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4.1 INTRODUCTION AND MOTIVATION

Q1

In order to develop algorithms for sensor networks and in order to give mathematical
correctness and performance proofs, models for various aspects of sensor networks
are needed. This chapter presents and discusses currently used models for sensor
networks. Generally, finding good models is a challenging task. On the one hand, a
model should be as simple as possible such that the analysis of a given algorithm
remains tractable. On the other hand, however, a model must not be too simplistic
in the sense that it neglects important properties of the network. A great algorithm
in theory may be inefficient or even incorrect in practice if the analysis is based on
idealistic assumptions. For example, an algorithm that ignores interference may fail in
practice since communication happens over a shared medium. Many models for sensor
network have their origin in classic areas of theoretical computer science and applied
mathematics. Since the topology of a sensor network can be regarded as a graph,
the distributed algorithms community uses models from graph theory, representing
nodes by vertices and wireless links by edges. Another crucial ingredient of sensor
network models is geometry. Geometry comes into play as the distribution of sensor
nodes in space, as well as the propagation range of wireless links, usually adheres to
geometric constraints.

The chapter is organized as follows. In Section 4.2, the reader will become fa-
miliar with various models for the network’s connectivity. Connectivity models an-
swer the question: Which nodes are “connected” to which other nodes and can
therefore directly communicate with each other. Section 4.3 then enhances these
connectivity models by adding interference aspects: Since sensor nodes communi-
cate over a shared, wireless medium, a transmission may disturb a nearby concurrent
transmission. After having studied connectivity and interference issues, we look at
modeling questions related to algorithm design in Section 4.4. The reader is provided
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with a survey of models that influence the feasibility and efficiency of certain opera-
tions on sensor networks. We draw some general conclusions in Section 4.5, and we
point out interesting areas for future research in Section 4.6.

4.2 MODELING THE SENSOR NODES’ CONNECTIVITY

A first and foremost modeling question concerns the connectivity of sensor nodes:
Given a set of nodes distributed in space, we need to specify which nodes can receive
a transmission of a node. Throughout this chapter, if a node u is within a node v’s
transmission range, we say that u is adjacent to v, or, equivalently, that u is a neighbor
of v. In the absence of interference (cf. Section 4.3), this relation is typically symmetric
(or undirected); that is, if a node u can hear a node v, also v can hear u. The connectivity
of a sensor network is described by a graph G = (V, E), where V (vertices) is the
set of sensor nodes, and E (edges) describes the adjacency relation between nodes.
That is, for two nodes u, v ∈ V , (u, v) ∈ E if v is adjacent to u. In an undirected graph,
it holds that if (u, v) ∈ E, then also (v, u) ∈ E; that is, edges can be represented by
sets {u, v} ∈ E rather than tuples.

The classic connectivity model is the so-called unit disk graph (UDG) [1]. The
name “unit disk graph” stems from the area of computational geometry; it is a special
case of the so-called intersection graph. In this model, nodes having omnidirectional
radio antennas—that is, antennas with constant gain in all directions—are assumed
to be deployed in a planar, unobstructed environment. Two nodes are adjacent if and
only if they are within each other’s transmission range (which is normalized to 1).

Model 4.2.1 (Unit Disk Graph (UDG)). Let V ⊂ R2 be a set of nodes in the two-
dimensional Euclidean plane. The Euclidean graph G = (V, E) is called unit disk
graph if any two nodes are adjacent if and only if their Euclidean distance is at most
1. That is, for arbitrary u, v ∈ V , it holds that {u, v} ∈ E ⇔ |u, v| ≤ 1. Figure 4.1
depicts an example of a UDG.

The UDG model is idealistic: In reality, radios are not omnidirectional, and even
small obstacles such as plants can change connectivity. Therefore, some researchers
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Figure 4.1. Unit disk graph: Node u is adjacent to node v (distance ≤ 1) but not to node w

(distance > 1).



MODELING THE SENSOR NODES’ CONNECTIVITY 79

have proposed to study the other extreme and model the sensor network as a general
graph; that is, each node can be adjacent to every other node.

Model 4.2.2 (General Graph (GG)). The connectivity graph is a general undirected
graph G.

While a UDG is too optimistic, the GG is often too pessimistic, because the con-
nectivity of most networks is not arbitrary but obeys certain geometric constraints.
Still, in some application scenarios it might be accurate to operate either on the UDG
or on the GG. Indeed, there are algorithms developed for the UDG which also perform
well in more general models. Moreover, some algorithms designed for the GG are
currently also the most efficient ones for UDGs (e.g., reference 2).

The research community has searched for connectivity models between the two
extremes UDG and GG. For example, the quasi unit disk graph model (QUDG)
[3, 4] is a generalization of the UDG that takes imperfections into account as they
may arise from non-omnidirectional antennas or small obstacles. These QUDGs are
related to so-called civilized graphs. The interested reader can find more information
in reference 5.

Model 4.2.3 (Quasi Unit Disk Graph (QUDG)). The nodes are in arbitrary posi-
tions in R2. All pairs of nodes with Euclidean distance at most ρ for some given
ρ ∈ (0, 1] are adjacent. Pairs with a distance larger than 1 are never in each other’s
transmission range. Finally, pairs with a distance between ρ and 1 may or may not be
neighboring. An example is shown in Figure 4.2.

Note that, for ρ = 1, a QUDG is a UDG, and therefore the following theorem
holds.

Theorem 4.2.1. A UDG is a special case of a QUDG.

The QUDG model itself can be extended in several ways.
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Figure 4.2. Quasi unit disk graph from the perspective of node u: Node u is always adjacent
to node v1 (d(u, v1) ≤ ρ) but never to v5 (d(u, v5) > 1). All other nodes may or may not be in
u’s transmission range. In this example, node u is adjacent to v3 and v4 but not to v2.
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Model 4.2.4 (QUDG Variations). The QUDG as presented in Model 4.2.3 does not
specify precisely what happens if the distance is between ρ and 1. There are several
options. For example, one could imagine an adversary choosing for each node pair
whether they are in each other’s transmission range or not. Alternatively, there may
be a certain success probability of being adjacent: The corresponding probability
distribution could depend on the time and/or distance [6]. For example, the QUDG
could be used to study Rayleigh fading; that is, the radio signal intensity could vary
according to a Rayleigh distributed random variable. Also, a probabilistic on/off
model is reasonable, where in each round a link’s state changes from good to bad and
vice versa with a given probability.

