
Supporting Emerging Applications With
Low-Latency Failover in P4

Roshan Sedar

Université catholique de Louvain

Michael Borokhovich

Independent Researcher

Marco Chiesa

KTH

Gianni Antichi

Queen Mary University of London

Stefan Schmid

University of Vienna

ABSTRACT
Emerging applications expect fast turn-around from in-network

failover mechanisms. This paper starts exploring the design space

for supporting high availability and low latency using fast reroute

in programmable data planes. In particular, we present a primitive

for supporting well-known fast reroute mechanisms that is both ef-

ficient in terms of packet processing latency, memory requirements,

and switch throughput.

CCS CONCEPTS
• Networks→ Network algorithms; Network design principles;
Network protocols;

KEYWORDS
Fast failover, low latency, high availability, programmable data

planes

ACM Reference Format:
Roshan Sedar, Michael Borokhovich, Marco Chiesa, Gianni Antichi, and Ste-

fan Schmid. 2018. Supporting Emerging Applications With Low-Latency

Failover in P4. InNEAT’18: ACM SIGCOMM 2018Workshop on Networking for
Emerging Applications and Technologies , August 20, 2018, Budapest, Hungary.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3229574.3229580

1 INTRODUCTION
Novel applications, e.g., in the context of industrial or tactile net-

works, or applications expected to emerge around 5G, require very

low latency and deterministic packet delivery and high availability.

Fast Re-Route (FRR) is a widely deployed networking mechanism

providing such ultra-reliable and low-latency packet delivery, hence

increasing the robustness of a network to unexpected failures, by

pro-actively provisioning the switches with backup forwarding

rules. When a switch detects a failure, i.e., defecting link or port,

it quickly detours the affected packets using its own local backup

rules. This allows a network to preserve connectivity without hav-

ing to wait for the slower control plane to reconverge.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

NEAT’18, August 20, 2018, Budapest, Hungary
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-5907-8/18/08. . . $15.00

https://doi.org/10.1145/3229574.3229580

Lately, programmable data planes [6], PDP, emerged as a promis-

ing solution to further enrich the capabilities of networks by al-

lowing network managers to deploy customized packet process-

ing algorithms. Recent studies and industry startups have indeed

shown the benefits of arming network managers with data plane

programming capabilities for a variety of use cases including moni-

toring [17], traffic load-balancing [12], and more [3]. Yet, very little

is known today about how to implement FRR mechanisms in such

systems, as the P4 programming language does not provide in-built

support for FRR, as confirmed to us on the P4 mailing list [1].

In this paper, we explore the design space for supporting fast

reroute in PDP. We argue that an FRR primitive should meet at

least the following four requirements: (1) efficient rerouting, i.e.,
once a failure is locally detected, packets affected by that failure

should be rerouted to an alternate active port as fast as possible so

as to avoid packet drops, (2) no unintended throughput degradation,
i.e., packets should only be eventually dropped if the incoming

rate of packets is higher than the outgoing port rate, (3) low for-
warding latency, i.e., packet processing latency should not increase

when ports fail, which we see as a critical requirement for latency-

critical applications, and (4) low switch memory requirements. In
this context, we devise and implement an FRR primitive for a P4

switch that supports multiple types of existing OpenFlow-based

FRR mechanisms while meeting all the above four requirements.

Our solution detects the first active port in a parallel manner by

relying on just one lookup in a TCAM. This is particularly critical

in those latency-critical networks where switches have high port

density, such as rack-scale ones [13]. As TCAMs are expensive

resources, we observe that our FRR primitive in a k-port switch
only requires 2k − 1 TCAM entries, each with 3k − 1matchable bits,

to support most FRR mechanisms. This is just 95 TCAM entries

in a 48-port switch. We implement our primitive on a P4 software

switch and we show that it outperforms a naïve approach based on

packet recirculation. We, therefore, perform microbenchmarks on a

physical switch with TCAM support and we evaluate our P4-based

implementation of existing FRR mechanisms on data center and

empirically-derived ISP networks in terms of path lengths.

The main contributions of the paper are the following:

• We explore the design space alongside the trade-offs of im-

plementing FRR mechanisms in PDP.

