
Supporting the Evolution of Event-Driven

Service-Oriented Architectures using Change Patterns

Simon Tragatschnig, Srdjan Stevanetic and Uwe Zdun

Software Architecture Research Group

Faculty of Computer Science

University of Vienna

Vienna, Austria

{firstname.lastname}@univie.ac.at

Abstract

Context: The components of an event-driven service-oriented architecture

(EDSOA) are composed in a highly decoupled way, facilitating high �exibility, scal-

ability and concurrency in SOA systems. Evolving an EDSOA is challenging because

the absence of explicit dependencies among constituent components makes under-

standing and analysing the overall system composition di�cult. The evolution of

EDSOAs typically happens by performing a series of primitive changes�which can

be described formally as change primitives.

Objective: In this article, we present our change pattern based approach for

managing the EDSOA evolution as a novel design method supporting EDSOA evo-

lution. The change patterns operate on a higher abstraction level than change

primitives.

Method: To evaluate our approach, we have compared both time and cor-

rectness of changes in a controlled experiment comparing the understanding and

performing of changes in EDSOAs. The experiment has been conducted with 90

students of the Software Architecture course at the University of Vienna. We com-

pare the e�ciency of 3 sets of change operations for modifying a given system

architecture to obtain a desired architecture: a minimal set of 3 change patterns,

an extended set of 5 change patterns, and a minimal set of 4 change primitives.

Results: Our results show that change patterns based evolution requires signif-

icantly less time to capture a similar level of correctness as the evolution based on

change primitives, presuming that a certain level of transformation complexity is

required. Furthermore, we did not observe a signi�cant di�erence in the correctness

level nor in the time required to perform the changes using an extended pattern set

compared to a minimal set of patterns.

Conclusions: We clearly show the feasibility of our approach by developing

a design method and tool support using a model-driven tool chain consisting of 3

domain-speci�c languages and empirically evaluating the approach in a controlled

experiment.

1

1 Introduction

In recent years, distributed event-driven architectures have become widespread in their

use in several domains such as real-time control systems, stock market and fast trad-

ing, network intrusion detection, sensor networks, healthcare monitoring, mobile and

wearable computing (see e.g. [20, 26]). A main reason is that event-driven architectures

provide solutions for developing distributed systems that facilitate high scalability, �ex-

ibility, and concurrency [20]. An event-driven architecture typically comprises a number

of computational or data handling elements (i.e., components, actors) that communicate

with each other by sending and receiving events [20]. Each component may indepen-

dently perform a particular task, for instance, access a data storage, dispense cash from

a credit card, or interact with users. Nowadays the components or actors in event-

driven architectures are typically services, leading to a combination of event-driven and

service-oriented architecture concepts, coined with the term event-driven service-oriented

architecture (EDSOA) [13, 21]. More precisely, we use the term to describe event-driven

architectures that are used to realize �exible service communication and orchestrations

[13, 23, 50].

The communication style used in EDSOAs is based on implicit invocations performed by

publishing an event (or message) to an event channel (also called event bus or message

broker) instead of explicit invocations where one component is directly called via a

reference [26]. As the exchange of events among the components is performed through

the event channel, every component is in principle unaware of the others. This way a

high degree of �exibility in the system is supported.

For example, the execution order of components can be changed (e.g., re-routing or

adding some components) or any component can be replaced (e.g., with a bug-�xed or

upgraded version) whilst the system is running. Additionally, EDSOAs support high

scalability since the loosely coupled components can be executed concurrently and easily

placed on di�erent hardware nodes or virtual machines. However, the additional wanted

degrees of �exibility, scalability, and concurrency through loose coupling might also in-

crease the di�culty and uncertainty in understanding, maintaining and evolving these

systems [8].

As requirements on software systems evolve over time, they have to be constantly main-

tained and changed [18]. More than one quarter of coding time is spent on implementing

changes and investigating their impact [16]. By analyzing evolution of software systems,

Weber et al. identify a set of change patterns that recur in many of existing software

systems [45]. These patterns are speci�c for process-aware information systems (PAIS)

where the execution of the software system is bound to a process schema, a prescribed

rigid description of the behavior �ow, and therefore, mostly can not be changed during

runtime or just slightly deviated from the initial schema [30, 34, 42]. As a result, these

2

approaches are not easily applicable for EDSOAs where components are highly decou-

pled and the dependencies between components are subject to change at any time, even

during the execution of the systems. Nevertheless, these patterns provide a basis for

describing changes of the behavior in any information system.