Measurement studies suggest that in an unobstructed environment, and with many
nodes available, 1/ρ is modeled as a small constant [7]. Interestingly, many algorithms
can be transferred from the UDG to the QUDG at an additional cost of 1/ρ2 [4]. Note
that while for ρ ≈ .5 this factor is bearable, the algorithms are two orders of magnitude
worse if ρ ≈ .1. While the QUDG can be attractive to model nodes deployed in
fields with few obstacles, it does not make sense for inner-city or in-building networks
where obstructions cannot be ignored: Since a node may be able to communicate with
another node which is dozens of meters away, but not with a third node being just
around the corner, ρ would be close to 0.

However, even in such heterogeneous environments, the connectivity graph is still
far from being a general graph. Although nodes that are close but on different sides
of a wall may not be able to communicate, a node is typically highly connected to
the nodes which are in the same room, and thus many neighbors of a node are direct
neighbors themselves. In other words, even in regions with many obstacles, the total
number of neighbors of a node which are not adjacent is likely to be small. This
observation has motivated Model 4.2.6, see reference 8 for more details.

Model 4.2.5 (Bounded Independence Graph (BIG)). Let ϒr(u) denote the set of
independent nodes that are at most r hops away from node u (i.e., nodes of u’s
r-neighborhood) in the connectivity graph G. Thus, a set S�V of nodes is called
independent if all nodes in the set are pairwise not adjacent; that is, for all u, v ∈ S,
it holds that {u, v} /∈ E. Graph G has bounded independence if and only if for all
nodes u ∈ G, |ϒr(u)| = O(poly(r)) (typically |ϒr(u)| ∈ O(rc) for a small constant
c ≥ 2).

The BIG model reflects reality quite well and is appropriate in many situations.
Figure 4.3 shows a sample scenario with a wall; in contrast to UDG and QUDG, the
BIG model captures this situation well.

Since the number of independent neighbors in a disk of radius r of a UDG is at most
O(r2), we have the following fact. The proof is simple (and similar to the upcoming
proof of Theorem 4.2.13) and left to the reader as an exercise.

Theorem 4.2.2. The UDG model is a special case of the BIG model. Similarly, if ρ

is constant, also a QUDG is a BIG.
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Figure 4.3. Nodes u and v are separated by a wall. Nodes on the same side of the wall are
completely connected. However, due to the wall, although u can reach a distant node w, it
cannot hear the close node v. Such situations can be modeled by the BIG but not by the UDG
or the QUDG.

Observe that many models described so far can be generalized. For instance, the
UDG and QUDG models can be studied in three dimensions rather than in the plane,
or using different distance functions (norms). For more detailed information on the
concept of norms, the reader may want to consult any introductory book on linear
algebra.

Model 4.2.6 (Generalized (Q)UDG). One extension of the UDG and QUDG mod-
els is to consider nodes in R3. Moreover, distances between nodes could be
modeled using the Manhattan norm (L1 norm). In the Manhattan norm, the dis-
tance between two points u = (x1, y1) and v = (x2, y2) in the plane is given by
d(u, v) = |x2 − x1| + |y2 − y1|, while in the Euclidean norm (L2 norm), the dis-
tance is d(u, v) =

√
|x2 − x1|2 + |y2 − y1|2. Alternatively, also the maximum norm

(L∞ norm) is popular, where d(u, v) = max |x2 − x1|, |y2 − y1|.

The UDG model has also been extended to more general metric spaces; for ex-
ample, in reference 9, it was extended to doubling metrics [10]. First, recall that Q2

a metric space defines distances between all pairs of nodes while guaranteeing
non-negativity, identity of indiscernibles, symmetry, and triangle inequality. A dou-
bling metric is simply a metric space with some additional constraints which are
described next.

Model 4.2.7 (Unit Ball Graph (UBG)). A doubling metric space is defined as fol-
lows: For a node u, let the ball Bu(r) denote the set of all nodes at a distance at most
r from u. It holds, for all nodes u and all r ≥ 0, that the ball Bu(r) can be covered
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Figure 4.4. The Euclidean plane forms a doubling metric. In this example, the nodes are
distributed in R2, and three balls of radius r/2 are sufficient to cover all nodes in Bu(r); that is,
Bu(r) = Bu1 (r/2) ∪ Bu2 (r/2) ∪ Bu3 (r/2).

by a constant number of balls of radius r/2; that is, Bu(r)⊂ ⋃
i=1...c Bui (r/2), where

ui are arbitrary nodes and c is a (usually small) constant. In the UBG model, nodes
are assumed to form a doubling metric space. Two nodes u and v with d(u, v) ≤ 1 are
adjacent, whereas all other nodes are not.

The proof of the following theorem is left to the reader as an exercise.

Theorem 4.2.3. Nodes in a two-dimensional Euclidean plane (i.e., the metric space is
given by the Euclidean distances) form a doubling metric. A general graph, however,
does not.

Figure 4.4 shows an example for the Euclidean plane. In this setting, three balls of
radius r/2 are enough to cover all nodes in the ball of radius r around node u. To
see why a general graph may not form a doubling metric, consider a graph where all
nodes have distance 1 to all other nodes. Observe that it is possible to model a UDG
with a UBG by using the Euclidean distances of the UDG and connecting those node
pairs which have distance at most 1. Moreover, even a QUDG can be modeled with
a UBG. We have the following results.

Theorem 4.2.4. A UDG is a UBG.

Theorem 4.2.5. An undirected QUDG with constant ρ is a UBG.

Proof. The idea of the proof is as follows: First, we transform all distances in the
QUDG. We then show that during this transformation, all edges are maintained; that
is, the resulting graph is isomorphic to the QUDG. Moreover, it can be shown that
after the transformation, the graph also fulfills the requirements of a doubling metric
space.
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We transform the distances between all pairs of nodes (u, v) in the QUDG as
follows. Let dQ(u, v) denote the distance from node u to node v in the QUDG, and let
dB(u, v) be the transformed distance in the UBG. Moreover, let ε > 0 be an arbitrary
small number.

dB(u, v) :=




dQ(u, v)/ρ if dQ(u, v) ≤ ρ

1 if ρ < dQ(u, v) ≤ 1 and v is adjacent to u

1 + ε if ρ < dQ(u, v) ≤ 1 and v is not adjacent to u

dQ(u, v) if dQ(u, v) > 1

Observe that by this transformation, pairs of nodes that are adjacent in the QUDG are
assigned distances of at most 1 and are therefore also adjacent in the UBG. Similarly,
nodes that are not adjacent in the QUDG have a distance larger than 1 are therefore
not neighboring in the UBG either. Also observe that the transformation increases the
distance between two nodes by less than a constant factor of µ := (1 + ε)/ρ, but it
never decreases any distances. It remains to show that after the transformation, the
nodes indeed form a doubling metric space.