• We propose a new primitive that can be adopted as building

block for implementing a number of FRR algorithms, such

as Rotor-Router (RR), Depth First Search (DFS), and Breadth

First Search (BFS) [4].

https://doi.org/10.1145/3229574.3229580
https://doi.org/10.1145/3229574.3229580

NEAT’18, August 20, 2018, Budapest, Hungary Roshan Sedar, Michael Borokhovich, Marco Chiesa, Gianni Antichi, and Stefan Schmid

Figure 1: PISA and efficient FRR implementation.

• We implement the primitive alongside the mentioned FRR

algorithms and evaluate them in both a data center and

empirically-derived ISP network scenarios.

2 TOWARDS A UNIFIED PRIMITIVE
P4 [6] is a programming language specifically designed to program

data plane packet pipelines based on a match/action architecture.

While the P4 language is target-independent, i.e., it abstracts from

the specific hardware characteristics of a switch, a P4 compiler

translates high-level P4 programs into target-dependent switch

configurations.

The top part of Figure 1 represents the typical life of the packet

inside a programmable device. Packet data alongside metadata

information, both switch-specific and user-defined, follow such a

pathway. The parser first identifies the various headers of interest

for the processing. Then, a set of match/action tables dictate the

operations to be performed. Upon the first match within a table, the

table executes its corresponding action(s) on the packet [10]. It is

worth noting that P4 does not dictate how match tables are mapped

to TCAMs, SRAMs, and DRAMs. Clearly, different memory types

strike different trade-offs in terms of cost, energy consumption,

and latency. The P4 compiler is responsible to map match tables to

physical memories based on the target switch.

So far, such an architecture demonstrated a lot of flexibility by

allowing customized packet processing algorithms. However, P4

does not have in-built support for FRR groups, where the action
associated to a group consists of a sequence of ports such that

the packet is forwarded through the first non-failed port. Instead,

from our discussion with P4 developers, the implementation of FRR

groups is left to the operator [1].

2.1 Challenges and Naïve Approaches
Implementing an FRR primitive in P4 is far from being trivial. With-

out specific built-in FRR hardware support within the switch de-

vices, operators have to rely only on the match/action processing

to enable quick packet detouring upon failure detection.

Packet recirculation. One simple way to implement FRR is to

recirculate a packet until an active outgoing port is found. This

operation entails storing in the packet metadata information about

Figure 2: Naïve approach with recirculation.

the failed port through which a packet could not be forwarded. Con-

sider for instance an FRR mechanism that indexes all the switches’

ports and each switch first tries to send a packet through a port

with index i and, if that port is failed, tries with port i + 1, i + 2, and
so on, modulo the number of ports. We show in Figure 2 how this

FRR can be implemented in P4 using packet recirculation. In the

control ingress flow, we verify whether the incoming packet has

been recirculated or not.
1
If the packet has not been recirculated,

we apply the action from table forward, which simply sets the

outgoing port for that packet according to the primary forwarding

tables. If the packet has instead been recirculated, we update the

egress port of the packet that has been recirculated through table

retry with the next one in the order. Regardless of whether the

packet has been recirculated or not, we try to send the packet to its

designated egress port. If that port is not active, then the packet is

recirculated through table send_back.

There are few drawbacks to this implementation: when a packet

is recirculated, it will add an additional bandwidth overhead on the

switch capacity and increase the packet processing latency. In the

former case, it can also result in sort of self-induced incasts leading

to network performance degradation [19]. In the latter case, the

processing might cause delays in the order of µs, well in the range

which has been shown to have negative impact on performance for

several common datacenter applications [20].

Multiple stages. Another approach to implementing the above

“circular” FRR in P4, would be to iteratively check through a specific

sequence of outgoing ports which one is the first active. Such a

solution would increase the latency of the packet forwarding. The

overhead would be proportional to the number of the backup ports

specified in the FRR groups, which can be as high as the total

number of switch ports for graph exploration and spanning-tree

based FRR mechanisms. The drawback would be then similar to

the previous case.
2

1
For the sake of space, we assume we can test the state of a variable.

2
We do not have access to any proprietary Tofino P4 compilers. Yet, we believe that

any naïve parallelization of “circular” FRR group would require a TCAM space that is

quadratic in the number of ports instead of linear space.

