
Encyclopedia of Parallel Computing Chapter No: 00278 Page Proof Page 1 11-11-2010 #2

UN
CO
RR
EC
TE
D
PR
OO

F

P

Peer-to-Peer

Stefan Schmid, RogerWattenhofer
Telekom Laboratories/TU Berlin, Berlin, Germany
ETH Zürich, Zurich, Switzerland

Synonyms

Distributed hash table (DHT); Overlay network;

Decentralization; Open distributed systems; Consistent

hashing

Definition

The term peer-to-peer (pp) is ambiguous, and is used

in a variety of different contexts, such as:

● In popular media coverage, pp is often synony-

mous to software or protocols that allow users to

“share” files (music, software, books, movies, etc.).

pp file sharing is very popular and a large fraction

of the total Internet traffic is due to pp.

● In academia, the term pp is used mostly in two

ways. A narrow view essentially defines pp as

the “theory behind file-sharing protocols.” In other

words, how do Internet hosts need to be organized

in order to deliver a search engine to find (share)

content (files) efficiently? A popular term is “dis-

tributed hash table” (DHT), a distributed data struc-

ture that implements such a content search engine.

A DHT should support at least a search (for a

key) and an insert(key, object) operation. A DHT

has many applications beyond file sharing, e.g., the

Internet domain name system (DNS).

● A broader view generalizes pp beyond file shar-

ing: Indeed, there is a growing number of applica-

tions operating outside the juridical gray area, e.g.,

pp Internet telephony à la Skype, pp mass player

games, pp live audio&video streaming as in PPLive,

StreamForge or Zattoo, or pp social storage and

cloud computing systems such as Wuala. Trying to

account for the new applications beyond file shar-

ing, onemight define pp as a large-scale distributed

system that operates without a central server bottle-

neck. However, with this definition almost “every-

thing decentralized” is pp!

● From a different viewpoint, the term pp may also

be synonymous for privacy protection, as various

pp systems such as Freenet allow publishers of

information to remain anonymous and uncensored.

In other words, there is no single well-fitting defini-

tion of pp, as some definitions in use today are even

contradictory. In the following, an academic viewpoint

is assumed (second and third definition above).

Discussion

The Paradigm

At the heart of pp computing lies the idea that each

network participant serves both as a producer (“server”)

and consumer (“client”) of services. Depending on the

application, the shared resources can be data (files),

CPU power, disk storage, or network bandwidth. Often

pp systems have an open clientele, and do not rely on

the availability of specific individual machines; rather

they candeal with dynamic resources and do not exhibit

single points of failure or bottlenecks.

Compared to centralized solutions, the pp paradigm

features a better scalability because the amount of

resources grows with the network size, availability

(avoiding a single point of failure), reliability, fair-

ness, cooperation incentives, privacy, and security –

just about everything researchers expect from a future

Internet architecture. As such, it is not surprising that

new “clean slate” Internet architecture proposals often

revolve around pp concepts.

Onemight naively assume that for instance scalabil-

ity is not an issue in today’s Internet, as even most pop-

ular web pages are generally highly available. However,

this is not necessarily due to our well-designed Internet

David Padua (ed.), Encyclopedia of Parallel Computing, DOI ./----,
© Springer Science+Business Media LLC

Encyclopedia of Parallel Computing Chapter No: 00278 Page Proof Page 2 11-11-2010 #3

UN
CO
RR
EC
TE
D
PR
OO

F

 P Peer-to-Peer

architecture, but rather due to the help of so-called over-

lay networks: The Google Web site for instance man-

ages to respond so reliably and quickly because Google

maintains a large distributed infrastructure, essentially

a pp system. Similarly, companies likeAkamai sell “pp

functionality” to their customers to make today’s user

experience possible in the first place. Quite possibly

today’s pp applications are just testbeds for tomorrow’s

Internet architecture.

Implications

pp networks are often highly dynamic in nature.While

traditional computer systems are typically based on

fixed infrastructures and are under a single adminis-

trative domain (e.g., owned and maintained by a single

company or corporation), the participating machines in

pp networks are under the control of individual (and

to some extent: anonymous) users who can join and

leave at any time and concurrently. In pp parlor, such

membership changes are called churn.

A second implication of the autonomy of the

machines in pp networks is that the network consists

of different stakeholders. Users can have various reasons

for joining the network. For instance, an (anonymous)

user may not voluntarily contribute his or her band-

width, disk space, or CPU cycles to the system, but

prefer to free ride. This adds a socioeconomic aspect

to pp computing. As the pp paradigm relies on the

contributions of the participating machines, effective

incentive mechanisms have to be designed, which foster

cooperation and punish free riders.