To deal with the complexity and the large degree of �exibility of EDSOAs, a set of

change operations that enable modi�cations in the system at di�erent abstraction lev-

els is proposed in our approach. Those change operations include low-level primitives

(change primitives) for encapsulating the primitive change actions, such as adding or

removing an actor or event, and high-level patterns (change patterns), that encompass a

number of change primitives. An example of a change pattern is replacing an actor that

represents a service call. This replacement pattern encompasses `removing and adding

an actor' primitives as well as `removing and adding events' primitives. The provided

set of patterns signi�cantly extend the change patterns that are frequently occurring in

most information systems [45] in order to deal with the speci�cs of EDSOAs. Hence our

�rst research question addressed in this article is:

Research Question 1 (RQ1): Can the concept of change patterns (as de�ned for

information systems by Weber et al. [45]) be used as a foundation for a design method

for the evolution of EDSOAs, re�ecting the speci�c changes required in EDSOAs?

In this article, we also investigate how the previously mentioned change operations

(change patterns and change primitives) in�uence the process of performing changes or

evolving an EDSOA. More precisely, we hypothesize a positive e�ect on the e�ciency of

performing changes in an EDSOA model using the change patterns compared to change

primitive based changes. Hence, the second research question we studied was:

Research Question 2 (RQ2): If RQ1 can be answered positively, is there a signi�cant

positive in�uence on the e�ciency of performing changes in an EDSOA model using the

change patterns compared to change primitive based changes?

To study this research question, we conducted a controlled experiment where we com-

pared the e�ciency of change patterns and change primitives for modifying a given

system architecture in order to obtain a desired one. The participants of our study were

90 students of the Software Architecture lecture at the University of Vienna. They were

divided into 3 groups, and each of them was asked to modify a given system architecture

(called the source architecture) using a given set of change operations in order to obtain

a desired architecture (called the target architecture). For all groups the same 4 source/-

target pairs of EDSOA architecture models were given. The �rst group was provided

with a set of 3 change patterns which also represents a minimal set of change patterns

needed to perform any change in the system. The second group was provided with two

additional patterns, to enable us to study to which extent additional higher-level ab-

stractions help. Finally, the third group was provided with a set of 4 change primitives,

3

which also represents a minimal set of primitives required to perform any change in the

system. Our results show that, for the most complex model studied and the case where

all models are considered together (the results for all studied models are summed up),

the group with change primitives required signi�cantly more time to reach a similar cor-

rectness level of pursued changes compared to the groups with change patterns. The

obtained results provide empirical evidence that change patterns based evolution is gen-

erally more e�cient than change primitives based evolution of EDSOAs, presuming that

a certain level of transformation complexity is required. Moreover, the subjects used

two additional patterns in the extended pattern set only to a limited extent and had

problems with their correct application. No signi�cant di�erence in the correctness level

of pursued changes nor in the time required to capture those changes using the extended

pattern set compared to the minimal set of change patterns was observed.

The major contribution of this article is the empirical study on e�ciency of performing

changes in EDSOAs, to �nd answers to our research questions RQ1 and RQ2.

In our previous work [1, 37�39], we investigate and adapt change patterns in the context

of event-based architectures dealing with the lack of prescribed execution descriptions

and the potentialy aribrarily changed relationships between constituent elements of a

system. In order to deal with the complexity and the large degree of �exibility of event-

based architectures, in this article we combine our prior works into a novel design method

for the evolution of EDSOAs. As another novel major contribution, we present an

empirical study in which we evaluated our approach with 90 participants.

This article is organized as follows: In Section 2, we discuss the related work, and in

Section 3, we describe the required background on EDSOAs and change operations in

their context. We then describe our change pattern Based design method for supporting

EDSOA evolution in Section 4. Next, in Section 5 we discuss our empirical study on the

e�ciency of performing changes in EDSOAs using our pattern based approach. Finally

in Section 6, we summarize our main contributions.

2 Related Work

2.1 Related Works on Change Patterns

Starting from the seminal work on the evolution of software systems by Lehman [17],

several techniques for supporting di�erent types of system evolutions have been inves-

tigated in di�erent application domains [2]. One of the important works presented by

Weber et al. [31] identi�ed a large set of change patterns that are frequently occurring

in the most of today's process-aware information systems (PAIS). The change patterns

observed by Weber et al. targeted PAISs in which the execution order of the elements

4

are prescribed at design time and unchanged or slightly deviated from the prescribed

descriptions at runtime, therefore, not readily applicable for event-based systems where

components are highly decoupled from each other. However, these patterns can be used

as a basis for de�ning the corresponding change patterns for event-based systems (see

e.g. [37�39]), since the structure of PAISs (i.e. process instances and their connections)

can in principle be mapped to the structure of EDSOAs (i.e. event-based components

and their connections). But, the speci�cities of EDSOAs in terms of e.g. the events that

the EDSOA components send and/or receive or the execution domains need to be taken

into account additionally. For instance, in PAISs the change primitives only deal with

adding or deleting a node or an edge, while in EDSOAs additional primitives like e.g.

replace an event of the component's input and/or output port or remove a set of events

from the port (see [37]) need to be considered.