Supporting Emerging Applications With
Low-Latency Failover in P4 NEAT’18, August 20, 2018, Budapest, Hungary

To start from port 1, set metadata to starting_port = 1111000
To start from port 2, set metadata to starting_port = 0111100
To start from port 3, set metadata to starting_port = 0011110
To start from port 4, set metadata to starting_port = 0001111

Figure 3: Primitive in action for a 4-port switch

2.2 An FRR Primitive for P4
To overcome the limitations described in the previous section, we

design and implement a novel FRR primitive in P4. Our primitive

does not incur any bandwidth overhead and computes the first

active outgoing port with a single ternary-match search in a TCAM,

thus achieving low latency. Specifically, our primitive is expressive

enough to support a variety of FRR mechanisms without requiring

any packet recirculation or use of multiple stages and using limited

TCAM space (linear in the number of ports). We now discuss in

more details how the primitive works. For the sake of simplicity,

we assume an operator only wants to specify FRR groups that are

circular, i.e., there exists a unique circular ordering of the ports

where each port is assigned a specific index (as in Sect. 2.1). We

discuss how to implement arbitrary FRR groups later. The design

choice to implement circular FRR groups draws inspirations from

previous work in FRR [4, 8].

Primitive design. Our primitive relies on two tables: start-

ing_port and fwd_packet (see bottom part of Figure 1). Through

starting_port (green table), we match the designated outgo-

ing port and generate the necessary state that we will use in

fwd_packet to find the first active outgoing port that follows

the starting port in a circular order. Namely, given a switch with k
outgoing ports, we map the switch ports to 2k − 1 bits as follows:
the ordered ports to the first k bits and then the same ordered ports,

except the last one, to the remaining k − 1 bits.
The content of the 2k − 1 bits depends on the starting port from

which a packet should be sent. Namely, we set to 1 the first bit

mapped to the starting port and its subsequent k−1 bits. Intuitively,
this allows us to denote which ports should be used for forwarding

and to identify the starting port. Through fwd_packet (blue table),

we identify the first available active port starting from the selected

initial port. To do this, our FRR primitive assumes that the switch

stores the port status in a register with k bits, where each bit de-

termines whether a port is active (set to 1) or not (set to 0). The

fwd_packet matches packets based on the starting_port output

and the port status as shown in Table 1. Namely, for each bit of

starting_port output, we have one entry in the table that verifies if

that bit is set to 1, i.e., a packet should be sent to its associated port,

and verifies if the status of that port is active. These entries are

ordered by priority in a TCAM, with the top entries having higher

priority, i.e., the first bit of the starting_port output has the highest

priority.

Example. Consider Figure 3, where we assume to apply our mech-

anisms to a switch with four ports. We need 7 bits for the start-

ing_port field, where the first four bits index ports from 1 to 4 and

the remaining 3 bits index ports from 1 to 3. If a packet should be

sent to port 3, then we will store in the metadata of the packet the

value 0011110. This value and the port status is fed as input to the

Match Key
{starting_port}

Match Key
{all_ports_status}

Action

1****** 1*** Fwd 1

*1***** *1** Fwd 2

1** **1* Fwd 3

1 ***1 Fwd 4

****1** 1*** Fwd 1

*****1* *1** Fwd 2

******1 **1* Fwd 3

Table 1: Forwarding table for 4-port switch.

fwd_packet table. The first entry of that table matches any packet

that has the first bit of the starting_port output set to one only if

port 1 is active. The second entry matches any packet that has the

second bit of the starting_port output set to one only if port 2 is

active, and so on. If we assume both ports 3 and 4 have failed, then

our packet will match the 5th entry (Table 1) and the packet will

be forwarded through port 1.

Discussion. Our FRR primitive has several advantages with re-

spect to the naïve approaches described before. First, it does not

require packet recirculation, thus avoiding bandwidth overhead

and latency increase. Second, it requires just one atomic search

in a wildcard match table, which is a fast operation that can be

performed with one clock-cycle with a TCAM. Third, the required

TCAM space is limited. In a switch with 48 ports, we would re-

quire 95 TCAM entries with 143 matchable bits, i.e., starting_port

+ all_ports_status. While the reroute expressiveness of our FRR

primitive is limited to circular FRR groups, we note that: (1) if an

operator only specifies one backup port, instead of a circular order

of all ports, then our FRR primitive can fully support any possible

backup port, even without following the circular order, (2) our prim-

itive supports a large variety of FRR mechanisms (see next section),

and (3) we can eventually add a group identifier that can represent

different mappings, thus allowing an operator to implement any

arbitrary FRR group.

2.3 One Primitive – Many Mechanisms
This section shows how some FRR mechanisms based on graph-

exploration techniques [4, 5] use circular FRR groups and can be

realized with our primitive.

