to

account for the new applications beyond file shar-
ing, one might define p2p as a large-scale distributed
system that operates without a central server bottle-
neck. However, with this definition almost “every-
thing decentralized” is p2p!

e From a different viewpoint, the term p2p may also
be synonymous for privacy protection, as various
p2p systems such as Freenet allow publishers of
information to remain anonymous and uncensored.

In other words, there is no single well-fitting defini-
tion of p2p, as some definitions in use today are even
contradictory. In the following, an academic viewpoint
is assumed (second and third definition above).

Discussion

The Paradigm

At the heart of p2p computing lies the idea that each
network participant serves both as a producer (“server”)
and consumer (“client”) of services. Depending on the
application, the shared resources can be data (files),
CPU power, disk storage, or network bandwidth. Often
P2p systems have an open clientele, and do not rely on
the availability of specific individual machines; rather
they can deal with dynamic resources and do not exhibit
single points of failure or bottlenecks.

Compared to centralized solutions, the p2p paradigm
features a better scalability because the amount of
resources grows with the network size, availability
(avoiding a single point of failure), reliability, fair-
ness, cooperation incentives, privacy, and security -
just about everything researchers expect from a future
Internet architecture. As such, it is not surprising that
new “clean slate” Internet architecture proposals often
revolve around p2p concepts.

One might naively assume that for instance scalabil-
ity is not an issue in today’s Internet, as even most pop-
ular web pages are generally highly available. However,
this is not necessarily due to our well-designed Internet

David Padua (ed.), Encyclopedia of Parallel Computing, DOI 10.1007/978-0-387-09766-4,

© Springer Science+Business Media LLC 2011

36
37
38
39
40
41
42
43
44

45
46
47
48

49

50
51
52
53
54
55
56
57
58
59

61
62
63
64
65
66
67
68
69
70
71
72



73
74
75
76
77
78
79
80
81

82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

107
108
109
110
m
112
113
114
115
116

Encyclopedia of Parallel Computing Chapter No: 00278 Page Proof Page 2 11-11-2010 #3

Peer-to-Peer

architecture, but rather due to the help of so-called over-
lay networks: The Google Web site for instance man-
ages to respond so reliably and quickly because Google
maintains a large distributed infrastructure, essentially
a p2p system. Similarly, companies like Akamai sell “p2p
functionality” to their customers to make today’s user
experience possible in the first place. Quite possibly
today’s p2p applications are just testbeds for tomorrow’s
Internet architecture.

Implications

p2p networks are often highly dynamic in nature. While
traditional computer systems are typically based on
fixed infrastructures and are under a single adminis-
trative domain (e.g., owned and maintained by a single
company or corporation), the participating machines in
p2p networks are under the control of individual (and
to some extent: anonymous) users who can join and
leave at any time and concurrently. In p2p parlor, such
membership changes are called churn.

A second implication of the autonomy of the
machines in p2p networks is that the network consists
of different stakeholders. Users can have various reasons
for joining the network. For instance, an (anonymous)
user may not voluntarily contribute his or her band-
width, disk space, or CPU cycles to the system, but
prefer to free ride. This adds a socioeconomic aspect
to p2p computing. As the p2p paradigm relies on the
contributions of the participating machines, effective
incentive mechanisms have to be designed, which foster
cooperation and punish free riders.

Another source of inequality in p2p systems apart
from selfishness is heterogeneity: Due to the open mem-
bership, different machines run different operating sys-
tems, have different Internet connections, and so on.

Applications

The best-known representatives of p2p technology are
probably the numerous file-sharing applications such as
Napster, Gnutella, KaZaA, eMule, or BitTorrent. Also,
the Internet telephony tool Skype is very popular and
used by millions everyday. Zattoo, PPLive, and Stream-
Forge, among many others, use p2p principles to stream
video or audio content. The cloud computing service
Wauala offers free online storage by exploiting the par-
ticipants’ disks and Internet connections to improve

performance. Recently, the power and anonymity of
decentralized Internet working has gained the atten-
tion of operators of botnets in order to attack cer-
tain infrastructure components by a denial-of-service
attack. Finally, p2p technology is used for large-scale
computer games.