Because of the loose coupled nature of EDSOAs, di�erent variants of change patterns

known from PAIS with di�erent semantics may exist. For instance, an Insert in PAIS

must be distinguished from ParallelInsert and SerialInsert, as described in [1]. There-

fore, we have implemented a subset of patterns presented by Weber et al. to meet the

requirements for EDSOAs (see Section 4.2).

The broader variety of possible changes has led us to an extensible solution, rather than

a smaller, more �xed set of change patterns such as those for information systems by

Weber et al. [45]. For instance, inserting a new element in EDSOAs will lead to di�erent

variants of the Insert pattern by Weber et al. with di�erent semantics. In [1] we

identi�ed the variants ParallelInsert and SerialInsert.

2.2 Related Work on Event-driven Systems

Due to the loosely coupled nature of the participants, event-based architectures have been

investigated and leveraged in many large-scale distributed software systems today [8, 19,

20]. The advantages of event-driven communication styles have been extensively studied

in numerous approaches in di�erent areas [10, 23, 36].

To the best of our knowledge, there are no prior empirical studies on the understanding

of the event-driven architectures at runtime. Some studies have been conducted on the

comprehension of general software models [5, 22, 27] but most of them focus on the

syntactical structures of the models under consideration. Therefore, they have not con-

sidered the understanding of the dynamic interplay of models at runtime nor investigate

the factors that in�uence the aforementioned understanding.

In our previous work [37�39] we have proposed a set of change operations that enable

modi�cations of event-driven architectures at di�erent abstraction levels. Particularly,

change primitives are proposed to capture the low-level modi�cation actions and therefore

5

can be e�ciently leveraged by technical experts. Additionally, on top of the primitive

actions a number of change patterns that encapsulate essential change actions that recur

in many software systems is proposed. Recurring patterns are not readily applicable

for event-based systems where components are highly decoupled and the dependencies

between them can change at any time, even during the system execution. Therefore, as

mentioned above, those patterns were used just as a basis for developing an adapted set

of patterns that are speci�c for event-based software systems. In this study we provide

an empirical evaluation of the usefulness of both change primitives and patterns for

performing changes in the system.

One of the existing software development approaches for building distributed event-based

systems (DEBS) is CEP (Complex-Event Processing) [8]. CEP is de�ned as a set of tools

and techniques for analyzing and controlling a complex series of interrelated events [19].

Another approach is using a DEBS middleware, such as a messaging middleware or a

publish/subscribe system, to base distributed communication on events (see e.g. [11]).

With regard to our approach, CEP and DEBS focus more on detecting, processing and

responding to events as message streams, while we focus more on architectural aspects of

modelling the event-based systems and their evolution. With regard to the speci�cation

and veri�cation of event-driven architectures, a number of approaches exist that use

temporal logic [8], trace semantics [8], algebraic semantics [7], and similar formalisms.

2.3 Related Work on EDSOAs

There exist several studies that discuss the advantages of an integration between service-

oriented and event-based architectures (SOA and EDA). Niblett and Graham [21] have

illustrated how the combination of EDA and SOA into a single EDSOA infrastructure

brings many advantages, because it is quite common for a single service to combine both

request/response and event-oriented message exchanges. The research of Yuan and Lu

[50] shows an EDSOA based on a concept of value-centric processing and the event-based

communication style. Event-based communication o�ers a service provider to have more

information about their clients by creating client pro�les. Juric [13] discussed how SOA

can be extended with EDA concepts. In that approach services act as event producers

and event consumers and at the same time preserve the interfaces and their operations.

The approach also enables event-based service orchestrations in business processes.

In the �eld of coordinated service integrations there exist several approaches that em-

phasize the integration between service oriented and event-driven architectures (SOA

and EDA). These approaches share many of the same characteristics such as modularity,

loose-couplings, and �exibility [13, 23].

The aforementioned approaches mainly target the publish/subscribe messaging pattern.