1) The Rotor-router (RR) mechanism: performs simply “deter-

ministic random walk" upon detecting a failure in the network. If a

packet hits a failed port, an alternative forwarding port is sought in

modulo (round-robin) fashion. RR leverages header tags to store, for

each switch in the network, the last link (i.e., port index) through

which the packet has been sent. When a packet returns to the same

switch, it is forwarded to the next non-failed outgoing port, that

is, a circular FRR. Namely, for each switch, RR stores a counter

value (modulo counter) c (v): whenever a packet arrives at switch v
with the counter c (v), the packet is forwarded to the port (c (v) + 1)

NEAT’18, August 20, 2018, Budapest, Hungary Roshan Sedar, Michael Borokhovich, Marco Chiesa, Gianni Antichi, and Stefan Schmid

Figure 4: Packet traversal (from h1 to h2) in DFS FRR mech-
anism. The green arrows indicate the DFS failover path.

mod ∆ (assuming this port is active and if not, the next one is tried)

and at the same time, counter c (v) is updated with the new value.

2) TheDepth First Search (DFS)mechanism: it provides similar

results to rotor-router for long rerouting paths. DFS instead reduces

routing path lengths, by constraining the destination search to a

depth-first spanning tree
3
. Concretely, upon a link failure, DFS

explores alternative routes in a depth-first fashion, implicitly con-

structing a spanning tree. Towards this goal, for each node vi , DFS
reserves a certain part of the packet header pkt .vi .par , to store the

parent of vi : the node from which the packet was first received.

DFS also reserves a place in the header to store pkt .vi .cur , which
is used to remember what neighbor has been traversed.

Figure 4 illustrates packet traversal in the DFS FRR mechanism.

Upon detecting a port failure, the switch enters the DFS failover

routing mode. Whenever a packet reaches a switch for the first time,

the value of pkt_cur for that switch is zero, and the incoming port

is assigned as parent (pkt_par) for that switch. In the successive

visits, the value ofpkt_cur is being incremented gradually to ensure

that all the other neighbors are visited one by one. If a link towards

a neighbor is failed, then the next neighbor (unless it is the parent

node) is chosen until an active link is found. This circular search

can be implemented with a circular FRR group (but the parent port

must be visited last). Upon traversing all the neighbors, the packet

then is sent back to the parent i.e., pkt_par . We defer the reader to

the pseudo-code presented in Algorithm 2 in [4] for further details.

3) The Breadth First Search (BFS) mechanism: is also based

on spanning trees that are computed on-the-fly after failures hap-

pen. However, BFS employs breadth-first traversal technique. BFS

controls the depth at which the destination d is searched in each

phase. Each node v (other than the source) behaves as a leaf at

the first time a packet reaches it: v returns the packet right back

to its parent (i.e., sends it to the port from which it was received).

On any other occasion, v behaves as a DFS node, i.e., trying all its

neighbors and only then returning the packet to the parent. When

testing all its neighbors, BFS leverages a circular FRR group to find

the first active neighbor. We defer the reader to the pseudo-code

presented in Algorithm 3 in [5] for further details.

3
The cover time of rotor-router is Θ(Edдes × Diameter) (see [11]) while DFS will
take only O (Edдes) since each edge is traversed at most twice.

3 PROOF-OF-CONCEPT
In this section, we describe how the previously mentioned graph-

exploration FRR mechanisms can be implemented in P4 using our

primitive. Our implementations are based on the P4_14 [10] speci-

fication and the evaluation was done on the P4-BMv2 [9] software

switch. To the best of our knowledge, today there is no P4 abstrac-

tion for the detection of link/port failures. Hence, we rely on P4

registers for representing ports status and use them in our pro-

grams. How such registers are updated depends on the specific

target packet-processing system and it is outside the scope of this

paper. In our evaluation, we modify the state of these registers,

called all_port_status, using the P4 local agent. The value of these

registers is matched in the fwd_packet table, as explained in the

previous section (§2.2).

3.1 Enabling Fast Reroute Algorithms
In this section, we only, for the sake of space, discuss the DFS

mechanism implementation and explain how to incorporate the

FRR primitive in the implementation.