Architecture Variants
Several p2p architectures are known:

e Client/Server goes p2p: Even though Napster is
known to the be first p2p system (1999), by today’s
standards 'its architecture would not deserve the
label p2p anymore. Napster clients accessed a cen-
tral'server that managed all the information of the
shared files, i.e., which file was to be found on
which client. Only the downloading process itself
was between clients (“peers”) directly, hence p2p.
In the early days of Napster the load of the server
was relatively small, so the simple Napster architec-
ture was sufficient. Over time, it turned out that the
server may become a bottleneck - and an attractive
target for an attack. Indeed, eventually a judge ruled
the server to be shut down (a “juridical denial of ser-
vice attack”). However, it remains to note that many
popular P2P networks today still include centralized
components, e.g., KaZaA or the eDonkey network
accessed by the eMule client. Also, the peer swarms
downloading the same file in the BitTorrent network
are organized by a so-called tracker whose function-
ality today is still centralized (although initiatives
exist to build distributed trackers).

e Unstructured p2p: The Gnutella protocol is the
antithesis of Napster, as it is a fully decentralized sys-
tem, with no single entity having a global picture.
Instead each peer connects to a random sample of
other peers, constantly changing the neighbors of
this virtual overlay network by exchanging neigh-
bors with neighbors of neighbors. (Any unstruc-
tured system also needs to solve the so-called
bootstrap problem, namely how to discover a first
neighbor in a decentralized manner. A popular solu-
tion is the use of well-known peer lists.) The fact
that users often turn off their clients once they
downloaded their content implies high levels of
churn (peers joining and leaving at high rates), and
hence selecting the right “random” neighbors is an

17
118
119

121
122

123
124

125
126
127
128
129
130
131
132
133
134
135
136
137
138

140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

Encyclopedia of Parallel Computing Chapter No: 00278 Page Proof Page 3 11-11-2010 #4

interesting research problem. The Achilles’ heal of
unstructured p2p architectures such as Gnutella is
the cost of searching. A search request is typically
flooded in the network and each search operation
will cost m messages, m being the number of virtual
edges in the architecture. In other words, such an
unstructured p2p architecture will not scale. Indeed,
when Napster was unplugged, Gnutella broke down
as well soon afterward due to the inrush of former
Napster users.

Hybrid p2p: The synthesis of client/server archi-
tectures such as Napster and unstructured archi-
tectures such as Gnutella are hybrid architectures.
Some powerful peers are promoted to so-called
superpeers (or, similarly, trackers). The set of super-
peers may change over time, and taking down
a fraction of superpeers will not harm the sys-
tem. Search requests are handled on the superpeer
level, resulting in much less messages than in flat/
homogeneous unstructured systems. Essentially, the
superpeers together provide a more fault-tolerant
version of the Napster server, as all regular peers
connect to a superpeer. As of today, almost all pop-
ular p2p systems have such a hybrid architecture,
carefully trading off reliability and efficiency.
Structured p2p: Inspired by the early success of
Napster, the academic world started to look into
the question of efficient file sharing. Indeed, even
earlier, in 1997« Plaxton et al. [34] proposed a
hypercubic architecture for p2p systems. This was a
blueprint for many so-called structured p2p archi-
tecture proposals, such as Chord [46], CAN [36],
Pastry [37], Tapestry [50], Viceroy [26], Kadem-
lia [27], Koorde [15], SkipGraph [3], and Skip-
Net [11]. Maybe surprisingly, in practice, structured
p2p architectures did not take off yet, apart from cer-
tain exceptions such as the Kad architecture (from
Kademlia [27]), which is accessible with the eMule
client.

201 Scientific Origins

202 The scientific foundations of p2p computing were laid
203 many years before the most simple “real” p2p systems
204 like Napster emerged. As already mentioned, in 1997,
205 a blueprint for structured systems has been proposed
206 in [34]. Indeed, also the [34] paper was standing on the

Peer-to-Peer

shoulders of giants. Some of its eminent precursors are
the following:

e Research on linear and consistent hashing, e.g., [16].

e Research on locating shared objects, e.g., [4] or [5].

e Research on so-called compact routing: The idea is
to construct routing tables such that there is a trade-
off between memory (size of routing tables) and
stretch (quality of routes), e.g., [31] or [49].

e ... and even earlier: hypercubic networks, see
below!

Hypercubic @verlays and Consistent
Hashing

Every application run on multiple machines needs a
mechanism that allows the machines to exchange infor-
mation. A naive solution is to store at each machine the
domain name or IP address of every other machine.
While this may work well for a small number of
machines, large-scale distributed applications such as
file sharing, grid computing, cloud computing, or data
center networking systems need a different, more scal-
able approach: instead of forming a clique (where every-
body knows everybody else), each machine should
only be required to know some small subset of other
machines. This graph of knowledge can be seen as a
logical network interconnecting the machines; it is also
known as an overlay network. A prerequisite for an over-
lay network to be useful is that it has good topological
properties. Among the most important are small peer
degree, small network diameter, robustness to churn, or
absence of congestion bottlenecks.