None of those approaches aims at introducing appropriate representations and formalisms

6

of event-based systems that are close to the developers' perception. High-level concepts

and representations for modeling and developing event-based systems have been pre-

sented in our previous work [41]. In this work we utilized those high-level concepts to

investigate the understandability of EDSOAs.

2.4 Related Work on Process-Driven Systems

In the area of work�ow patterns di�erent authors provided a thorough examination of the

various perspectives that need to be supported by a process speci�cation language and

process modelling tools (see for example [32, 33]). However, none of these approaches

provides empirical evidence in which way such patterns a�ect process modelling. Thom

et. al [35] reported on activity patterns for designing process models. They performed an

empirical study using 214 process models from di�erent application domains to examine

the frequency with which di�erent activity patterns occur in real process models. The

analysis was accomplished in order to verify whether candidate process fragments may

be considered as patterns with high probability for reuse. The results showed that the

detected patterns are well suited for de�ning both business processes and work�ows from

a variety of application domains.

The creation of process models based on change primitives has recently received consid-

erable attention resulting in research on the process of process modelling (PPM) [3, 25].

This research focuses on the formalization phase, i.e., the interactions of the process

modeller with the modelling environment. As mentioned above, Weber et al. [31, 45]

identi�ed a large set of change patterns that are frequently occurring in and supported by

the most of today's process-aware information systems. In the context of process mod-

els creation, several change patterns have been investigated [6]. Other articles provide

empirical insights into the usage of change patterns in the process of process modelling

(PPM) [43, 46]. For example, some of the results indicated that an extended change

pattern set puts an additional burden on modellers who perceive them as more di�cult

to use. Therefore, an expected increased problem solving e�ciency was not achieved.

Contrary to the mentioned studies, in our study we compare the e�ciency of change

primitives and change patterns during performing changes in the system. In our study,

we also studied an extended pattern set but contrary to the given studies that used move

patterns that enable transformations on composite system fragments we used basic pat-

terns that deal with a single actor in the system.

To a certain extent studies on �exible process-aware systems are related to our work, too,

but we are not aware of a similar empirical study in the area of �exible process-aware

systems. Several approaches try to relax the rigid structures of process descriptions to

enable a certain degree of �exibility of process execution [12, 29]. Event-based systems

provide a high �exibility for runtime changes, since there exist no explicit relationships

7

among the actors.

3 Background on Event-Driven Service-Oriented Architec-

tures

To support performing speci�c changes in EDSOAs as well as understanding their im-

pacts, we assume that each service exposes an event-based interface that speci�es a set of

events that the service can receive (the input events) and a set of events that the service

will emit (the output events). The input events trigger the execution of a certain service

so the service is considered as �consumer�. In turn, a service can also emit one or many

output events after its execution �nishes and therefore is called �producer�.

The service input or output events can only be observed at a certain point in time since

a service's interface can be changed whilst the system is running. New events can be

added to the interface or some events can be removed from it. Using the services' exposed

interfaces the dependencies between the services can be extracted at any time without

examining the source code. The concept of exposed interfaces fully complies with the

case of third-party services that are usually provided as black-boxes with documented

interfaces.

In general, the above mentioned concepts can be satis�ed by most existing event-based

systems [20] when used for service orchestration. For demonstration purpose, in our pre-

vious work we built upon the DERA framework [40] that provides fundamental concepts

for modelling and developing EDSOAs and complies with the concepts and assumptions

mentioned above.

Figure 1 shows a simpli�ed excerpt of the DERA Meta Model depicting only its very

basic concepts. Due to space reasons and to decrease complexity, in this article, we focus

on the core concepts of DERA only. A detailed description of DERA can be found in [40].

In DERA, a service is represented by an event actor (or actor for short), which represents

a computational or data handling unit. For instance, this may be the executing a service

invocation, or accessing and transforming data. An event can be considered essentially

as �any happening of interest that can be observed from within a computer� [20] (or a

software system). DERA uses the notion of event types to represent a class of events that

share a common set of attributes. Actors provide two ports, the input and the output

port. A port describes the interface of an actor. Instances of the de�ned event types

in the input port will trigger the actor. The actor may emit instances of event types

de�ned in its output port when it �nishes execution. This causes an implicit control

�ow, de�ned by a matching set of event types of an output port of one actor and an

input port of another actor. Note, that there exist several types of DERA actors [40],

di�ering slightly in its behavior. For the sake of simplicity we do not explain them in

8

ExecutionDomain

Actor Port EventType

input

output

*

EventBridge
target

1

Service

invokes
emits events of type

consumes events of type

* *0..1

1

Figure 1: Simpli�ed Excerpt of the DERA Meta Model (only the necessary elements

needed for this article)

detail. DERA applications are organized in execution domains, which encapsulate a

logical group of related actors. Two execution domains can be connected via a special

kind of actor, namely, event bridge, which receives and forwards events from one domain

to the other [40].