Another source of inequality in pp systems apart

from selfishness is heterogeneity: Due to the openmem-

bership, different machines run different operating sys-

tems, have different Internet connections, and so on.

Applications

The best-known representatives of pp technology are

probably the numerous file-sharing applications such as

Napster, Gnutella, KaZaA, eMule, or BitTorrent. Also,

the Internet telephony tool Skype is very popular and

used by millions everyday. Zattoo, PPLive, and Stream-

Forge, amongmany others, use pp principles to stream

video or audio content. The cloud computing service

Wuala offers free online storage by exploiting the par-

ticipants’ disks and Internet connections to improve

performance. Recently, the power and anonymity of

decentralized Internet working has gained the atten-

tion of operators of botnets in order to attack cer-

tain infrastructure components by a denial-of-service

attack. Finally, pp technology is used for large-scale

computer games.

Architecture Variants

Several pp architectures are known:

● Client/Server goes pp: Even though Napster is

known to the be first pp system (), by today’s

standards its architecture would not deserve the

label pp anymore. Napster clients accessed a cen-

tral server that managed all the information of the

shared files, i.e., which file was to be found on

which client. Only the downloading process itself

was between clients (“peers”) directly, hence pp.

In the early days of Napster the load of the server

was relatively small, so the simple Napster architec-

ture was sufficient. Over time, it turned out that the

server may become a bottleneck – and an attractive

target for an attack. Indeed, eventually a judge ruled

the server to be shut down (a “juridical denial of ser-

vice attack”). However, it remains to note that many

popular PP networks today still include centralized

components, e.g., KaZaA or the eDonkey network

accessed by the eMule client. Also, the peer swarms

downloading the same file in the BitTorrent network

are organized by a so-called tracker whose function-

ality today is still centralized (although initiatives

exist to build distributed trackers).

● Unstructured pp: The Gnutella protocol is the

antithesis of Napster, as it is a fully decentralized sys-

tem, with no single entity having a global picture.

Instead each peer connects to a random sample of

other peers, constantly changing the neighbors of

this virtual overlay network by exchanging neigh-

bors with neighbors of neighbors. (Any unstruc-

tured system also needs to solve the so-called

bootstrap problem, namely how to discover a first

neighbor in a decentralizedmanner. A popular solu-

tion is the use of well-known peer lists.) The fact

that users often turn off their clients once they

downloaded their content implies high levels of

churn (peers joining and leaving at high rates), and

hence selecting the right “random” neighbors is an

Encyclopedia of Parallel Computing Chapter No: 00278 Page Proof Page 3 11-11-2010 #4

UN
CO
RR
EC
TE
D
PR
OO

F

Peer-to-Peer P

interesting research problem. The Achilles’ heal of

unstructured pp architectures such as Gnutella is

the cost of searching. A search request is typically

flooded in the network and each search operation

will costmmessages,m being the number of virtual

edges in the architecture. In other words, such an

unstructured pp architecture will not scale. Indeed,

when Napster was unplugged, Gnutella broke down

as well soon afterward due to the inrush of former

Napster users.

● Hybrid pp: The synthesis of client/server archi-

tectures such as Napster and unstructured archi-

tectures such as Gnutella are hybrid architectures.

Some powerful peers are promoted to so-called

superpeers (or, similarly, trackers). The set of super-

peers may change over time, and taking down

a fraction of superpeers will not harm the sys-

tem. Search requests are handled on the superpeer

level, resulting in much less messages than in flat/

homogeneous unstructured systems. Essentially, the

superpeers together provide a more fault-tolerant

version of the Napster server, as all regular peers

connect to a superpeer. As of today, almost all pop-

ular pp systems have such a hybrid architecture,

carefully trading off reliability and efficiency.

● Structured pp: Inspired by the early success of

Napster, the academic world started to look into

the question of efficient file sharing. Indeed, even

earlier, in , Plaxton et al. [] proposed a

hypercubic architecture for pp systems. This was a

blueprint for many so-called structured pp archi-

tecture proposals, such as Chord [], CAN [],

Pastry [], Tapestry [], Viceroy [], Kadem-

lia [], Koorde [], SkipGraph [], and Skip-

Net []. Maybe surprisingly, in practice, structured

pp architectures did not take off yet, apart fromcer-

tain exceptions such as the Kad architecture (from

Kademlia []), which is accessible with the eMule

client.

Scientific Origins

The scientific foundations of pp computing were laid

many years before the most simple “real” pp systems

like Napster emerged. As already mentioned, in ,

a blueprint for structured systems has been proposed

in []. Indeed, also the [] paper was standing on the

shoulders of giants. Some of its eminent precursors are

the following:

● Research on linear and consistent hashing, e.g., [].