The most basic network topologies used in practice
are trees, rings, grids, or tori. Many other suggested net-
works are simply combinations or derivatives of these.
The advantage of trees is that the routing is very easy: for
every source-destination pair there is only one possible
path. However, the root of a tree can be a severe bottle-
neck. An exception is a p2p streaming system where the
single content provider forms the network root. How-
ever, trees are also highly vulnerable, e.g., with respect
to membership changes.

Essentially all state-of-the-art p2p networks today
have some kind of hypercubic topology (e.g., Chord,
Pastry, Kademlia). Hypercube graphs have many inter-
esting properties, e.g., they allow for efficient routing:
although each peer only needs to store a logarithmic

207
208

209
210
211
212
213
214
215
216

217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251



252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279

Encyclopedia of Parallel Computing Chapter No: 00278 Page Proof Page 4 11-11-2010 #5

Peer-to-Peer

100

000

Peer-to-Peer.Fig.1 A simplified p2p topology:a
three-dimensional hypercube. Each peer has a three-bit
identifier. For example, peer 110 is connected to the three
peers 010, 100, 111 whose identifiers differ at exactly one
position. In order to route a message from peer 110 to say
peer 001, one bit is fixed after the other. One possible
routing path is depicted in the figure: 110 — 010 — 000 —
001. An alternative path could be 110 — 111 — 101 — 001

number of other peers in the system (the peers neigh-
bors), by a simple routing scheme, a peer can reach each
other peer in a logarithmic number of steps (or “hops”).
In a nutshell, this is achieved by assigning each peer a
unique d-bit identifier. A peer is connected to all d peers
that differ from its identifier at exactly one bit position.
In the resulting hypercube network, routing is done by
adjusting the bits in which the source and the destina-
tion peers differ — one at a time (at most d many). Thus,
if the source and the destination differ by k bits, there
are k! routes with k hops. Figure 1 gives an example.

Given a hypercubic topology, it is then simple to
construct a distributed hash table (DHT): Assume there
2% peers that are connected in a hypercube
topology as described above. Now a globally known
hash function f is used, mapping file names to long
bit strings. Let f; denote the first d bits (prefix) of
the bitstring produced by f. If a peer is searching for
file name X, it routes a request message f(X) to peer
fa(X). Clearly, peer f;(X) can only answer this request
if all files with hash prefix f;(X) have been previously
registered at peer f3(X).

There are some additional issues to be addressed
in order to design a DHT from a hypercubic topol-
ogy, in particular how to allow peers to join and leave
without notice. To deal with churn the system needs
some level of replication, i.e., a number of peers, which
are responsible for each prefix such that failure of some

are n =

peers will not compromise the system. In addition, there
are security and efficiency issues that can be addressed
to improve the system.

There are many hypercubic networks that are
derived from the hypercube: among these are the but-
terfly, the cube-connected-cycles, the shuffle-exchange,
and the de Bruijn graph. For example, the butter-
fly graph is basically a “rolled out” hypercube (hence
directly providing replication!) of constant degree.
Another important class of hypercubic topologies are
skip graphs [3, 11].

A simple, interesting way to design dynamic p2p
systems is the continuous-discrete approach described
by Naor and Wieder [29]. This approach is based on a
“think continuously, act discretely” strategy, and can be
used to design a variety of hypercubic topologies. The
continuous-discrete approach gives a unified method
for performing join/leave operations and for dealing
with the scalability issue, thus separating it from the
actual network. The idea is as follows: Let I be a
Euclidean space, e.g., a (cyclic) one-dimensional space.
Let G. be a graph where the vertex set is the continu-
ous set I. Each point in I is connected to some other
points. The actual network then is a discretization of
this continuous graph based on a dynamic decompo-
sition of the underlying space I into cells where each
“server” is responsible for a cell. Two cells are connected
if they contain adjacent points in the continuous graph.
Clearly, the partition of the space into cells should be
maintained in a distributed manner. When a join oper-
ation is performed, an existing cell splits, when a leave
operation is performed two cells are merged into one.
The task of designing a dynamic and scalable network
follows these design rules: (1) Choose a proper con-
tinuous graph G, over the continuous space I. Design
the algorithms in the continuous setting, which is often
simpler (also in terms of analysis) than in the discrete
case. (2) Find an efficient way to discretize the con-
tinuous graph in a distributed manner, such that the
algorithms designed for the continuous graph would
perform well in the discrete graph. The discretization is
done via a decomposition of I into the cells. If the cells
that compose I are allowed to overlap, then the resulting
graph would be fault tolerant.