Implementing DFS with our primitive. Our primitive cannot

be applied naïvely since we need to guarantee that a packet is

sent to a parent node only after having been sent through all the

other links. This is non-trivial since the parent node is only known

after the failures happen. Our DFS implementation starts from

extracting the header fields pkt_start , pkt_cur , and pkt_par into
the metadata fields. These extracted header fields are then passed to

ingress match/action pipeline, where the packet processing enters

the DFS failover mode (if pkt_start is set to 1), otherwise operates

in default routing mode (line 2-3 in Fig. 5b). The P4 program for

DFS in Figure. 5 illustrates the packet processing pipeline at the

ingress, which determines the outgoing port that the incoming

packet is destined to. Whenever a packet arrives at a switch for the

very first time, while in DFS failover mode (line 1-24 in Fig. 5a),

pkt_cur is equal to zero. This is handled by the curr_eq_zero table
that matches on the pkt_cur field and sets the incoming port as

pkt_par for this switch. The following visits of the same packet,

due to failures, will be forwarded through the next working port.

This is performed by the curr_neq_zero table which increments

the current value of pkt_cur by one. This incremented pkt_cur
value stores the out_port variable as the next forwarding port. This
repeats until the out_port value surpasses the number of ports

represented by PORTS (line 6 and 14 in Fig. 5a); subsequently, the

packet is sent back to the parent where it came from for the first

time.

We apply the FRR primitive (red box at line 10-11 in Fig. 5a)

initially within the DFS mechanism on the value out_port , to
make sure that the chosen out_port is not the parent port

(line 12): match+action lookups at both set_starting_port and
check_outport_status tables ensure that any failed ports are

skipped as well as the parent, until all the neighbours are tried

(line 12-13). To this end, we keep a boolean type variable i.e., a

is_completed metadata field, initialized to 1 at the reached_depth
table (line 7 in Fig. 5a) to skip match+action lookups from line

9-18. Finally, we apply the FRR primitive (red box line 17-18 in

Fig. 5b) where the packets are first matched on out_port at the
starting_port table to retrieve “starting_port” metadata. In the

Supporting Emerging Applications With
Low-Latency Failover in P4 NEAT’18, August 20, 2018, Budapest, Hungary

1 control ctrl_dfs_routing { /* start dfs */

2 if(local_metadata.pkt_cur == 0) {

3 apply(curr_eq_zero); /* set ingress as the parent */

4 }

5 apply(curr_neq_zero);

6 if(local_metadata.out_port == PORTS + 1) { /* tried all neighbours */

7 apply(reached_depth); /* out_port <- pkt_par &&& return to parent */

8 }

9 if(local_metadata.is_completed == 0) {

 /* we apply primitive here to "out_port" to avoid sending to parent before tried all neighbours */

10 apply(set_starting_port); /* set starting port metadata */

11 apply(check_outport_status); /* find matching out_port */

12 if(local_metadata.out_port == local_metadata.pkt_par) { /*skip parent unless tried all neighbours*/

13 apply(jump_to_next); /* try next port */

14 if(local_metadata.out_port == PORTS+1) { /* tried all neighbours */

15 apply(send_to_parent); /* out_port <- pkt_par &&& return to parent */

16 }

17 }

18 }

19 if(local_metadata.is_completed == 1) { /* parent could be zero while switching from... */

20 if(local_metadata.out_port == 0) { /*...default routing to dfs failover mode */

21 apply(out_eq_zero); /* try next forwarding port */

22 }

23 }

24 }

(a) DFS Mechanism.

1 control ingress {
2 if(local_metadata.pkt_start == 0) {
 /* apply default routing mode */
3 apply(default_route);
4 if(local_metadata.out_port == 0) {
 /* default out_port is not available */
 /* failover kicks in (pkt_start <- 1) */
5 apply(start_dfs);
6 }
7 }
8 else
9 {
 /* dfs contro flow */
10 ctrl_dfs_routing();
11 }
12 if(local_metadata.is_completed == 1) {
 /* tried all neighbours */
 /* return to parent */
13 apply(forward_to_parent);
14 }
15 else
16 {

 /* FRR primitive applies here to set "egress_spec" */
17 apply(starting_port); /* set starting port metadata */
18 apply(forward_pkt); /* set egress spec to forward packets */

19 }
20 }

21 control egress {}

(b) Control Flow Instructions.

Figure 5: The P4 program for DFS FRR Mechanism.

Figure 6: Topology used in evaluating efficiency between our
FRR primitive and naïve approach.

next step, we match on both “starting_port” and “all_ports_status”

at the forward_pkt table (line 17-18 in Fig. 5b), to set the

“egress_spec”. We made our source codes available to the public [2].