● Research on locating shared objects, e.g., [] or [].

● Research on so-called compact routing: The idea is

to construct routing tables such that there is a trade-

off between memory (size of routing tables) and

stretch (quality of routes), e.g., [] or [].

● … and even earlier: hypercubic networks, see

below!

Hypercubic Overlays and Consistent

Hashing

Every application run on multiple machines needs a

mechanism that allows the machines to exchange infor-

mation. A naive solution is to store at each machine the

domain name or IP address of every other machine.

While this may work well for a small number of

machines, large-scale distributed applications such as

file sharing, grid computing, cloud computing, or data

center networking systems need a different, more scal-

able approach: instead of forming a clique (where every-

body knows everybody else), each machine should

only be required to know some small subset of other

machines. This graph of knowledge can be seen as a

logical network interconnecting the machines; it is also

known as an overlay network. A prerequisite for an over-

lay network to be useful is that it has good topological

properties. Among the most important are small peer

degree, small network diameter, robustness to churn, or

absence of congestion bottlenecks.

The most basic network topologies used in practice

are trees, rings, grids, or tori. Many other suggested net-

works are simply combinations or derivatives of these.

The advantage of trees is that the routing is very easy: for

every source-destination pair there is only one possible

path. However, the root of a tree can be a severe bottle-

neck. An exception is a pp streaming systemwhere the

single content provider forms the network root. How-

ever, trees are also highly vulnerable, e.g., with respect

to membership changes.

Essentially all state-of-the-art pp networks today

have some kind of hypercubic topology (e.g., Chord,

Pastry, Kademlia). Hypercube graphs have many inter-

esting properties, e.g., they allow for efficient routing:

although each peer only needs to store a logarithmic

Encyclopedia of Parallel Computing Chapter No: 00278 Page Proof Page 4 11-11-2010 #5

UN
CO
RR
EC
TE
D
PR
OO

F

 P Peer-to-Peer

000 001

010

100

011

111110

101

Peer-to-Peer. Fig. A simplified pp topology: a

three-dimensional hypercube. Each peer has a three-bit

identifier. For example, peer is connected to the three

peers , , whose identifiers differ at exactly one

position. In order to route a message from peer to say

peer , one bit is fixed after the other. One possible

routing path is depicted in the figure: → → →

. An alternative path could be → → →

number of other peers in the system (the peers’ neigh-

bors), by a simple routing scheme, a peer can reach each

other peer in a logarithmic number of steps (or “hops”).

In a nutshell, this is achieved by assigning each peer a

unique d-bit identifier. A peer is connected to all d peers

that differ from its identifier at exactly one bit position.

In the resulting hypercube network, routing is done by

adjusting the bits in which the source and the destina-

tion peers differ – one at a time (at most dmany). Thus,

if the source and the destination differ by k bits, there

are k! routes with k hops. Figure gives an example.

Given a hypercubic topology, it is then simple to

construct a distributed hash table (DHT): Assume there

are n = d peers that are connected in a hypercube

topology as described above. Now a globally known

hash function f is used, mapping file names to long

bit strings. Let fd denote the first d bits (prefix) of

the bitstring produced by f . If a peer is searching for

file name X, it routes a request message f (X) to peer

fd(X). Clearly, peer fd(X) can only answer this request

if all files with hash prefix fd(X) have been previously

registered at peer fd(X).

There are some additional issues to be addressed

in order to design a DHT from a hypercubic topol-

ogy, in particular how to allow peers to join and leave

without notice. To deal with churn the system needs

some level of replication, i.e., a number of peers, which

are responsible for each prefix such that failure of some

peerswill not compromise the system. In addition, there

are security and efficiency issues that can be addressed

to improve the system.

There are many hypercubic networks that are

derived from the hypercube: among these are the but-

terfly, the cube-connected-cycles, the shuffle-exchange,

and the de Bruijn graph. For example, the butter-

fly graph is basically a “rolled out” hypercube (hence

directly providing replication!) of constant degree.

Another important class of hypercubic topologies are

skip graphs [,].

A simple, interesting way to design dynamic pp

systems is the continuous–discrete approach described

by Naor and Wieder []. This approach is based on a

“think continuously, act discretely” strategy, and can be

used to design a variety of hypercubic topologies. The

continuous–discrete approach gives a unified method

for performing join/leave operations and for dealing

with the scalability issue, thus separating it from the

actual network. The idea is as follows: Let I be a

Euclidean space, e.g., a (cyclic) one-dimensional space.