To give an example, in order to build a dynamic de
Bruijn network (a so-called Distance Halving DHT), a
peer at position x € [0,1) (in binary form b;b,... such

280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310

31
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326



327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342

343
344
345
346
347
348
349
350

Encyclopedia of Parallel Computing Chapter No: 00278 Page Proof Page 5 11-11-2010 #6

o0ot1101

101101
011010

V\\\ I
[@IN

% s Xis1
Peer-to-Peer.Fig.2 The continuous-discrete approach
for the dynamic de Bruijn graph. Peers are indicated using
circles, files using rectangles. In the continuous setting, the
peer at position x; = 0.011010 (in binary notation) is
connected to positions x;/2 and (1+ x;)/2. In the discrete
setting, it is responsible for the cell (i.e., the connections
and files that are mapped there) between positions
Xi and X1

that x = 3%, 27) connects to positions 1(x) := x/2 €
[0,1) and r(x) = (1+x)/2 € [0,1) in G¢ (out-degree
two per peer). Observe that if position x is written in
binary form, then I(x) effectively shiftsin a “0” from the
left and r(x) shifts in a “1” from the left. Thus, routing
is straightforward: based solely on the current position
and the destination (without the overhead of maintain-
ing routing tables), a message can be forwarded by a
peer by fixing one bit per hop. The set of peers in the
cyclic [0,1) space then define the p2p network: Let x;
denote the position of the i peer (ordered in increas-
ing order with respect to position). Peer i is responsible
for the cell [x;,xi41), computed in a modulo manner,
i.e., this peer is responsible to store the data mapped to
this cell plus for the establishment of the corresponding
connections defined in G.. Figure 2 gives an example.

Dealing with Churn

A distinguishing property of p2p systems are the fre-
quent membership changes. Measuring the churn lev-
els of existing p2p systems is challenging and one has
to be careful when generalizing a given measurement
to entire application classes (e.g., [10]). Nevertheless,
several insightful measurement studies have been con-
ducted. For instance, [9, 38] reported on the dynamic

Peer-to-Peer

nature of early p2p networks such as Napster and
Gnutella, and [41] analyzed low-level data of a large
Internet Service Provider (ISP) to estimate churn. Also
the Kad DHT has been subject to measurement studies,
and the reader is referred to the results in [47] and [43].

It is widely believed that hypercubic structures are a
good basis for churn-resilient p2p systems. As written
earlier, a DHT is essentially a hypercubic structure with
peers having identifiers such that they span the ID space
of the objects to be stored. A simple approach to map the
ID space onto the peers has already been described for
the hypercube. To give another example, in the butterfly
network, we may use its layers for replication, i.e., all
peers with the same ID redundantly store the data of the
same hash prefix. Other hypercubic DHTs can be more
difficult to design, e.g., networks based on the pancake
graph [19].

For many well-known systems, theoretic analyses
exist showing that the networks remain well-structured
after some joins, leaves, or failures occur. In order to
evaluate the robustness formally, metrics such as the
network expansion (for deterministic failures) or the
span [6] (for randomized failures) are used. Unfortu-
nately, the span is difficult to compute, and the span
value is known only for the most simple topologies.

The continuous-discrete approach [29] already
mentioned constitutes the basis of several dynamic sys-
tems. For example, the SHELL system [40] is robust
to certain attacks by connecting older or more reliable
peers in a core network where access can be controlled;
SHELL also allows to organize heterogeneous peers in
an eflicient topology.

Many systems proposed in the literature offer a
high robustness in the average case, i.e., they provide
probabilistic guarantees that hold with high probabil-
ity. Robustness under attacks or worst-case dynamics
is less well understood. In [19], a system is developed
that achieves an optimal worst-case robustness in the
sense that there is no alternative system that can toler-
ate higher churn rates without disconnecting. The basic
idea is to simulate a hypercube: each peer is part of a dis-
tinct hypercube node; each hypercube node consists of a
logarithmic number of peers. Peers have connections to
other peers of their hypercube node and to peers of the
neighboring hypercube nodes. After a number of joins
and leaves, some peers may have to change to another
hypercube node such that up to constant factors, all

351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397



398
399
400
401
402
403
404
405
406
407
408
409
410

41
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433

434
435
436
437
438
439
440
441

Encyclopedia of Parallel Computing Chapter No: 00278 Page Proof Page 6 11-11-2010 #7

Peer-to-Peer

hypercube nodes have the same cardinality at all times.
If the total number of peers grows or shrinks above or
below a certain threshold, the dimension of the hyper-
cube is increased or decreased by one, respectively. The
balancing of peers among the nodes can be seen as a
dynamic token distribution problem on the hypercube:
Each node of a graph (hypercube) has a certain number
of tokens, and the goal is to distribute the tokens along
the edges of the graph such that all nodes end up with
the same or almost the same number of tokens. Thus,
the system builds on two basic components: (1) an algo-
rithm, which performs the described dynamic token
distribution and (2) an information aggregation algo-
rithm, which is used to estimate the number of peers
in the system and to adapt the hypercube’s dimension
accordingly. These techniques also work for alternative
graphs, like pancake graphs [19].