In order to form a metric space, the distances between the nodes are to fulfill the
following properties: (1) nonnegativity, (2) identity of indiscernibles, (3) symmetry,
and (4) triangle inequality. The nonnegativity and the identity of indiscernibles cri-
teria are met trivially. The symmetry criterion, however, might not hold, because the
adjacency relation can be directed in a QUDG. Therefore, in the following, we con-
sider undirected QUDGs only. Hence, since our distance transformation maintains
symmetry, Property 3 holds as well. It remains to discuss the triangle inequality.

Consider two arbitrary nodes u and v. Since in the QUDG, all distances are
Euclidean, it holds that

∀w : dQ(u, v) ≤ dQ(u, w) + dQ(w, v) (4.1)

Let us now look at the following three cases in turn: (i) dQ(u, v) ≤ ρ, (ii) ρ <

dQ(u, v) ≤ 1, and (iii) 1 < dQ(u, v). In Case i, no node w with distance larger than ρ

from any of the two nodes u and v can challenge the triangle inequality. For all other
nodes w, however, it holds that dB(u, v) = dQ(u, v)/ρ ≤ (dQ(u, w) + dQ(w, v))/ρ =
dB(u, w) + dB(w, v). Here, the equalities hold by the definition of the transformation
function and the inequality is due to Eq. (4.1). Next, we tackle Case ii. Again, only
nodes w with dQ(u, w) ≤ ρ and dQ(w, v) ≤ ρ can challenge the inequality. How-
ever, we know that dQ(u, v) > ρ, and hence Eq. (4.1) yields dB(u, w) + dB(w, v) =
dQ(u, w)/ρ + dQ(w, v)/ρ > 1. Finally, the triangle inequality also holds in Case iii,
because the distance between u and v in the UBG is the same as in the QUDG, and
our transformation never decreases any distances.

We conclude the proof by showing that the metric space has a constant dou-
bling dimension. Recall that all distances are only stretched by a constant factor
between 1 and µ in our transformation. Therefore, for all nodes u and arbitrary radii
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r, B
QUDG
u (r/µ)⊂BUBG

u (r). Thus, at most a constant factor of O(log µ) times, more
balls are needed for the UBG than for the QUDG (the Euclidean plane) in the worst
case, and the claim follows.

The UBG itself has a polynomially bounded independence and is therefore a BIG.

Theorem 4.2.6. A UBG is a BIG.

Proof. Fix a node u. We have to prove that the total number of independent nodes in
Bu(r) grows polynomially in r. Observe that, due to the triangle inequality, in Bu(1/2)
there is at most one independent node. Thus, by the definition of a doubling metric,
there are at most c independent nodes in Bu(1), at most c2 in Bu(2), c3 in Bu(4),
and so on. Generally, there are at most clog r+1 independent nodes in Bu(r). Since
clog r ∈ O(rc), the claim follows.

To conclude, we present two additional modeling aspects with which connectiv-
ity models are occasionally extended. The first aspect concerns the sensor nodes’
antennas.

Model 4.2.8 (Antennas). Besides omnidirectional antennas, there is a wide range of
more sophisticated antenna models. For example, a node can have a directional radio
antenna with more gain in certain directions.

Finally, as mentioned in the discussion of the QUDG, links are not always reliable:
Links may be up and down—for example, according to a probabilistic process.

Model 4.2.9 (Link Failures). Any graph-based model can be enhanced with proba-
bilistic links.

4.3 INTERFERENCE ISSUES IN WIRELESS SENSOR NETWORKS

In wireless networks, the communication medium is shared and transmissions are
exposed to interference. Concretely, a node u may not be able to correctly receive a
message of an adjacent node v because there is a concurrent transmission nearby. In
some sense, an interference model explains how concurrent transmissions block each
other. Interference is a difficult phenomenon, with many hard-to-capture characteris-
tics. A signal might, for example, interfere with itself due to multipath propagation
(e.g., a direct path canceling with a longer path reflecting on an object). A discus-
sion of these effects is beyond the scope of this overview chapter. Instead we look at
models that capture reality from a worst-case perspective. The mother of all interfer-
ence models is the so-called physical or SINR model [11–13], which is widely accepted
by information theorists. In this model, the successful reception of a message depends
on the received signal strength, the ambient noise level, and the interference caused
by simultaneously transmitting nodes.
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Model 4.3.1 (Signal-to-Interference Plus Noise (SINR)). Let Pr be the signal
power received by a node vr and let Ir denote the amount of interference gener-
ated by other nodes. Finally, let N be the ambient noise power level. Then, a node
vr receives a transmission if and only if Pr

N+Ir
≥ β. Thus, β is a small constant (de-

pending on the hardware) and denotes the minimum signal to interference ratio that
is required for a message to be successfully received. The value of the received signal
power Pr is a decreasing function of the distance d(vs, vr) between transmitter vs

and receiver vr. More specifically, the received signal power is modeled as decaying
with distance d(vs, vr) as 1

d(vs,vr)α . The so-called path-loss exponent α is a constant
between 2 and 6 and depends on external conditions of the medium, as well as on the
exact sender–receiver distance. 1 Let Pi be the transmission power level of node vi.
A message transmitted from a node vs ∈ V is successfully received by a node vr if

Ps

d(vs, vr)α

N + ∑
vi∈V\{vs}

Pi

d(vi, vr)α

≥ β

In other words, in the SINR model, a node correctly receives a transmission if the re-
ceived signal power—which depends on the sending power and the distance between
sender and receiver—is large enough compared to the signal power of concurrent
(interfering) transmissions and the ambient noise level. Sometimes a variation of this
SINR model is used in literature. It has an additional requirement: For a success-
ful reception, the received signal power must exceed a minimal threshold θ, that is,
Pr ≥ θ. In many situations, such a threshold can also be incorporated implicitly by
the ambient noise power level N. Moreover, researchers have also studied a proba-
bilistic SINR model [14], where the gain of an antenna is described by a Gaussian
distribution—independently of the distance! Apart from the interference term, and
if all nodes send with the same transmission power level, the connectivity model of
SINR is exactly the UDG, with path-loss exponent α and minimum ratio β such that
the maximum distance for receiving a signal is 1. Hence, the SINR model can be
extended similarly to the UDG model. Now, observe that the SINR model does not
specify the signal power Ps used by a sender vs to transmit data to the receiver vr.
Three models are common:

Model 4.3.2 (Power Control). CONST: All nodes use the same constant transmis-
sion power. DIST: The power level depends on the distance d between sender and
receiver. Concretely, the transmission power is given by c · dα for some α ≥ 2 and
some constant c > 0. GEN: A general (or arbitrary) power level is assumed at the

1 In free space, α roughly equals 2. In the so-called two-ray ground model, it is assumed that there are
two paths of the electromagnetic wave: a direct one and a ground reflected signal path; to describe this
situation, α = 4 is used. Finally, note that ever since Marconi’s first experiments, time has been devoted to
explain radio propagation phenomena, and there is a plethora of other proposals. For example, for small
urban cells, a photon propagation model has been suggested implying an exponentially growing path loss.
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Figure 4.5. Sample network with heterogeneous transmission ranges. For instance, the node
on the far left saves energy and reduces interference by using only a small power level.

sender, which may change over time. Figure 4.5 depicts a network where each node
has a different power level.

Although the SINR model incorporates many important physical properties, it has
not received an appropriate amount of attention from the algorithms community [12].
This can be partially explained by the fact that the SINR model is complicated. For
instance, a lot of far-away transmissions sum up, and may interfere with a close-by
sender-receiver pair. In practice, however, these far-away transmissions often only
contribute to the ambient noise and need not be counted individually. Twiddling the
knobs of the model a bit more, we might not sum up all interfering transmissions, but
simply look at the worst—or, in the case of a CONST model; closest—disturbance:
A node receives a transmission if and only if the closest simultaneously transmitting
node is far enough.

Model 4.3.3 (Interfering Transmissions). SUM: All interfering transmissions are
taken into account. ONE: Only the worst (or closest) interfering transmission matters.
NULL: Pure connectivity models which do not consider interference aspects (cf.
Section 4.2).

ONE models are quite popular because of their simplicity. The UDI—an
interference-aware version of the UDG—is a prominent example (cf. Model 4.3.4).
Observe that, because of the constant transmission power, the power control type of
UDI is CONST. Figure 4.6 shows an example.

Model 4.3.4 (UDG with Distance Interference (UDI)). Nodes are situated arbi-
trarily in the plane. Two nodes can communicate directly if and only if their Euclidean
distance is at most 1, and if the receiver is not disturbed by a third node with Euclidean
distance less or equal a constant R ≥ 1.

Often the constant R of the UDI model is approximated in such a way that in-
terference can be reduced to a parameter of the UDG. For instance, some MAC
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Figure 4.6. The UDI model has two radii: a transmission radius (length 1) and an interference
radius (length R ≥ 1). In this example, node v is not able to receive a transmission from node
u if node x concurrently transmits data to node w—even though v is not adjacent to x.

protocols (e.g., coloring algorithms [15]) have been proposed to reduce interference by
ensuring a certain hop distance between two senders. Concretely, it is assumed that
only the k-neighborhood of a receiver u can interfere with u. Clearly, this is a stark
simplification since in a UDG a (k + 1)-neighbor can be close to the receiver (see
Figure 4.7).

Model 4.3.5 (UDG with Hop Interference (UHI)). Nodes are located at arbitrary
positions in R2. Two nodes are adjacent if and only if their Euclidean distance is at

Vk+1

Vk+2

V1

V2

1 +ε

Figure 4.7. Example where UHI fails: Nodes v1 and vk+2 are separated by a path of k + 1
hops, but are close (distance 1 + ε). Thus, concurrent transmissions of nodes v2 and vk+2 may
interfere at v1 in spite of their large hop distance.
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most 1. Two nodes can communicate directly if and only if they are adjacent, and if
there is no concurrent sender in the k-hop neighborhood of the receiver (in the UDG).

Observe that while the UHI model—for every k—sometimes overlooks interfer-
ence terms which the UDI would take into account, the contrary does not hold.

Theorem 4.3.1. By choosing R = k, and since a hop has at most length 1, the UDI
model does not overlook any interference terms that UHI would have taken into
account. The contrary does not hold (cf. Figure 4.7).

Like UDI and UHI, also the protocol model (PM) is of type ONE (Model 4.3.3).
However, the senders in the PM model adapt their transmission power according to
DIST (Model 4.3.2)—that is, depending on the distance between sender and receiver.
Model 4.3.7 is a variation of the model introduced in reference 11.

Model 4.3.6 (Protocol Model (PM)). Let u1, u2, ..., uk, be the set of nodes trans-
mitting simultaneously to receivers v1, v2, ..., vk, respectively. The transmission of
ui is successfully received by vi if for all j 
= i, it holds that d(uj, vi) > λ · d(uj, vj),
where λ ≥ 1 is a given constant. That is, vi must not fall into a “guard zone” around
any sender uj which is a factor (1 + λ) larger than uj’s transmission range.

Many interference models distinguish between senders and receivers assuming
that interference arises at senders and occurs at receivers. However, often receivers
acknowledge messages and are therefore also senders. If the original messages are
short (e.g., control messages), then the sender/receiver distinction may not make sense.
By this observation, some models (e.g., reference 16) simply consider the interference
of undirected links. Figure 4.8 depicts an example.

Model 4.3.7 (Direction). DIR: This class of interference models distinguishes be-
tween senders and receivers (interference disks around senders). UNDIR: Interference
originates from undirected links (interference “pretzels” around links).

Figure 4.8. DIR vs. UNDIR: On the left, only the sender transmits data (interference disks
around senders). On the right, there is no distinction between sender and receiver, and hence
interference arises from the entire link (“pretzels” around links).
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As in the case of connectivity models, the SINR, the UDI, and the UHI models
can be extended with directional antennas and link failures, and hence Models 4.2.14
and 4.2.15 also apply here. Moreover, also the idea of quasi unit disk graphs (cf.
Model 4.2.3) could be adopted. For example, the UDI can be “quasified” as follows:
If two nodes are closer than a given threshold R1, concurrent transmissions will
always interfere; if the distance is larger than a second threshold R2, there will be
no interference. Finally, if the distance is between R1 and R2, transmissions may or
may not interfere. However, these models are often too complicated to be handled
algorithmically. It is sometimes simpler to study general weighted interference graphs
instead. That is, similar to connectivity graphs, the interference model is based on
graphs; however, the edges are now weighted. Formally, in a weighted interference
graph H = G(V, E, w), V represents the set of sensor nodes, E represents the set of
edges, and w : E → R

+ is a function assigning a positive value to each edge. The
weight denotes how large the interference between the corresponding nodes actually
is. As in the SINR model, a transmission is received correctly if the ratio between
received signal power and the amount (either the sum or the maximal interfering
signal strength) of interfering traffic is smaller than a certain threshold.