Let Gc be a graph where the vertex set is the continu-

ous set I. Each point in I is connected to some other

points. The actual network then is a discretization of

this continuous graph based on a dynamic decompo-

sition of the underlying space I into cells where each

“server” is responsible for a cell. Two cells are connected

if they contain adjacent points in the continuous graph.

Clearly, the partition of the space into cells should be

maintained in a distributed manner. When a join oper-

ation is performed, an existing cell splits, when a leave

operation is performed two cells are merged into one.

The task of designing a dynamic and scalable network

follows these design rules: () Choose a proper con-

tinuous graph Gc over the continuous space I. Design

the algorithms in the continuous setting, which is often

simpler (also in terms of analysis) than in the discrete

case. () Find an efficient way to discretize the con-

tinuous graph in a distributed manner, such that the

algorithms designed for the continuous graph would

perform well in the discrete graph. The discretization is

done via a decomposition of I into the cells. If the cells

that compose I are allowed to overlap, then the resulting

graph would be fault tolerant.

To give an example, in order to build a dynamic de

Bruijn network (a so-called Distance Halving DHT), a

peer at position x ∈ [,) (in binary form bb... such

Encyclopedia of Parallel Computing Chapter No: 00278 Page Proof Page 5 11-11-2010 #6

UN
CO
RR
EC
TE
D
PR
OO

F

Peer-to-Peer P

xi

xi /2

(1+xi)/2
011010

001101

101101

xi+1

Cell

Peer-to-Peer. Fig. The continuous–discrete approach

for the dynamic de Bruijn graph. Peers are indicated using

circles, files using rectangles. In the continuous setting, the

peer at position xi = . (in binary notation) is

connected to positions xi/ and (+ xi)/. In the discrete

setting, it is responsible for the cell (i.e., the connections

and files that are mapped there) between positions

xi and xi+

that x = ∑∞i= −bi) connects to positions l(x) := x/ ∈

[,) and r(x) := (+ x)/ ∈ [,) in Gc (out-degree

two per peer). Observe that if position x is written in

binary form, then l(x) effectively shifts in a “” from the

left and r(x) shifts in a “” from the left. Thus, routing

is straightforward: based solely on the current position

and the destination (without the overhead of maintain-

ing routing tables), a message can be forwarded by a

peer by fixing one bit per hop. The set of peers in the

cyclic [,) space then define the pp network: Let xi

denote the position of the ith peer (ordered in increas-

ing order with respect to position). Peer i is responsible

for the cell [xi , xi+), computed in a modulo manner,

i.e., this peer is responsible to store the data mapped to

this cell plus for the establishment of the corresponding

connections defined in Gc. Figure gives an example.

Dealing with Churn

A distinguishing property of pp systems are the fre-

quent membership changes. Measuring the churn lev-

els of existing pp systems is challenging and one has

to be careful when generalizing a given measurement

to entire application classes (e.g., []). Nevertheless,

several insightful measurement studies have been con-

ducted. For instance, [,] reported on the dynamic

nature of early pp networks such as Napster and

Gnutella, and [] analyzed low-level data of a large

Internet Service Provider (ISP) to estimate churn. Also

the Kad DHT has been subject to measurement studies,

and the reader is referred to the results in [] and [].

It is widely believed that hypercubic structures are a

good basis for churn-resilient pp systems. As written

earlier, a DHT is essentially a hypercubic structure with

peers having identifiers such that they span the ID space

of the objects to be stored. A simple approach tomap the

ID space onto the peers has already been described for

the hypercube. To give another example, in the butterfly

network, we may use its layers for replication, i.e., all

peers with the same ID redundantly store the data of the

same hash prefix. Other hypercubic DHTs can be more

difficult to design, e.g., networks based on the pancake

graph [].

For many well-known systems, theoretic analyses

exist showing that the networks remain well-structured

after some joins, leaves, or failures occur. In order to

evaluate the robustness formally, metrics such as the

network expansion (for deterministic failures) or the

span [] (for randomized failures) are used. Unfortu-

nately, the span is difficult to compute, and the span

value is known only for the most simple topologies.

The continuous–discrete approach [] already

mentioned constitutes the basis of several dynamic sys-

tems. For example, the SHELL system [] is robust

to certain attacks by connecting older or more reliable

peers in a core network where access can be controlled;

SHELL also allows to organize heterogeneous peers in

an efficient topology.