In a EDSOA context, the DERA runtime uses actors to invoke services which�via

the input and output ports of the actors�emit and consume events of the event types

speci�ed by those ports. The actor is a one to one representation of the service in the

DERA runtime or an internal actor that is not connected to a Web service.

We call an actor B a successor of actor A, if the event types de�ned in the input port of

B matches the event types in the output port of A. In turn, A is a predecessor of B. This

means, that a successor is executed after the execution of its predecessor has �nished.

Based on these basic notions of event-based systems, in our previous work we have

proposed a set of change operations at di�erent abstraction levels that enable performing

di�erent modi�cations of EDSOAs (see [37�39]). On the lower abstraction level, change

primitives are used to express �ne granular changes, while, on the next higher level,

change patterns that encompass a number of change primitives are used to express more

complex changes of the system, such as moving an actor. The given change patterns

are derived from similar patterns that are frequently occurring and supported in most

of today's information systems, according to the survey presented by Weber et al. [45].

However, recurring patterns are not readily applicable for EDSOAs where services are

highly decoupled and the dependencies between them can change at any time, even

during the system execution. Therefore, those patterns were used just as a basis for

developing an adapted set of patterns that are speci�c for EDSOAs (see [37] for more

details).

9

DERA Meta Model
Change Pattern

Description

DERA Runtime Environment

DERA Model

Change Pattern

Change Primitives
API

executed
by

Change Primitives

apply

transform to

transform to

refers to

refers to

refers to

Instance
of

level o
f ab

stractio
n

high

low

Figure 2: Overview of Change Operations in Relation to DERA Models

4 Change Pattern Based Design Method for Supporting

EDSOA Evolution

Maintaining EDSOAs is challenging because of the absence of explicit information on the

dependencies of its components. Therefore, knowledge about the dependencies between

components has to be extracted from source code. Assisting techniques for analyzing

the impacts of certain changes are missing, hindering the implementation of changes

in EDSOAs. Specifying a design method supporting the evolution of EDSOAs allows

developers to focus on their concepts, like events and event emitting or consuming com-

ponents.

Change patterns and change primitives express changes on di�erent levels of abstraction

to deal with the complexity and the large degree of �exibility of EDSOAs, as shown

in Figure 2. On the lower abstraction level, change primitives are used to express �ne

granular changes on the modeled DERA application. This level is used by our system to

execute a change. On the next higher level, change patterns are used to express changes

of the system, for instance moving an actor. Change patterns are transformed into a set

of change primitives, which can be applied to a DERA application. On the highest level

of abstraction, change pattern descriptions de�ne change patterns.

We addressed the di�erent levels of abstraction for change primitives and change pat-

terns, as well as a modeling approach using domain speci�c languages in our previous

work [1, 37�39]. The following subsections will give an overview of our existing work.

10

Change Primitives Speci�cation Description

INSERT ExecutionDomain +=actors Add the actor a to the execution domain

DELETE ExecutionDomain -=actors Remove the actor a from the execution

domain

SET DOMAIN Actor->domain =domain Set the execution domain d for actor a

ADD Actor:Port +=events Add a set of events to port p

REMOVE Actor:Port -=events Remove a set of events from port p

REPLACE ALL Actor:Port =events Replace all events of port p with another

set of events

Table 1: Outline of change primitives

4.1 Change Primitives

We use low-level primitives, called change primitives introduced in [37], for encapsulat-

ing the basic change actions for populating and modifying EDSOAs, such as adding or

removing an event or an actor, replacing an event or actor, and so forth. An implemen-

tation of the proposed set of primitives is implemented for our DERA prototype. Table

1 shows the change primitives and summarizes their e�ects. In our model-driven proto-

type implementation (see Section 4.3), we provide generators to transform instances of

modeled change primitives to executable code, which can be performed by DERA. Based

on these primitives, in the following Section 4.2 we present change patterns for EDSOAs

with which the software engineers can easier describe and apply desired changes at a

higher level of abstraction.

The change primitives encapsulate the primitive change actions for populating and mod-

ifying EDSOAs. In our controlled experiment, we use a subset of these low level change

operations which represents a minimal set of change primitives: Add, Insert, Delete,

and Remove. This subset has been selected, as they are those primitives used in the

realization of the change patterns used in the other groups of the experiment.