Model 4.3.8 (General Weighted Graph (GWG)). A weighted interference graph
H is given. A receiver v successfully receives a message from a sender u, if and
only if the received signal strength (the weight of the link between u and v in H)
divided by the total interference (the sum or the maximum of the weights of the links
of concurrently transmitting nodes with a receiver v in H) is above the threshold given
by the signal-to-interference-plus-noise ratio.

The general weighted graph model is quite pessimistic, because it allows for non-
natural network topologies. Again—like in the BIG connectivity model—we need
a weighted graph model that captures the geometric constraints without making too
many simplifying assumptions. Again, one approach is to assume that the nodes form
a doubling metric (cf. UBG model of Section 4.2).

Model 4.3.9 (Doubling Metric (DM)). The DM model assumes that the nodes form
a doubling metric; that is, the set of nodes at a distance (which is now given by the
weights of the edges) of at most r from a node u can be covered by a constant number
of balls of radius r/2 around other nodes, for any r (cf. Model 4.2.9). Interference
can be incorporated in various ways. For example, the amount of interference at a
receiver u could depend on u’s distance (in the doubling metric space) to the closest
concurrently transmitting node (ONE model), or on the number of concurrent senders
(SUM model).

As a final remark, note that so far we have only presented binary interference
models: A message can be received either correctly or not at all. In practice, however,
also the transfer rate at which messages can be transmitted can depend on interference:
The larger the signal-to-noise ratio, the larger the available bandwidth. A WLAN
802.11, for example, exploits environments with less interference in order to transmit
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Figure 4.9. Overview of connectivity and interference models presented in Sections 4.2 and
4.3. The arrows show how the models are related.

more data per time unit. Of course, it would be possible to extend, for example, the
DM model to capture this aspect as well. However, since these issues are beyond the
scope of this chapter, we refer the reader to reference 17 for more details. To conclude,
Figure 4.9 summarizes the connectivity and the interference models.

4.4 ALGORITHM DESIGN

The main purpose of deploying sensor networks is the collection physical data such
as light intensity, sound, or temperature. In order to aggregate (e.g., compute the
minimum temperature, or the average, etc.) the data that are stored at the individual
nodes—and which are therefore distributed in space!— protocols or algorithms are
needed specifying how these operations are performed. For example, due to the limited
radio communication range, sensor nodes have to communicate (e.g., gather data) in
a multihop manner with each other—that is, the messages have to be relayed by
intermediate nodes—and hence a routing algorithm has to define which messages are
to be forwarded via which other nodes.

Algorithms for sensor networks come in different flavors. In the following, we
first describe the different types of algorithmic models appearing in literature today.
We then discuss modeling aspects that may influence an algorithm’s performance—
for instance, what kind of identifiers nodes have, or how the nodes are distributed in
space. Besides the classic evaluation criteria for algorithms—namely, time complexity
and space complexity—algorithms for sensor networks pose additional optimization
problems; for example, the number of messages that are sent should be small; or, in
order to maximize the lifetime of the network, the nodes’ energy consumption must
be minimized. In order to facilitate a better understanding of the different algorithm
types presented in the upcoming paragraphs, we will consider a sample problem: the
computation of dominating sets.

Definition 4.4.1 (Dominating Set Problem (DS)).. The computation of a dominat-
ing set (DS) is a fundamental operation in sensor networks. For instance, such a set
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Figure 4.10. A minimum dominating set with two dominators.

can be used to build node clusters. Moreover, it may serve as a basis for constructing
backbone networks that typically form a connected DS. A dominating set D⊂V of a
(undirected) network graph G = (V, E) is a set of nodes such that for all nodes u ∈ V

it holds that either u is in the dominating set itself (i.e., u ∈ D), or u is adjacent to
a node v in D (i.e., {u, v} ∈ E ∧ v ∈ D). It is often desirable to have small dominat-
ing sets. The minimum dominating set (MDS) is defined as the dominating set that
minimizes the number of dominators |D|. An example of an MDS is illustrated in
Figure 4.10. It can be shown that the MDS problem is NP-hard on general graphs and
that a logarithmic approximation is asymptotically optimal unless P ≈ NP [18]. For
simpler connectivity graphs such as the UDG graph, the approximation complexity
of the problem may be better; for example, there is a polynomial time approximation
scheme (PTAS) for UDG graphs!

The first category of algorithms we present here is similar to the classic (graph)
algorithms appearing in the field of theoretical computer science or applied mathemat-
ics. These global algorithms can operate directly on the entire network or graph and
can have complete information about the state of the system. For example, a system
designer planning a fixed sensor network can apply a global algorithm to determine
the optimal positions of the nodes in a given observation area.

Model 4.4.2 (Global Algorithms). A global algorithm can operate directly on the
entire network.

Kruskal’s algorithm for computing a minimum spanning tree [19] is an example of
a global algorithm: The algorithm receives the entire graph as input and can sort the
edges according to their weights. Kruskal’s algorithm thus has a complete visibility
of the entire graph and can perform arbitrary operations on it. No messages have to
be sent between nodes.

Example 4.4.3. Let us tackle our dominating set problem! When faced with the task
of designing an algorithm for a certain problem, it is often a good idea to start by
studying greedy algorithms—that is, algorithms that in every execution step “greed-
ily” do the currently most promising thing. Interestingly, a greedy algorithm is often
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optimal (see also Matroid theory [19]). So how can we greedily compute an MDS? A
straightforward approach is the following (see Algorithm 1): First, we initialize the
set of dominators with the empty set, that is, D := {}. We will call nodes in D black
(“dominators”), nodes that are covered by nodes in D gray (“dominated nodes”), and
all uncovered nodes white. Let w(v) be the number of white nodes adjacent to v,
including v itself. Then, in every step, we iterate over all nodes v (global operation!)
and compute the number w(v) of v’s white neighbors, remembering the node x having
the largest number. At the end of each step, we add node x to D. That is, we choose the
node to become a dominator that covers the most new nodes, greedily reducing the
number of the remaining nodes as much as possible. Obviously, the resulting domina-
tors indeed form a DS. Moreover, it can be proven that the number of dominators is at
most a logarithmic factor larger than in the optimal case. This simple approximation
algorithm is therefore asymptotically optimal unless P ≈ NP!