An appealing notion of robustness is topological self-
stabilization: A p2p topology is called self-stabilizing
if it is guaranteed that from any weakly connected
initial state (e.g., after an attack), it will quickly con-
verge to a desirable network in the absence of fur-
ther membership changes. In contrast to the worst-case
churn considered in [19], self-stabilization focuses on
the convergence time in periods without membership
changes, but allows for general initial system states.
While until recently, self-stabilizing algorithms with
guaranteed runtime have only been known for sim-
ple one-dimensional or two-dimensional linearization
problems [14], recently a construction for a variation of
skip graphs, namely SKIP+ graphs [13], has been pro-
posed. Single joins and leaves in SKIP+ can be handled
locally, and require logarithmic time and polylogarith-
mic work only. However, there remains the important
open question of how to provide degree guarantees
during convergence from arbitrary states.

Fostering Cooperation

The appeal of p2p computing arises from the collab-
oration of the system’s constituent parts, the peers.
If all the participating peers contribute some of their
resources, highly scalable decentralized systems can
be built. However, in reality, peers may act selfishly
and strive for maximizing their own utility by ben-
efitting from the system without contributing much

themselves [42]. Hence, the performance of a p2p sys-
tem crucially depends on its capability of dealing with
selfishness.

Already in 2000, Adar and Huberman [1] noticed
that there exists a large fraction of free riders in the
file-sharing network Gnutella. The problem of selfish
behavior in p2p systems has been a hot topic in p2p
research ever since, and many mechanisms to encour-
age cooperation have been proposed [30]. Perhaps the
simplest fairness mechanism is to directly incorporate
contribution monitoring into the client software. For
instance, in the file-sharing system KaZaA, the client
records the contribution of its user. However, such a
solution can simply be bypassed by implementing a dif-
ferent client that hard-wires the contribution level to the
maximum, as it was the case with KaZaA Lite. Inspired
by real economies, some researchers have also proposed
the introduction of some form of virtual money, which
is used for the transactions.

BitTorrent has incorporated a fairness mechanism
from the beginning and has hence been subject to
intensive research (e.g., [21, 22, 35]). Although this
mechanism has similarities to the well-known tit-for-
tat scheme, the strategy employed in BitTorrent dis-
tinguishes itself from the classic mechanism in many
respects. For instance, it is possible for peers to obtain
parts of a file “for free) i.e., without reciprocating.
While this may be a useful property for bootstrapping
newly joined peers, it has been shown that the Bit-
Torrent mechanism can be exploited: the BitThief Bit-
Torrent client [24] allows to download entire files fast
without uploading any data. It has also been demon-
strated in [24] that sharing communities are particularly
vulnerable to such exploits. BitThief is not the only
client cheating BitTorrent. Piatek et al. [32] presented
BitTyrant. BitTyrant’s strategy is to exploit the BitTor-
rent protocol in order to maximize download rates.
For instance, BitTyrant uses a smart neighbor selection
strategy and connects to those peers with the best recip-
rocation ratios. In contrast to BitThief, BitTyrant does
not free ride. BitTyrant seeks to provide the minimal
necessary contribution, and also increases the active
neighbor set if this is beneficial to the download rate.
The authors claim that their client provides a median
70% performance gain in certain environments.

There can be many other forms of strategic behav-
ior in open distributed systems. One subject that

442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488



489
490
491
492
493
494
495
496
497
498

499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534

Encyclopedia of Parallel Computing Chapter No: 00278 Page Proof Page 7 11-11-2010 #8

has recently gained attention, especially by the game-
theoretic research community, is neighbor selection in
unstructured p2p networks (e.g., [28]). There may be
several reasons for a peer to prefer connecting to some
peers rather than others. For instance, a peer may want
to connect to peers with high bandwidths, peers storing
many interesting files, or peers having large degrees and
hence provide quick access to many other peers. At the
same time, a selfish peer itself may not be eager to store
and maintain too many neighbors itself.

Current Trends and Outlook

One can argue that today, p2p computing is already
a relatively mature (research) field; nevertheless, there
are still many active discussions and developments, also
in the context of the future Internet design. Moreover,
there exists a discrepancy between the technology of the
systems in use and what is actually known in theory.
For example, the Kad network is still vulnerable to quite
simple attacks [44].