Many systems proposed in the literature offer a

high robustness in the average case, i.e., they provide

probabilistic guarantees that hold with high probabil-

ity. Robustness under attacks or worst-case dynamics

is less well understood. In [], a system is developed

that achieves an optimal worst-case robustness in the

sense that there is no alternative system that can toler-

ate higher churn rates without disconnecting. The basic

idea is to simulate a hypercube: each peer is part of a dis-

tinct hypercube node; each hypercube node consists of a

logarithmic number of peers. Peers have connections to

other peers of their hypercube node and to peers of the

neighboring hypercube nodes. After a number of joins

and leaves, some peers may have to change to another

hypercube node such that up to constant factors, all

Encyclopedia of Parallel Computing Chapter No: 00278 Page Proof Page 6 11-11-2010 #7

UN
CO
RR
EC
TE
D
PR
OO

F

 P Peer-to-Peer

hypercube nodes have the same cardinality at all times.

If the total number of peers grows or shrinks above or

below a certain threshold, the dimension of the hyper-

cube is increased or decreased by one, respectively. The

balancing of peers among the nodes can be seen as a

dynamic token distribution problem on the hypercube:

Each node of a graph (hypercube) has a certain number

of tokens, and the goal is to distribute the tokens along

the edges of the graph such that all nodes end up with

the same or almost the same number of tokens. Thus,

the system builds on two basic components: () an algo-

rithm, which performs the described dynamic token

distribution and () an information aggregation algo-

rithm, which is used to estimate the number of peers

in the system and to adapt the hypercube’s dimension

accordingly. These techniques also work for alternative

graphs, like pancake graphs [].

An appealing notion of robustness is topological self-

stabilization: A pp topology is called self-stabilizing

if it is guaranteed that from any weakly connected

initial state (e.g., after an attack), it will quickly con-

verge to a desirable network in the absence of fur-

ther membership changes. In contrast to the worst-case

churn considered in [], self-stabilization focuses on

the convergence time in periods without membership

changes, but allows for general initial system states.

While until recently, self-stabilizing algorithms with

guaranteed runtime have only been known for sim-

ple one-dimensional or two-dimensional linearization

problems [], recently a construction for a variation of

skip graphs, namely SKIP+ graphs [], has been pro-

posed. Single joins and leaves in SKIP+ can be handled

locally, and require logarithmic time and polylogarith-

mic work only. However, there remains the important

open question of how to provide degree guarantees

during convergence from arbitrary states.

Fostering Cooperation

The appeal of pp computing arises from the collab-

oration of the system’s constituent parts, the peers.

If all the participating peers contribute some of their

resources, highly scalable decentralized systems can

be built. However, in reality, peers may act selfishly

and strive for maximizing their own utility by ben-

efitting from the system without contributing much

themselves []. Hence, the performance of a pp sys-

tem crucially depends on its capability of dealing with

selfishness.

Already in , Adar and Huberman [] noticed

that there exists a large fraction of free riders in the

file-sharing network Gnutella. The problem of selfish

behavior in pp systems has been a hot topic in pp

research ever since, and many mechanisms to encour-

age cooperation have been proposed []. Perhaps the

simplest fairness mechanism is to directly incorporate

contribution monitoring into the client software. For

instance, in the file-sharing system KaZaA, the client

records the contribution of its user. However, such a

solution can simply be bypassed by implementing a dif-

ferent client that hard-wires the contribution level to the

maximum, as it was the case with KaZaA Lite. Inspired

by real economies, some researchers have also proposed

the introduction of some form of virtual money, which

is used for the transactions.

BitTorrent has incorporated a fairness mechanism

from the beginning and has hence been subject to

intensive research (e.g., [, ,]). Although this

mechanism has similarities to the well-known tit-for-

tat scheme, the strategy employed in BitTorrent dis-

tinguishes itself from the classic mechanism in many

respects. For instance, it is possible for peers to obtain

parts of a file “for free,” i.e., without reciprocating.

While this may be a useful property for bootstrapping

newly joined peers, it has been shown that the Bit-

Torrent mechanism can be exploited: the BitThief Bit-

Torrent client [] allows to download entire files fast

without uploading any data. It has also been demon-

strated in [] that sharing communities are particularly

vulnerable to such exploits. BitThief is not the only

client cheating BitTorrent. Piatek et al. [] presented

BitTyrant. BitTyrant’s strategy is to exploit the BitTor-

rent protocol in order to maximize download rates.

For instance, BitTyrant uses a smart neighbor selection

strategy and connects to those peers with the best recip-

rocation ratios. In contrast to BitThief, BitTyrant does

not free ride. BitTyrant seeks to provide the minimal

necessary contribution, and also increases the active

neighbor set if this is beneficial to the download rate.

The authors claim that their client provides a median

% performance gain in certain environments.