ALGORITHM 1. Global and Greedy MDS Algorithm

1: D := {};
2: while ∃ white nodes do
3: x := {x|w(x) = maxv{w(v)}};
4: D := D ∪ x;
5: od;

However, unlike global algorithms, most algorithms for sensor networks are not
executed by a central designer, but rather by the sensor nodes themselves, for example,
during the system’s operation. A node a priori only knows its own state. In order to
learn more about the other nodes in the network, it is bound to communicate with
its neighbors by exchanging messages. Typically, when a node receives a message, it
performs some computation, and—depending on the computation’s results—sends a
new message to its neighbors. By this collaboration of the nodes, global operations
such as (multihop) routing between two nodes can be performed. Since the activity is
distributed among the nodes, these algorithms are called distributed algorithms [20].

Model 4.4.4 (Distributed Algorithms). In a distributed algorithm, every sensor
node runs its own algorithm. A priori, a node only knows the state of itself. In order to
learn more about the rest of the network, nodes repeatedly exchange messages with
adjacent nodes.

Thus, unlike in global algorithms, distributed algorithms do not see the entire graph
at the beginning. If more information about the neighborhood is needed, adjacent
nodes have to exchange messages. Distributed algorithms raise many interesting ques-
tions. For example: What can be computed in a distributed fashion, and what not?
In contrast to global algorithms, nodes have to be coordinated somehow, and—as
all nodes execute the same code—symmetries have to be broken. Besides an al-
gorithm’s correctness, execution time to perform the task (time complexity), and
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memory requirements at the nodes (space complexity), a new criterion becomes
important, namely message complexity: Since distributed algorithms rely on mes-
sage passing and since sending and receiving messages is an expensive operation
(e.g., energy consumption, queueing delay, congestion, etc.), a distributed algorithm
should minimize the total number of messages sent.

Example 4.4.5. In the following, we will see how dominating sets can be computed
with distributed algorithms. Consider the following idea: Each sensor node broadcasts
its own identifier plus the identifiers of all its neighbors to all other nodes in the
network. Hence, each node gets a picture of the entire connectivity graph. Then,
the node having the largest identifier computes the MDS using the global algorithm
described in Algorithm 1, and it broadcasts the corresponding solution back to all
nodes. Given this solution, each node can then decide whether it has to join the
dominating set or not. Note that this algorithm is indeed distributed and yields small
dominating sets: The size of the sets are again asymptotically optimal, unless P ≈ NP .
However, due to the broadcast operation, the message complexity is huge. What is
more, the algorithm does not scale to a large number of sensor nodes.

Many global algorithms can be turned into distributed algorithms by just collecting
the entire graph at each node and then computing the results locally. Of course, this is
inefficient and inappropriate in practice. Therefore, it is often better to study a more
restricted class of distributed algorithms, namely localized algorithms [21].

Model 4.4.6 (Localized Algorithms). A localized algorithm is a special case of a
distributed algorithm. At the beginning, a node has only information about its own
state. In order to learn more about the rest of the network, messages have to be
exchanged. In a k-localized algorithm, for some constant k, each node is allowed to
communicate at most k times with its neighbors. However, a node can decide to retard
its right to communicate; for example, a node can wait to send messages until all its
neighbors having larger identifiers have reached a certain state of their execution.

Localized algorithms are desirable in the sense that they only transmit a small
number of messages. Unfortunately, however, localized algorithms can be slow: A
node u might have to wait for a neighbor v to transmit all its messages, while node v

in turn has to wait for its neighbor w, and so on. As a matter of fact, there can be a
linear chain of causality, with only one node being active at any time. This yields a
worst-case execution time of �(n), where n is the number of nodes.

Example 4.4.7. In order to compute the dominating sets of our sample problem in a
localized manner, a simple algorithm can be applied (cf. Algorithm 2). Each node v

waits until all its neighbors having a larger degree (or, in the case of the same degree; a
larger identifier) than v have decided whether to join the dominating set or not. Then, if
one of these nodes is a dominator, v decides not to join the dominating set. Otherwise,
v becomes a dominator. Thus, each node has to communicate at most twice with its
neighbors: once to find out their degree and once to tell them about its decision. This
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Figure 4.11. Localized algorithms can have large execution times!

localized algorithm has therefore a low message complexity. However, the execution
time of this algorithm can be large. To see this, consider a cycle of nodes arranged
according to their identifiers as depicted in Figure 4.11. Since all nodes have the same
degree, the first node to become a dominator is node n. Only then, node n−1 can
make its decision: It does not join the dominating set. After that, node n−2 decides
to join the network, and so on. It’s only after a linear waiting time of O(n) time steps
that node 1 eventually can make its decision and terminate the algorithm!

ALGORITHM 2. Localized MDS Algorithm

1: (* Code executed by node v *)
2: send degree and ID to all neighbors;
3: receive messages from neighbors;
4: while (∃ undecided neighbor w with prio(w) > prio(v)) do
5: wait();
6: od;
7: (* Decision *)
8: if (∃ dominator in neighborhood) then
9: D := D;

10: send “I am dominated!” to neighbors;
11: else
12: D := D ∪ v;
13: send “I am a dominator!” to neighbors;
14: fi;

Researchers have proposed to study yet another kind of distributed algorithm that
overcomes the performance problems of localized algorithms, always terminating
after a constant number of communication rounds [2].

Model 4.4.8 (Local Algorithms). Again, at the beginning, each node only knows its
own state. In a k-local algorithm, for some constant k, each node can communicate at
most k times with its neighbors. However, in contrast to k-localized algorithms, nodes
cannot delay their decisions. In particular, all nodes process k synchronized phases,
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Figure 4.12. Illustration of local dominating set algorithm: Since all nodes with larger IDs
are connected to each other and cover all other neighbors of node 5, node 5 does not join the
dominating set—regardless of the decisions of other nodes.

and a node’s operations in phase i may only depend on the information received during
phases 1 to i − 1. The most efficient local algorithms are often randomized [22, 23],
that is, the number of rounds k can vary.

Observe that in a k-local algorithm, nodes can only gather information about nodes
in their k-neighborhood. In some local algorithms [22], the algorithm designer can
choose an arbitrarily small constant k (at the cost of a lesser approximation ratio). This
makes local algorithms particularly suited in scenarios where the nodes’ environment
changes frequently, because they are able to constantly adapt to the new circumstances.