If employed by the wrong people, the flexibility and
robustness of p2p technology also constitutes a threat.
Denial-of-service attacks are arguably one of the most
cumbersome problems in today’s Internet, and it is
appealing to coordinate botnets in a p2p fashion. A
DHT can be used by the bots, e.g., to download new
instructions. For instance, it was estimated that in 2007,
the DHT-based Storm botnet [20] ran on several million
computers. Apart from mechanisms to detect or prevent
attacks even before they take place, a smart redundancy
management may improve availability during the attack
itself (see, e.g., the Chameleon system [7]).

In terms of cooperation, there is a tension between
the goal of providing incentive compatible mechanisms
that exclude free riders and the goal of designing het-
erogeneous p2p systems that also tolerate (and make
use of!) weak participants. Moreover, in addition to
design mechanisms dealing with pure selfishness, there
is a trend toward p2p systems that are also resilient to
malicious behavior (see, e.g., [23] or [39]).

Another active discussion regards the interface
between p2p systems and ISPs. The large amount of
p2p traffic raises the question of how ISPs should deal
with p2p, e.g., by caching contents. p2p networks often
employ ineflicient overlay-to-ISP mappings as the logi-
cal overlay network is typically not aware of the underly-
ing “real” networks and constraints, and much overhead

Peer-to-Peer

can be avoided by improving the interface between p2p
networks and ISPs, e.g., by an oracle [2]. For a criti-
cal point of view on the subject, the reader is referred
to [33].

It seems that while a few years ago the lion’s share
of Internet traffic was due to p2p, the proportion seems
to be declining [12] now. Especially web services and
server-based solutions such as the popular YouTube and
RapidShare are catching up. The measured data traces
should be interpreted with care however, as they do not
take into account what happens behind the scenes of
big corporations. Indeed, it is believed that there is a
paradigm shift in p2p computing: While p2p retreats
(relatively to other applications) from public Internet
traffic, today p2p technology plays a crucial role in the
coordination and management of large data centers and
server farms of corporations such as Akamai or Google.

Related Entries
»Cloud Computing
»Compact Routing
»Consistent Hashing

» Decentralization

» Distributed Hash Table (DHT)
»Grid Computing
»Hypercube

» Mechanism Design
»Open Distributed Systems
»Overlay

»Overlay Network
»Self-organization

Bibliographic Notes and Further
Reading

Beyond the specific literature pointed to directly in
the text, there are several recommendable introductory
books on p2p computing. In particular, the reader is
referred to the classic books [8, 45, 48] and two more
recent issues [8, 17]. The theoretically more inclined
reader may also be interested in [25], which provides an
overview of compact routing solutions, and [18] which
discusses trade-offs in local algorithms that achieve
global goals based on local information only and with-
out centralized entities whatsoever. Regarding the chal-
lenges of distributed cooperation, the recent book [30]
gives a thorough and up-to-date survey of current

535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550

552
553
554
555
556
557
558
559
560
561
562
563
564

565
566
567
568
569
570
571
572
573
574
575
576
577
578



579
580

581

582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631

Encyclopedia of Parallel Computing Chapter No: 00278 Page Proof Page 8 11-11-2010 #9

Peer-to-Peer

(game-theoretic) trends, and also includes a chapter on
p2p specific questions.

Bibliography

1

10.

11

12.

13.

14.

15.

Adar E, Huberman B (2000) Free riding on gnutella. First Monday
5(10):1-22

. Aggarwal V, Feldmann A, Scheideler C (2007) Can ISPs and

p2p users cooperate for improved performance? ACM Comput
Commun Rev 37(3):29-40

. Aspnes ], Shah G (2003) Skip graphs. In: Proceedings of the 14th

annual ACM-SIAM symposium on discrete algorithms (SODA),
Baltimore, 2003

. Awerbuch B, Peleg D (1990) Sparse partitions. In: Proceedings of

the 31st annual symposium on foundations of computer science
(SECS), vol 2, pp 503-513, Washington, 1990

. Awerbuch B, Peleg D (1995) Online tracking of mobile users.

JACM 42(5):1021-1058

. Bagchi A, Bhargava A, Chaudhary A, Eppstein D, Scheideler C

(2004) The effect of faults on network expansion. In: Proceedings
of the 16th annual ACM symposium on parallelism in algorithms
and architectures (SPAA), Barcelona, 2004

Baumgart M, Scheideler C, Schmid S. A DoSresilient information
system for dynamic data management. In: Proceedings of the 21st
ACM symposium on parallelism in algorithms and architectures
(SPAA), Calgary, Alberta, 2009

. Buford ], Yu H, Lua EK (2008) P2P networking and applications.