There can be many other forms of strategic behav-

ior in open distributed systems. One subject that

Encyclopedia of Parallel Computing Chapter No: 00278 Page Proof Page 7 11-11-2010 #8

UN
CO
RR
EC
TE
D
PR
OO

F

Peer-to-Peer P

has recently gained attention, especially by the game-

theoretic research community, is neighbor selection in

unstructured pp networks (e.g., []). There may be

several reasons for a peer to prefer connecting to some

peers rather than others. For instance, a peer may want

to connect to peers with high bandwidths, peers storing

many interesting files, or peers having large degrees and

hence provide quick access to many other peers. At the

same time, a selfish peer itself may not be eager to store

and maintain too many neighbors itself.

Current Trends and Outlook

One can argue that today, pp computing is already

a relatively mature (research) field; nevertheless, there

are still many active discussions and developments, also

in the context of the future Internet design. Moreover,

there exists a discrepancy between the technology of the

systems in use and what is actually known in theory.

For example, the Kad network is still vulnerable to quite

simple attacks [].

If employed by the wrong people, the flexibility and

robustness of pp technology also constitutes a threat.

Denial-of-service attacks are arguably one of the most

cumbersome problems in today’s Internet, and it is

appealing to coordinate botnets in a pp fashion. A

DHT can be used by the bots, e.g., to download new

instructions. For instance, it was estimated that in ,

the DHT-based Storm botnet [] ran on several million

computers. Apart frommechanisms to detect or prevent

attacks even before they take place, a smart redundancy

management may improve availability during the attack

itself (see, e.g., the Chameleon system []).

In terms of cooperation, there is a tension between

the goal of providing incentive compatible mechanisms

that exclude free riders and the goal of designing het-

erogeneous pp systems that also tolerate (and make

use of!) weak participants. Moreover, in addition to

design mechanisms dealing with pure selfishness, there

is a trend toward pp systems that are also resilient to

malicious behavior (see, e.g., [] or []).

Another active discussion regards the interface

between pp systems and ISPs. The large amount of

pp traffic raises the question of how ISPs should deal

with pp, e.g., by caching contents. pp networks often

employ inefficient overlay-to-ISP mappings as the logi-

cal overlay network is typically not aware of the underly-

ing “real” networks and constraints, andmuch overhead

can be avoided by improving the interface between pp

networks and ISPs, e.g., by an oracle []. For a criti-

cal point of view on the subject, the reader is referred

to [].

It seems that while a few years ago the lion’s share

of Internet traffic was due to pp, the proportion seems

to be declining [] now. Especially web services and

server-based solutions such as the popular YouTube and

RapidShare are catching up. The measured data traces

should be interpreted with care however, as they do not

take into account what happens behind the scenes of

big corporations. Indeed, it is believed that there is a

paradigm shift in pp computing: While pp retreats

(relatively to other applications) from public Internet

traffic, today pp technology plays a crucial role in the

coordination andmanagement of large data centers and

server farms of corporations such as Akamai or Google.

Related Entries

�Cloud Computing

�Compact Routing

�Consistent Hashing

�Decentralization

�Distributed Hash Table (DHT)

�Grid Computing

�Hypercube

�Mechanism Design

�Open Distributed Systems

�Overlay

�Overlay Network

�Self-organization

Bibliographic Notes and Further

Reading

Beyond the specific literature pointed to directly in

the text, there are several recommendable introductory

books on pp computing. In particular, the reader is

referred to the classic books [, ,] and two more

recent issues [,]. The theoretically more inclined

reader may also be interested in [], which provides an

overview of compact routing solutions, and [] which

discusses trade-offs in local algorithms that achieve

global goals based on local information only and with-

out centralized entities whatsoever. Regarding the chal-

lenges of distributed cooperation, the recent book []

gives a thorough and up-to-date survey of current

Encyclopedia of Parallel Computing Chapter No: 00278 Page Proof Page 8 11-11-2010 #9

UN
CO
RR
EC
TE
D
PR
OO

F

 P Peer-to-Peer

(game-theoretic) trends, and also includes a chapter on

pp specific questions.