Example 4.4.9. A dominating set can also be computed with a local algorithm: Each
node u asks its higher-priority neighbors (with respect to degrees and identifiers) about
their neighbors. If these higher-priority neighbors are connected and cover all of u’s
neighbors, then u does not join the dominating set and otherwise becomes a domina-
tor. An example is illustrated in Figure 4.12. It can be shown that this algorithm even
results in a connected dominating set—that is, a dominating set where any two domi-
nators are connected by a path that only consists of other dominators. Observe that the
algorithm is indeed “wait-free” or local, because a node can make its decisions only
based on the identifiers of its neighbors and independently of the neighbors’ decisions.
Two communication rounds are sufficient. From this point of view, this local algorithm
looks very appealing. Unfortunately, however, in the worst case, its approximation
ratio of the optimal solution is as bad as �(

√
n) already for simple connectivity graphs

such as the UDG.2 This indicates the existence of a challenging tradeoff: The smaller
the “horizon” of a local algorithm, the more difficult it is to find good approximations
of the optimal (global) solutions. In other words, there seems to be price of being

2 For random UDGs, the performance is better: The algorithm achieves a constant approximation!
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near-sighted: Similarly to online algorithms that cannot foresee the future and have
to be competitive to an optimal offline algorithm, local algorithms have a restricted
view of their neighborhood and are measured against the performance of a global
algorithm.

Note that due to the synchronous phases, local algorithms may make greater
demands on the media access sublayer than localized algorithms. In particular, in
unreliable wireless networks it seems to be costly to implement a media access
control scheme that allows for synchronous rounds, because messages will be lost
due to interference (conflicting concurrent transmissions) or mobility (even if the
nodes themselves are not mobile, the environment is typically dynamic, temporar-
ily enabling/disabling links). A powerful concept for coping with failures is self-
stabilization [24]. Fortunately, using a simple trick [25], every local algorithm is
immediately self-stabilizing. The trick works as follows (Section 4 of reference 25):
Every node keeps a log of every state transition it has taken until its current state;
generally, this boils down to memorizing the local variables of each step of the main
loop. If each node constantly sends its current log to all neighbor nodes, each node
can check and correct every transition it has made in the past. Assuming that all
inputs are correct (variable initialization and random seeds are stored in the imper-
ishable program memory, and sensor information can be rechecked), every fault due
to memory or message corruption will be detected and corrected. For details we refer
to reference 25. Turning a k-local algorithm into a self-stabilizing algorithm with
reference 25 blows up messages by a factor k (in the worst case); on the other hand,
we immediately get an algorithm that works on a sensor network as the hardest wire-
less problems (messages lost due to interference and mobility) are covered by the
self-stabilization model. Also, in the case of an error (such as a lost message), only
the k-neighborhood of a node is affected.3

Having defined the most common types of algorithm, we now look at some al-
gorithmic aspects in more detail. As mentioned, the message complexity—the total
number of messages sent by an algorithm—is a main evaluation criterion of distributed
algorithms. Because the number of messages typically depends on the amount of in-
formation that can be stored in a message, a model must specify the messages’ sizes. A
most popular model limits the message size to O(log n) bits, where n is the total num-
ber of nodes in the system. Hence, a message can store only a constant number of node
identifiers (e.g., the source and destination address of a routing packet). Moreover, it
is often assumed that if a node u sends a message to a neighbor v, all other neigh-
bors of u will also receive the message (broadcast model). However, sometimes—for
example, for lower bound proofs [26]—models are considered where the message
size is unbounded, and where nodes can communicate with their neighbors individ-
ually (message-passing model). Algorithmic models also differ in their assumptions
about how nodes can access the wireless medium. The concrete MAC, however, can

3 In principle, localized algorithms can also benefit from reference 25; however, errors are not restricted
to a k-neighborhood but may propagate through the entire network, resulting in a troublesome butterfly
effect.
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influence the number of retransmissions and hence an algorithm’s performance. More-
over, an algorithm may be able to coordinate the medium access itself.

Model 4.4.10 (Medium Access). Some researchers assume an ideal medium access
mechanism [27] where interference is impossible and where messages will always
be broadcast instantaneously to all neighbors (cf. models of Section 4.2). In addition,
adversarial models are used where an adversary schedules transmissions. Of course,
this model only makes sense if the adversary is restricted appropriately—that is, if
there are fairness guarantees. For example, the adversary might have to schedule
each node at least once every �(n) rounds. One could also imagine an adversary that
delivers a message only to a subset of a node’s neighbors, because the other neighbors
experience collisions. Finally, completely unstructured radio networks [28] can be
considered where the algorithm designer has to implement her own medium access
scheme from scratch. These models can further be classified in terms of whether
collisions can be detected by a receiver or not.

As mentioned, a main objective of sensor networks is to collect physical data
distributed over a given region. To achieve this, typically one or more nodes observe
different sub-areas. Knowledge of the nodes’ distribution, however, can be important
for an algorithm designer. In a scenario where the nodes are dropped from an airplane,
one might expect that the nodes are roughly randomly distributed when they reach
ground.

Model 4.4.11 (Random Node Distribution). The simplest—and quite common—
way to model sensor networks is to assume a UDG in combination with a uniform node
distribution in the two-dimensional Euclidean plane. However, inspired by percolation
theory, also Poisson models have been proposed [29]; thus, the positions of the nodes
are distributed in R2 according to a homogeneous Poisson point process of constant
density λ per unit area.

While these random models may be fine to prove the performance of an algorithm, for
correctness and robustness issues, a more pessimistic model should be preferred—for
example, a worst-case distribution.

Model 4.4.12 (Worst-Case Node Distribution). Nodes are distributed arbitrarily in
the space given by the underlying graph (e.g., Euclidean plane, general graph, etc.).

Of course, there are again many models that lie between the two extremes. For ex-
ample, random distributions with a density parameter varying over space could be
considered: One can imagine that there are several nodes per square meter in areas
that are “interesting” to observe, whereas in other “routing only” areas the nodes
are hundreds of meters apart. Finally, speaking of node distributions, there are also
models that do not allow nodes to be arbitrarily close or even assume the same posi-
tion; for instance, there is such an assumption in the 	(1) model [30] or in so-called
civilized graphs [5]. Related to the distribution of nodes in space is also the issue of
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the distribution of node identifiers. Because many algorithms are based on node IDs,
their performance can depend on how IDs are distributed among the nodes (and thus
also in space).