Morgan Kaufmann, San Francisco, 2008

. Gummadi K, Dunn R, Saroiu S, Gribble SD, Levy HM, Zahorjan ]

(2003) Measurement, modeling, and analysis of a peer-to-peer
file-sharing workload. In: Proceedings of the 19th ACM sympo-
sium on operating systems principles (SOSP), Bolton Landing,
2003

Haeberlen A, Mislove A, Post A, Druschel P (2006) Fallacies
in evaluating decentralized systems. In: Proceedings of the 5th
international workshop on peer-to-peer systems (IPTPS), Santa
Barbara, 2006

Harvey NJA, Jones MB, Saroiu S, Theimer M, Wolman A. Skip-
net: a scalable overlay network with practical locality proper-
ties. In: Proceedings of the 4th USENIX Symposium on Internet
Technologies and Systems (USITS), Seattle, 2003

IPOQUE (2009) Internet study 2008/2009. http://www.ipoque.
com/resources/internet-studies/internet-study-2008-2009,
pp 704-713 (accessed on October 31, 2010)

Jacob R, Richa A, Scheideler C, Schmid S, Taubig H (2009) A dis-
tributed polylogarithmic time algorithm for self-stabilizing skip
graphs. In: Proceedings of the ACM symposium on principles of
cistributed computing (PODC), New York, 2009

Jacob R, Ritscher S, Scheideler C, Schmid S (2009) A self-
stabilizing and local delaunay graph construction. In: Proceedings
of the 20th international symposium on algorithms and compu-
tation (ISAAC), Hawaii, 2009

Kaashoek F, Karger DR (2003) Koorde: a simple degree-optimal
distributed hash table. In: Proceedings of the international work-
shop on peer-to-peer systems (IPTPS), Berkeley, 2003

16.

17.

18.

19.

20.

21

22.

23.

24.

25.

26.

27.

28.

29.

30.

3L

Karger D, Lehman E, Leighton T, Panigrahy R, Levine M, Lewin D
(1997) Consistent hashing and random trees: distributed caching
protocols for relieving hot spots on the world wide web. In: Pro-
ceedings of the 29th ACM symposium on theory of computing
(STOC), New York, pp 654-663,1997

Khan J, Wierzbicki A (2008) Foundation of peer-to-peer comput-
ing. Elsevier Computer Communication, 2008

Kuhn F, Moscibroda T, Wattenhofer R (2006) The price of being
near-sighted. In: Proceedings of the 17th ACM-SIAM symposium
on discrete algorithms (SODA), Miami, 2006

Kuhn E Schmid S, Wattenhofer R (2010) Towards worstcase
churn resistant peer-to-peer systems. J Distrib Comput (DIST)
22(4):249-267

Larkin E (2007) Storm worm’s virulence may change tactics.
British Computer Society (accessed on August 03, 2007)

Legout A, Urvoy-Keller G, Michiardi P (2006) Rarest first
and choke algorithms are enough. In: Proceedings of the 6th
ACM SIGCOMM conference on internet measurement (IMC),
Pp 203-216, Rio de Janeriro, 2006

Levin D, LaCurts K, Spring N, Bhattacharjee B (2008) Bittor-
rent is an auction: analyzing and improving bittorrent’s incentives.
SIGCOMM Comput Commun Rev 38(4):243-254

Li H, Clement A, Marchetti M, Kapritsos M, Robinson L, Alvisi L,
Dahlin M (2008) Flightpath: obedience vs choice in cooperative
services. In: Proceedings of the symposium on operating systems
design and implementation (OSDI), San Diego, 2008

Locher T, Moor P, Schmid S, Wattenhofer R (2006) Free riding in
bittorrent is cheap. In: Proceedings of the 5th Workshop on Hot
Topics in Networks (HotNets), Irvine, 2006

Malkhi D (2004) Locality-aware network solutions. Technical
Report, The Hebrew University of Jerusalem, HUJI-CSE-LTR-
2004-6

Malkhi D, Naor M, Ratajczak D (2002) Viceroy: a scalable
and dynamic emulation of the buttery. In: Proceedings of the
2lst annual symposium on principles of distributed computing
(PODC), Monterey, 2002

Maymounkov P, Maziéres D (2002) Kademlia: a peer-to-peer
information system based on the xor metric. In: Proceedings of
the 1st international workshop on peer-to-peer systems (IPTPS),
Cambridge, 2002

Moscibroda T, Schmid S, Wattenhofer R (2006) On the topologies
formed by selfish peers. In: Proceedings of the 25th annual sym-
posium on principles of distributed computing (PODC), Denver,
2006

Naor M, Wieder U (2003) Novel architectures for p2p applica-
tions: the continuous-discrete approach. In: Proceedings of the
15th annual ACM symposium on parallel algorithms and archi-
tectures (SPAA), pp 50-59, San Diego, 2003

Nisan N, Roughgarden T, Tardos E, Vazirani VV (2007) Algorith-
mic game theory. Cambridge University Press, Cambridge

Peleg D, Upfal E (1988) A tradeoff between space and efficiency
for routing tables. In: Proceedings of the 20th annual ACM sym-
posium on theory of computing (STOC), pp 43-52, Chicago,
1988

632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685



686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710

711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42,

43.