4.2 Change Patterns

Change patterns for EDSOAs support software engineers to describe and apply desired

changes at a higher level of abstraction than the primitives. They are de�ned based on

the patterns that are frequently occurring and supported in most of today's information

systems according to the survey presented by Weber et al [45]. Table 2 gives an overview

of our realized change patterns for EDSOAs.

A change pattern basically expresses that a set of actors should change its position

within a DERA application, related to other implicitly dependent actors with matching

interfaces. A change pattern consists of various statements, which describe a change. A

change de�nes a set of source actors, de�ning the context of a change, e.g., actors to

be moved, inserted or deleted. A change might also de�ne existing or future relations

to other actors. To illustrate the patterns, Figures 3 and 4 illustrate the realized insert

11

patterns, both with an example to show the di�erence. For the formal semantics of the

patterns please refer to [37].

Serial insert of an actor: SERIAL_INSERT(actor, predecessors, successors)

X e3e2

SERIAL_INSERT (X,Y,Z)

Description: A new actor between predecessors and successors is added to the system. The control flow

between predecessors and successors will be directed through the inserted actor.

Y e1 Ze1

before

Y e2 Ze3

X e3e2

after

Figure 3: Serial Insert Change Pattern

Parallel insert of an actor: PARALLEL_INSERT(actor, predecessors, successors)

X e3e2

PARALLEL_INSERT (X,Y,Z)

Description:A new actor between predecessors and successors is added to the system. The primary control

flow between predecessors and successors is not modified, so that the inserted actor is executed in parallel to

other possible actors between predecessors and successors.

Y e1 Ze1

before

Y
e1

e2
Z

e1

e3

X e3e2

after

Figure 4: Parallel Insert Change Pattern

We developed a model-based change pattern prototype (see Section 4.3) which is de-

signed to support developers expressing changes without detailed knowledge of the DERA

framework. The realized change patterns are listed in Table 2, coming with generators

to transform change pattern instances into a set of change primitives explained in Sec-

tion 4.1.

4.3 Model-driven Tool Support

Our model-based tools and their transformations are developed with XText1 and Xtend2

Framework for Eclipse, which gives us the bene�ts of code completion, text sugges-

tions and validation within the Eclipse IDE. We developed two integrated model-based

domain-speci�c languages (DSL) for change patterns and change primitives that are able

1http://www.eclipse.org/Xtext/
2http://www.eclipse.org/xtend/

12

Change Pattern Description

Parallel-Insert(x, Y, Z) Add an actor x such that all actors of Y will become predecessors and

those of Z will become successors of x, respectively

Serial-Insert(x, Y, Z) Add an actor x such that all actors of Y will become predecessors and

those of Z will become successors of x, transferring all dependencies

between y and z to x

Delete(x) Remove the actor x from the current execution domain S
Move (x, y, z) Moves the actor x in a way that the actor y becomes predecessor and

the actor z becomes successor of x, respectively

Replace(x, y) Substitute the actor x by the actor y

Swap(x, y) Given an actor x that precedes an actor y, this pattern will switch the

execution order between x and y

Parallelize(x, y) Enable the concurrent execution of two actors x and y that are per-

formed sequentially before

Migrate(x,S1,S2) Migrate an actor x from an execution domain S1 to another execution

domain S2

Table 2: An overview of change patterns

to express changes on di�erent level of abstraction to deal with the complexity and the

large degree of �exibility of EDSOAs.

On the lower abstraction level, change primitives are used to express �ne granular changes

on the modeled DERA application. The language to express change primitives is ex-

plained in Section 4.3.1.

Change patterns are de�ned at a higher abstraction level, as described in Section 4.3.2.

Using model transformations they are transformed into a set of change primitives.

Both DSLs are supported through Xtext-based Eclipse editor plug-ins and use Xtend for

model transformations and code generation. The DERA code generator generates code

for the DERA applications which consists of one or many DERA runtimes, orchestrating

web services. The respective components of our tool chain described in this section are

shown on the right hand side of Figure 5.

4.3.1 DSL for Change Primitives

At the lowest level of abstraction, change primitives express very basic change operations.

Our domain speci�c language to express change primitives was introduced in [1], which

is based on the core DERA concepts described in [40]. Basically, the primitives can

describe an expression to add, set or remove DERA elements. A DERA element can be

an ExecutionDomain, an Actor with ActorPorts, or an Event. A structural overview of

the Change Primitives DSL is shown in Figure 6.