Bibliography

. Adar E,HubermanB () Free riding on gnutella. FirstMonday
():–

. Aggarwal V, Feldmann A, Scheideler C () Can ISPs and
pp users cooperate for improved performance? ACM Comput
Commun Rev ():–

. Aspnes J, Shah G () Skip graphs. In: Proceedings of the th
annual ACM-SIAM symposium on discrete algorithms (SODA),
Baltimore,

. Awerbuch B, Peleg D () Sparse partitions. In: Proceedings of
the st annual symposium on foundations of computer science
(SFCS), vol , pp –, Washington,

. Awerbuch B, Peleg D () Online tracking of mobile users.
JACM ():–

. Bagchi A, Bhargava A, Chaudhary A, Eppstein D, Scheideler C
()The effect of faults on network expansion. In: Proceedings
of the th annual ACM symposium on parallelism in algorithms
and architectures (SPAA), Barcelona,

. Baumgart M, Scheideler C, Schmid S. A DoSresilient information
system for dynamic data management. In: Proceedings of the st
ACM symposium on parallelism in algorithms and architectures
(SPAA), Calgary, Alberta,

. Buford J, Yu H, Lua EK () PP networking and applications.
Morgan Kaufmann, San Francisco,

. Gummadi K, Dunn R, Saroiu S, Gribble SD, LevyHM, Zahorjan J
() Measurement, modeling, and analysis of a peer-to-peer
file-sharing workload. In: Proceedings of the th ACM sympo-
sium on operating systems principles (SOSP), Bolton Landing,

. Haeberlen A, Mislove A, Post A, Druschel P () Fallacies
in evaluating decentralized systems. In: Proceedings of the th
international workshop on peer-to-peer systems (IPTPS), Santa
Barbara,

. Harvey NJA, Jones MB, Saroiu S, Theimer M, Wolman A. Skip-
net: a scalable overlay network with practical locality proper-
ties. In: Proceedings of the th USENIX Symposium on Internet
Technologies and Systems (USITS), Seattle,

. IPOQUE () Internet study /. http://www.ipoque.
com/resources/internet-studies/internet-study--,
pp – (accessed on October ,)

. Jacob R, Richa A, Scheideler C, Schmid S, Täubig H () A dis-
tributed polylogarithmic time algorithm for self-stabilizing skip
graphs. In: Proceedings of the ACM symposium on principles of
cistributed computing (PODC), New York,

. Jacob R, Ritscher S, Scheideler C, Schmid S () A self-
stabilizing and local delaunay graph construction. In: Proceedings
of the th international symposium on algorithms and compu-
tation (ISAAC), Hawaii,

. Kaashoek F, Karger DR () Koorde: a simple degree-optimal
distributed hash table. In: Proceedings of the international work-
shop on peer-to-peer systems (IPTPS), Berkeley,

. Karger D, Lehman E, Leighton T, Panigrahy R, LevineM, LewinD
() Consistent hashing and random trees: distributed caching
protocols for relieving hot spots on the world wide web. In: Pro-
ceedings of the th ACM symposium on theory of computing
(STOC), New York, pp –,

. Khan J,Wierzbicki A () Foundation of peer-to-peer comput-
ing. Elsevier Computer Communication,

. Kuhn F, Moscibroda T, Wattenhofer R () The price of being
near-sighted. In: Proceedings of the th ACM-SIAM symposium
on discrete algorithms (SODA), Miami,

. Kuhn F, Schmid S, Wattenhofer R () Towards worstcase
churn resistant peer-to-peer systems. J Distrib Comput (DIST)
():–

. Larkin E () Storm worm’s virulence may change tactics.
British Computer Society (accessed on August ,)

. Legout A, Urvoy-Keller G, Michiardi P () Rarest first
and choke algorithms are enough. In: Proceedings of the th
ACM SIGCOMM conference on internet measurement (IMC),
pp –, Rio de Janeriro,

. Levin D, LaCurts K, Spring N, Bhattacharjee B () Bittor-
rent is an auction: analyzing and improving bittorrent’s incentives.
SIGCOMM Comput Commun Rev ():–

. Li H, Clement A,Marchetti M, KapritsosM, Robinson L, Alvisi L,
Dahlin M () Flightpath: obedience vs choice in cooperative
services. In: Proceedings of the symposium on operating systems
design and implementation (OSDI), San Diego,

. Locher T, Moor P, Schmid S, Wattenhofer R () Free riding in
bittorrent is cheap. In: Proceedings of the th Workshop on Hot
Topics in Networks (HotNets), Irvine,

. Malkhi D () Locality-aware network solutions. Technical
Report, The Hebrew University of Jerusalem, HUJI-CSE-LTR-
-

. Malkhi D, Naor M, Ratajczak D () Viceroy: a scalable
and dynamic emulation of the buttery. In: Proceedings of the
st annual symposium on principles of distributed computing
(PODC), Monterey,

. Maymounkov P, Mazières D () Kademlia: a peer-to-peer
information system based on the xor metric. In: Proceedings of
the st international workshop on peer-to-peer systems (IPTPS),
Cambridge,