4 EVALUATION
We first compare our primitive to the naïve approach based on

packet recirculation, showing a drastic performance improvement

under one and two link failures.

Microbenchmark.We first evaluated our primitive on a NoviFlow

1132 switch [15] provisioned with TCAM.
4
We injected 10Gbps

of traffic through one port and manually simulated one/two link

failures. Since our approach uses a single TCAM access to find an

active port, as soon as the all_ports_status metadata is updated,

throughput returns to 10Gbps (packet latency is unaffected). The

rest of the experiments will be performed in an emulated environ-

ment.

Setup and Scenario. For the evaluation, we built the topology of

Figure 6 in Mininet, consisting of five P4-BMv2 switches (from

s1 to s5) and two hosts (h1 and h2). The experiment lasts ten sec-

onds, during which we generate a TCP flow using iperf from h1
to h2. During the first 5 seconds, this flow is routed through the

4
Even if NoviFlow supports OpenFlow FRR groups, we are only interested in evaluating

our implementation in a real physical TCAM. NoviFlow switch does not support packet

recirculation nor P4 packet-processing.

1 2 3 4 5 6 7 8 9 10

Time [s]

2

4

6

8

10

12

Th
ro

ug
hp

ut
[M

bp
s]

after failures

ER/1-f
ER/2-f
Naive/1-f
Naive/2-f

(a) Throughput over time (TCP)

200 400 600 800 1000 1200 1400

Packet Size [B]

2

4

6

8

10

12

Th
ro

ug
hp

ut
[M

bp
s]

ER/1-f
ER/2-f
Naive/1-f
Naive/2-f

(b) Throughput over packet size
(TCP)

Figure 7: Average throughput of our primitive (ER) and
naïve approach under one (1-f) or 2 (2-f) failures.

default path (s1, s2, s5). After five seconds, we either fail (s1, s2) or
both (s1, s2) and (s1, s3) and measure the flow throughput for the

remaining 5 seconds.

PerformanceOverhead. Fig. 7a shows the average traffic through-

put of the two approaches for one and two links failures. We see that

recirculating packets hinders performance as it creates an “incast”

in the switch. Fig. 7b shows the average throughput after failures

for different packet sizes, confirming the benefits of our approach.

4.1 Failover Path Lengths During Failures
Topologies.We used two datacenter network topologies, i.e., 3-tier

(leaf-aggregate-spine) Fat-Tree, F10 [14], and Rocketfuel (AS3967)

with 79 nodes and 149 links [18]. We used 20 switches with 4 ports

and 32 links. In contrast to a FatTree, an F10 topology rewires some

of the aggregate-to-spine links, which reduces the length of the

backup paths. We numbered ports arbitrarily and chose random

source-destination pairs in our experiments.

Performance of FRR mechanisms. Using our P4 implementa-

tion of RR, DFS, and BFS, we evaluated the trade-offs among these

mechanisms in the resulting packet path lengths under different ran-

dom failure scenarios. Fig. 8a shows for a FatTree and F10 topologies

NEAT’18, August 20, 2018, Budapest, Hungary Roshan Sedar, Michael Borokhovich, Marco Chiesa, Gianni Antichi, and Stefan Schmid

RR DFS BFS

Fat-Tree

0

20

40

60

80

N
um

be
ro

fh
op

s

RR DFS BFS

F10

(a) Datacenter networks

RR DFS BFS

10

40

70

100

130

160

190

220

250

N
um

be
ro

fh
op

s

(b) RocketFuel

Figure 8: Number of hops to reach the destination.

the path lengths to reach the destination when a different number

of random links fail. Both BFS and RR algorithms lead to a higher

number of hops to reach the destination compared to the DFS al-

gorithm (Fig. 8a). Our primitive correctly forwarded packets upon

any random failure to the designated backup ports according to the

circular order described in Sec. 2. The same was observed for the

RocketFuel topology experiment (Fig. 8b).

5 CONCLUSION
We presented the first design, implementation, and evaluation of

a low-latency rerouting mechanism for PDP: a basic component

of emerging ultra-reliable applications. Our approach relies on

a simple primitive which can be used as part of many existing

failover algorithms, e.g., based on arborescences [7] or based on

block designs [16], allowing to port other state-of-the-art failover

algorithms to PDP.