Model 4.4.13 (Node Identifiers). Typically, nodes can be assumed to have unique
identifiers. IDs could, for example, be generated during deployment using a random
number generator. Moreover, because RFID tags already have IDs, we believe that it
is reasonable to assume that sensor nodes obtain a unique ID during the production
process. Finally, also note that certain tasks cannot be solved by any distributed
algorithm if there are no identifiers, because there is no way to break symmetries
among the nodes. Similarly to the node distribution in space, the most common
models for ID distributions are random distributions and worst-case distributions.
Sometimes, it also matters from which range the identifiers are chosen. Again, many
variations are possible. For example, each of the n nodes can have a unique 128-bit
identifier (range 0, ..., 2128 − 1). Or, in a more restrictive case, the nodes may have
consecutive numbers (e.g., range 1, ..., n).

Alternatively—or in addition!—node IDs can contain location information—for
example, if the nodes are equipped with a Global Positioning System (GPS) or a
Galileo device. Location information can boost the performance of certain operations
[30]: for example, a routing algorithm can exploit geographic information to forward
the message to a neighbor which lies in the direction of the message’s destination
(greedy routing).

Model 4.4.14 (Location Information). Sensor nodes can have access to various
forms of (absolute or relative) geographic information about other nodes. For exam-
ple, a node u might sense its distance to another node v, or sense in which direction
(angle of arrival) u lies, or even know v’s exact position.

Distributed algorithms for sensor networks are usually evaluated with respect to
their time complexity, their space complexity, and their message complexity. How-
ever, in order to be successful in a real sensor network, an algorithm has to pursue
additional objectives. For instance, if sensor nodes are deployed in large numbers,
recharging their batteries seems out of question, in particular in adversarial territory.
A node’s energy supply must suffice for the whole operational phase. Therefore, the
conservation of energy is of utmost importance. Basically, there are two approaches to
capture the energy consumption of a node. Historically, since during the transmission
of data much energy is consumed, a model has been studied which only takes the
transmission energy into account [31].

Model 4.4.15 (Transmission Energy). The energy consumed by a node is calculated
by the sum over all its transmissions. Thus, the energy needed to transmit one message
is of the form c · dα, where d is the distance between sender and receiver, α is the
path-loss exponent (usually α > 2), and c is a constant.
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Although transmitting data is a costly operation, sensor nodes with short-range
radios available today spend as much energy receiving or waiting for data. Therefore,
techniques have been developed which allow nodes to change to a parsimonious sleep
mode [32]. During the time periods a node is sleeping, it cannot receive any data. The
idea is that if all nodes can somehow be synchronized to wake up at the same moment
of time to exchange data (e.g., every minute), much energy is saved. This motivates
the following model.

Model 4.4.16 (Sleeping Time). The energy consumed by a node is given by the
accumulated time in which it is not in sleep mode.

If there are no external disturbances, a node is assumed to live as long as it has some
energy left. The lifetime of the entire network is modeled in different ways.

Model 4.4.17 (Network Lifetime). In applications that depend on every single node,
the lifetime of a network can be defined as the time until the first node runs out of
battery power [33]. Alternatively, a network might be able to tolerate certain node
failures; for example, the network might live as long as all live nodes are still connected
to each other.

4.5 FINAL REMARKS

This chapter has given an overview and discussion of many sensor network models in
use today. It has been shown how the models are related to each other. Therefore, we
have assumed an algorithmic point of view and have concentrated on models of higher
levels of abstraction. Of course, it does not make sense to argue about which model is
“better” and which is “worse.” For example, a large warehouse has different physical
characteristics and signal propagation paths than an office building; or GPS might not
work indoors and hence algorithms based on coordinates are not be feasible; and so
on. A good model also depends on the question studied. A media access study might
need a detailed model capturing several low-level aspects; for example, it has to be
taken into account that a message might not be received correctly due to a nearby
concurrent transmission. Hence, it is crucial that the model appropriately incorporates
interference aspects. For a transport layer study, however, a much simpler model that
assumes random transmission errors might be sufficient. This chapter helps to compare
the different options.

Clearly, it is always desirable to have algorithms for sensor networks which can be
proved correct in the most general possible model that covers all possible character-
istics of a real environment. Only then can we be sure that the algorithm will actually
work in practice. However, for efficiency considerations, a more idealistic model that
does not yield overly conservative results might be fine. Moreover, we believe that
when developing algorithms for sensor networks, it is often useful to study idealistic
models first, because these models are simpler and may provide helpful insights into
the given problem. After having found algorithms for these models, it is still possible
to tackle the more general cases.
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4.6 FUTURE RESEARCH DIRECTIONS

Models for sensor networks have developed quickly and are now much more sophis-
ticated than they were some years ago. However, we believe that the quest for new
models is still of prime importance. In particular, with the wider deployment of sensor
networks the experiences with complex issues such as connectivity and interference
will increase; consequently, models will evolve as well. Interestingly, many problems
are still unexplored for the models presented in this chapter. For many models, there
exist no algorithms with provable performance for fundamental operations such as
the computation of dominating sets. For example: How well can the minimum dom-
inating set be approximated in bounded independence connectivity graphs (BIG)?
Such questions are exciting because they are interdisciplinary and require knowledge
of various mathematical fields. We want to encourage the more advanced readers to
address these problems!

4.7 EXERCISES

The following exercises are based on this chapter only, but sometimes require some
mathematical background.

1. Name some scenarios where the QUDG model is not appropriate. Which al-
ternative model might capture the situation better? Under what circumstances
may it still be useful to study the QUDG?

2. Prove that both the UDG and the QUDG have a bounded independence (i.e.,
that they are a BIG). Hint: The proof is similar to the proof of Theorem 4.2.13.

3. (a) Prove that the two-dimensional Euclidean plane has a constant doubling
dimension.

(b) Formally prove that not every general graph has a doubling dimension.

4. A basic operation in sensor networks is the distributed computation of a (min-
imum) connected dominating set (CDS). A CDS is a dominating set with the
additional requirement that any two dominators are connected to each other by
a path that only consists of other dominators. For instance, such a CDS can be
useful to establish a routing backbone network.
(a) Can you come up with a local algorithm which computes a CDS in a UDG if

all nodes are equipped with a GPS device (i.e., if they know their position)?

(b) Does your algorithm yield the optimal solution, or just an approximation?
Can you prove its quality?

(c) How efficient is your algorithm, in terms of number of messages transmitted
and in terms of communication rounds needed?

5. The connected dominating set problem is well-studied.
(a) Surf the web to find the currently best-known algorithm for the UDG.
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(b) Can you find an algorithm that works on general connectivity graphs and
that does not require nodes to have position information?

(c) Compare the complexity and efficiency of the best-known UDG algorithm
to the best-known GG algorithm: What is the “price” of the more pessimistic
model?

6. Is the UBG model equivalent to the BIG model?
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