By referencing a DERA model instance, it is possible to reference instances of speci�c

DERA elements. An example instance of the Change Primitives DSL is shown in Figure

7. It is the speci�c result of the Change Pattern DSL example explained in Section

4.3.2. In the Change Primitives DSL example, a set of primitives are shown to change

the DERA application orderApp. The lines with the marker (1) and (2) removes a set

13

«Eclipse Editor Plugin»
Change Primitives DSL

«Eclipse Editor Plugin»
Change Patterns DSL

«Eclipse Editor Plugin»
Change Pattern Description DSL

«Xtend Generator»
Change Pattern DSL Code

Generator

«generates code for»

«Xtend Generator»
Change Patterns to Primitives

Model Transformations

«Xtend Generator»
DERA Code Generator

DERA Application

«model transformations to»

«generates code for»

Web Service 1 Web Service 2 Web Service N

Figure 5: Model-driven Tools and their Relation to the DERA application and Orches-

trated Services

Figure 6: Model of the Change Primitive DSL

14

primitives IllustrativeExample
{
 //prevent loops
 orderApp.ExternalService:input -= {}; // (1)
 orderApp.ExternalService:output -= {}; // (2)
 //insert elements
 orderApp.OrderTranslator:input += orderApp.orderV2; // (3)
 orderApp.OrderReceiver:input += orderApp.orderV1; // (4)
}

Figure 7: Change primitives for the SerialInsert

of events from the input and output port of the actor ExternalService. In this speci�c

example, the set is empty, but may contain a set of events for more complex DERA

applications. The line with the marker (3) adds the event orderV2 to the input port of

the actor OrderTranslator. The line with the marker (4) adds the event orderV1 to the

input port of the actor OrderReceiver

4.3.2 DSLs for Change Patterns

At a abstraction level above the change primitives, change patterns can be described to

express a change. As the Change Pattern DSL is referencing a DERA model instance,

speci�c DERA Elements as actors or events can be referenced. The Change Pattern

DSL was introduced in [1]. Basically, the Change Pattern DSL can express a speci�c

change of a DERA application, by describing the change of an actor's position related

to its predecessors and successors after the change is applied. A simpli�ed structural

overview of the Change Pattern DSL is shown in Figure 8. To describe a change pattern,

sets of actors can be selected which may be a�ected by the change. The SourceSelector

references the actors which should change its position. The TargetSelector describes the

set of preceding and succeeding actors, when the change is applied. To address more

complex relations between actors, Constraints can be described to express, which events

should not be a�ected by the change.

An example of a SerialInsert is shown in Figure 9: The actor OrderTranslator (the

SourceSelector) must be inserted in a way that the actors of the TargetSelector will be

its predecessor (ExternalService) and successor (ExternalService).

Based on a Change Pattern DSL instance, the change primitives are derived to enact

the change.

4.3.3 Change Pattern Description DSL for Supporting Change Pattern Def-

inition

As the possible spectrum of change patterns is broad, a prede�ned language to express

changes is not a su�cient tool because it would have to be adapted for each additional

15

Figure 8: Simpli�ed model of the Change Pattern DSL

Change Set IllustrativeExample {
SerialInsert orderApp.OrderTranslator
between orderApp.ExternalService
and orderApp.OrderReceiver.

}

Figure 9: SerialInsert change pattern

change pattern or pattern variants. Therefore, we decided to develop a DSL to describe

change patterns and their impact, as introduced in [1]. That is, from textual models of

change pattern descriptions, we can generate the code for the Change Pattern DSL de-

scribed in Section 4.2. This way, the Change Pattern DSL's de�nition is highly extensible

and easy to change.

Consider the pattern Insert introduced above to illustrate the possible pattern variants:

ParallelInsert describes how to insert a new actor into the implicit execution path.

One possibility is to just add a new dependency information to the ports of the preceding

and succeeding actor. This may lead to a parallel execution path, causing unexpected

execution behavior. Another variant of the pattern, SerialInsert, will remove all

existing transitions between the preceding and succeeding actor before the new actor is

inserted. A detailed description of both variants can be found in [37].

As a second example of pattern variation let us consider the pattern Move and its

pattern variants: Move describes how to change position of an actor within the implicit

execution path. One possibility is to just add the new dependency information to the

ports of the actor being moved, without changing any other actor (non-disruptive move).