. Moscibroda T, Schmid S,Wattenhofer R ()On the topologies
formed by selfish peers. In: Proceedings of the th annual sym-
posium on principles of distributed computing (PODC), Denver,

. Naor M, Wieder U () Novel architectures for pp applica-
tions: the continuous-discrete approach. In: Proceedings of the
th annual ACM symposium on parallel algorithms and archi-
tectures (SPAA), pp –, San Diego,

. Nisan N, Roughgarden T, Tardos E, Vazirani VV () Algorith-
mic game theory. Cambridge University Press, Cambridge

. Peleg D, Upfal E () A tradeoff between space and efficiency
for routing tables. In: Proceedings of the th annual ACM sym-
posium on theory of computing (STOC), pp –, Chicago,

Encyclopedia of Parallel Computing Chapter No: 00278 Page Proof Page 9 11-11-2010 #10

UN
CO
RR
EC
TE
D
PR
OO

F

Peer-to-Peer P

. Piatek M, Isdal T, Anderson T, Krishnamurthy A,
Venkataramani A () Do incentives build robustness in
bittorrent? In: Proceedings of the th USENIX symposium on
networked systems design and implementation, Cambridge,

. Piatek M, Madhyastha HV, John JP, Krishnamurthy A,
Anderson T () Pitfalls for ISP-friendly pp design. In:
Proceedings of the hotnets, New York,

. Plaxton C, Rajaraman R, Richa AW () Accessing nearby
copies of replicated objects in a distributed environment. In: Pro-
ceedings of the th ACM symposium on parallel algorithms and
architectures (SPAA), pp , , Newport,

. Qiu D, Srikant R () Modeling and performance analysis
of bittorrent-like peer-to-peer networks. In: Proceedings of the
conference on applications, technologies, architectures, and pro-
tocols for computer communications (SIGCOMM), pp –,
New York,

. Ratnasamy S, Francis P, Handley M, Karp R, Schenker S
() A scalable content-addressable network. In: Proceedings
of the ACM SIG-COMM conference on applications, technolo-
gies, architectures, and protocols for computer communications,
pp –, New York,

. Rowstron AIT, Druschel P () Pastry: scalable, decentral-
ized object location, and routing for large-scale peer-to-peer
systems. In: Proceedings of the IFIP/ACM international confer-
ence on distributed systems platforms (middleware), pp –,
Heibelberg,

. Saroiu S, Gummadi PK, Gribble SD () A measurement study
of peer-to-peer file sharing systems. In: Proceedings of the multi-
media computing and networking (MMCN), San Jose,

. Scheideler C () How to spread adversarial nodes?: rotate! In:
Proceedings of the th Annual ACM symposium on theory of
computing (STOC), pp –, Baltimore,

. Scheideler C, Schmid S () A distributed and oblivious heap.
In: Proceedings of the th international colloquiumonautomata,
languages and programming (ICALP), Rhodes,

. Sen S, Wang J () Analyzing peer-to-peer traffic across large
networks. IEEE/ACM Trans Netw ():–

. Shneidman J, Parkes DC () Rationality and self-interest in
peer to peer networks. In: Proceedings of the nd international
workshop on peer-to-peer systems (IPTPS), Berkeley,

. Steiner M, Biersack EW, Ennajjary T () Actively monitoring
peers in KAD. In: Proceedings of the th international workshop
on peer-to-peer systems (IPTPS), Bellevue,

. Steiner M, En-Najjary T, Biersack EW () Exploiting KAD:
possible uses and misuses. Comput Commu Rev ():–

. Steinmetz R, Wehrle K () Peer-to-peer systems and applica-
tions. Springer, Heidelberg

. Stoica I, Morris R, Karger D, Kaashoek F, Balakrishnan H ()
Chord: a scalable peer-to-peer lookup service for internet appli-
cations. In: Proceedings of the ACM SIGCOMM conference on
applications, technologies, architectures, and protocols for com-
puter communications, San Diego,

. Stutzbach D, Rejaie R () Understanding churn in peer-to-
peer networks. In: Proceedings of the th internet measurement
conference (IMC), New York,

. Subramanian R, Goodman B () Peer-to-peer computing: the
evolution of a disruptive technology. IGI, Hershey

. Thorup M, Zwick U () Compact routing schemes. In: Pro-
ceedings of the annual ACM symposium on parallel algorithms
and architectures (SPAA), pp –, Crete, Greece,

. Zhao BY, Huang L, Stribling J, Rhea SC, Joseph AD,
Kubiatowicz J () Tapestry: a resilient global-scale over-
lay for Service deployment. IEEE journal on selected areas in
commonuincations Vol. , No.