Acknowledgments.We would like to thank Amedeo Sapio, Liron

Schiff, and Mathieu Jadin for the early discussions about this

work. This research is (in part) supported by the UK’s Engineer-

ing and Physical Sciences Research Council (EPSRC) under the

EARL: sdn EnAbled MeasuRement for alL project (Project Refer-

ence EP/P025374/1).

REFERENCES
[1] 2016. P4-Dev. http://lists.p4.org/pipermail/p4-dev_lists.p4.org/2016-May/000285.

html.

[2] 2018. P4-Sources. https://bitbucket.org/roshanms/p4-frr.

[3] Barefoot. 2018. In-Network DDoS Detection. https://barefootnetworks.com/

use-cases/in-nw-DDoS-detection/.

[4] Borokhovich, M. et al. 2014. Provable Data Plane Connectivity with Local Fast

Failover: Introducing Openflow Graph Algorithms. In HotSDN. ACM.

[5] Borokhovich, M. et al. 2018. The Show Must Go On: Fundamental Data Plane

Connectivity Services for Dependable SDNs. In COMCOM. Elsevier.

[6] Bosshart, P. et al. 2014. P4: Programming Protocol-independent Packet Processors.

In CCR, Volume: 44, Issue: 3. ACM.

[7] Chiesa, M. et al. 2016. On the Resiliency of Randomized Routing Against Multiple

Edge Failures. In ICALP. Leibniz.
[8] Chiesa, M. et al. 2016. The Quest for Resilient (Static) Forwarding Tables. In

INFOCOM. IEEE.

[9] P4 Language Consortium. 2018. Behavioral Model (BMv2). https://github.com/

p4lang/behavioral-model.

[10] P4 Language Consortium. 2018. P4 Language Specification. https://p4.org/

p4-spec/p4-14/v1.0.4/tex/p4.pdf.

[11] Dereniowski, D. et al. 2016. Bounds on the Cover Time of Parallel Rotor Walks.

In JCSS. Elsevier.
[12] Katta, N. et al. 2017. Clove: Congestion-Aware Load Balancing at the Virtual

Edge. In CoNEXT. ACM.

[13] Legtchenko, S. et al. 2016. XFabric: A Reconfigurable In-rack Network for Rack-

scale Computers. In NSDI. USENIX.
[14] Liu, V. et al. 2013. F10: A Fault-tolerant Engineered Network. In NSDI. USENIX.
[15] NOVIFLOW. 2013. NoviSwitch 1132 High Performance OpenFlow Switch. https:

//noviflow.com/wp-content/uploads/NoviSwitch-1132-Datasheet-V2_1.pdf.

[16] Pignolet, Y. A. et al. 2017. Load-Optimal Local Fast Rerouting for Resilient

Networks. In DSN. IEEE.
[17] Sivaraman, V. et al. 2017. Heavy-Hitter Detection Entirely in the Data Plane. In

SOSR. ACM.

[18] Spring, N. et al. 2002. Measuring ISP topologies with Rocketfuel. In CCR, Volume:
32, Issue: 4. ACM.

[19] Yanpei, C. et al. 2012. Understanding tcp incast and its implications for big data

workloads. In Techincal Report.
[20] Zilberman, N. et al. 2017. Where Has My Time Gone?. In PAM. Springer.

http://lists.p4.org/pipermail/p4-dev_lists.p4.org/2016-May/000285.html
http://lists.p4.org/pipermail/p4-dev_lists.p4.org/2016-May/000285.html
https://bitbucket.org/roshanms/p4-frr
https://barefootnetworks.com/use-cases/in-nw-DDoS-detection/
https://barefootnetworks.com/use-cases/in-nw-DDoS-detection/
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model
https://p4.org/p4-spec/p4-14/v1.0.4/tex/p4.pdf
https://p4.org/p4-spec/p4-14/v1.0.4/tex/p4.pdf
https://noviflow.com/wp-content/ uploads/NoviSwitch-1132-Datasheet-V2_1.pdf
https://noviflow.com/wp-content/ uploads/NoviSwitch-1132-Datasheet-V2_1.pdf

	Abstract
	1 Introduction
	2 Towards A Unified Primitive
	2.1 Challenges and Naïve Approaches
	2.2 An FRR Primitive for P4
	2.3 One Primitive – Many Mechanisms

	3 Proof-of-Concept
	3.1 Enabling Fast Reroute Algorithms

	4 Evaluation
	4.1 Failover Path Lengths During Failures

	5 Conclusion
	References