44.

45.

46.

47.

Encyclopedia of Parallel Computing Chapter No: 00278 Page Proof Page 9 11-11-2010 #10

Piatek M, Isdal T, Anderson A,
Venkataramani A (2007) Do incentives build robustness in

T, Krishnamurthy

bittorrent? In: Proceedings of the 4th USENIX symposium on
networked systems design and implementation, Cambridge, 2007
Piatek M, Madhyastha HYV, John JP, Krishnamurthy A,
Anderson T (2009) Pitfalls for ISP-friendly p2p design. In:
Proceedings of the hotnets, New York, 2009

Plaxton C, Rajaraman R, Richa AW (1997) Accessing nearby
copies of replicated objects in a distributed environment. In: Pro-
ceedings of the 9th ACM symposium on parallel algorithms and
architectures (SPAA), pp 311, 320, Newport, 1997

Qiu D, Srikant R (2004) Modeling and performance analysis
of bittorrent-like peer-to-peer networks. In: Proceedings of the
conference on applications, technologies, architectures, and pro-
tocols for computer communications (SIGCOMM), pp 367-378,
New York, 2004

Ratnasamy S, Francis P, Handley M, Karp R, Schenker S
(2001) A scalable content-addressable network. In: Proceedings
of the ACM SIG-COMM conference on applications, technolo-
gies, architectures, and protocols for computer communications,
pp 161-172, New York, 2001

Rowstron AIT, Druschel P (2001) Pastry: scalable, decentral-
ized object location, and routing for large-scale peer-to-peer
systems. In: Proceedings of the IFIP/ACM international confer-
ence on distributed systems platforms (middleware), pp 329-350,
Heibelberg, 2001

Saroiu S, Gummadi PK, Gribble SD (2002) A measurement study
of peer-to-peer file sharing systems. In: Proceedings of the multi-
media computing and networking (MMCN), San Jose, 2002
Scheideler C (2005) How to spread adversarial nodes?: rotate! In:
Proceedings of the 37th Annual ACM symposium on theory of
computing (STOC), pp 704-713, Baltimore, 2005

Scheideler C, Schmid S (2009) A distributed and oblivious heap.
In: Proceedings of the 36th international colloquium on automata,
languages and programming (ICALP), Rhodes, 2009

Sen S, Wang J (2004) Analyzing peer-to-peer traffic across large
networks. IEEE/ACM Trans Netw 12(2):219-232

Shneidman J, Parkes DC (2003) Rationality and self-interest in
peer to peer networks. In: Proceedings of the 2nd international
workshop on peer-to-peer systems (IPTPS), Berkeley, 2003
Steiner M, Biersack EW, Ennajjary T (2007) Actively monitoring
peers in KAD. In: Proceedings of the 6th international workshop
on peer-to-peer systems (IPTPS), Bellevue, 2007

Steiner M, En-Najjary T, Biersack EW (2007) Exploiting KAD:
possible uses and misuses. Comput Commu Rev 37(5):65-69
Steinmetz R, Wehrle K (2005) Peer-to-peer systems and applica-
tions. Springer, Heidelberg

Stoica I, Morris R, Karger D, Kaashoek F, Balakrishnan H (2001)
Chord: a scalable peer-to-peer lookup service for internet appli-
cations. In: Proceedings of the ACM SIGCOMM conference on
applications, technologies, architectures, and protocols for com-
puter communications, San Diego, 2001

Stutzbach D, Rejaie R (2006) Understanding churn in peer-to-
peer networks. In: Proceedings of the 6th internet measurement
conference (IMC), New York, 2006

48.

49.

50.

Peer-to-Peer

Subramanian R, Goodman B (2005) Peer-to-peer computing: the
evolution of a disruptive technology. IGI, Hershey

Thorup M, Zwick U (2001) Compact routing schemes. In: Pro-
ceedings of the annual ACM symposium on parallel algorithms
and architectures (SPAA), pp 1-10, Crete, Greece, 2001

Zhao BY, Huang L, Stribling J, Rhea SC, Joseph AD,
Kubiatowicz ] (2004) Tapestry: a resilient global-scale over-
lay for Service deployment. IEEE journal on selected areas in
commonuincations Vol. 22, No. 1

741
742
743
744
745
746
747
748
749