This may cause side e�ects like loops or parallel execution paths. Another variant of the

patternMovemay isolate the actor being moved completely from it's implicit successors

and predecessors by changing their ports before the actor is inserted on it's new position

16

Catalog variants.insert.patterncatalog
Pattern SerialInsert :
"Inserts an actor x between y and z,
 transferring all dependencies between y and z to x"
{
 keyword: "SerialInsert"
 from: actor toBeInserted
 to: "between" actor predecessor "and" actor successor
 transform:

// prevent loops
predecessor:in = predecessor:in
 without (toBeInserted:out intersect predecessor:in)
predecessor:out = predecessor:out
 without (predecessor:out intersect successor:in)
// insert
toBeInserted:in = toBeInserted:in union predecessor:out
successor:in = toBeInserted:out union
 (successor:in without (predecessor:out intersect successor:in))

}

Figure 10: Change pattern description of SerialInsert

(disruptive move). This may prevent loops and parallel execution paths, but may cause

other side e�ects like dangling or dead actors.

The Change Pattern Description DSL allows a change pattern developer to de�ne and

modify her own set of change patterns and its semantics, using set operations like union,

intersection, etc. Results of the set operations can be stored in variables or directly

assigned to an DERA Model element like an actor. Instances of change pattern descrip-

tions can be transformed to a stand-alone Change Pattern DSL including the change

pattern grammar de�nition, generators to transform change patterns into sets of change

primitives, as well as editors for Eclipse. The additional Change Pattern Description

DSL is shown on the left hand side of Figure 5.

Figure 10 shows the de�nition of a SerialInsert using Change Pattern Description

DSL. The descriptions contains a name, a short textual description, simple syntax de�-

nition and the pattern's semantics expressed by set-based transformation rules.

4.4 Discussion

In this section, we have illustrated the challenges of modeling change patterns for ED-

SOAs and especially the signi�cantly extended scope compared to the change patterns

for information systems by et al. [45]. This extended scope is mainly due to the com-

plexity and the large degree of �exibility of EDSOAs. However, as model-driven support

for a number of variants of basic change patterns based on established change primitives

is possible, as well as extensible tool support to deal with the wide variety of possible

pattern variants in EDSOA evolution, we can conclude that RQ1 can be positively an-

swered: Indeed, the concept of change patterns (as de�ned for information systems by

17

Weber et al. [45]) can be used as a foundation for a design method for the evolution of

EDSOAs, re�ecting the speci�c changes that EDSOAs require.

The broader variety of possible changes has led us to an extensible solution, rather than

a smaller, more �xed set of change patterns such as those for information systems by

Weber et al. [45]. For instance, inserting a new element in EDSOAs will lead to di�erent

variants and semantics of the Insert pattern identi�ed by Weber et al. In [1] we

identi�ed these variants as ParallelInsert and SerialInsert.

The need of expressing variants of patterns with di�erent semantics led us to the design

of the Change Pattern Description DSL described in the previous section.

5 Empirical Study on E�ciency of Performing Changes in

EDSOAs

5.1 Empirical Study Description

As RQ1 could be positively answered, we have further studied RQ2 in a controlled

experiment. For the study design, we have followed the experimental process guidelines

proposed by Kitchenham et al. [14] and Wohlin et al. [48]. The former was primarily

used in the planning phase of the study while the later was used for the analysis and the

interpretation of the results.

5.1.1 Goal, hypotheses, and variables

As mentioned before, this study examines how the change operations for EDSOAs de-

�ned at di�erent levels of abstraction (i.e., change primitives and change patterns) a�ect

the process of performing changes on those architectures. Namely, we compared the

performances among 3 groups of participants each of them was provided with a di�erent

set of change operations. The �rst group was provided with a set of 3 change patterns

(Serial Insert, Parallel Insert, and Delete) that represents a minimal set of change pat-

terns for performing any change in the system. The second group was provided with

two additional change patterns (Reroute and Replace) while the third group had to deal

with a set of 4 change primitives�Add, Insert, Delete, and Remove�which also repre-

sents a minimal set of primitives for performing any change in the system and are those

primitives needed to perform the changes described in the 5 selected change patterns.

In our study, we focus on patterns that operate on one element (i.e., actor) in the system

such as adding a new actor, deleting an actor, or replacing an actor with a new one.

As mentioned above, those patterns consist of 3 basic patterns (Serial Insert, Parallel

Insert, and Delete) that represent a minimal set of patterns for capturing any change

18

Description Scale type Unit Range

Time (Time) Ratio Minute Natural numbers incl. 0

Correctness (CoCC) Ratio Change Natural numbers incl. 0

Table 3: Dependent Variables

in the system and two additional patterns (Reroute and Replace, see Table 2) that can

capture more complex changes requiring a combination of basic change patterns. Under

the assumption that the expression power of change patterns to capture several changes

signi�cantly predominates over the di�culty to foresee the impact of introducing them,

we expect that the change patterns (both the basic and the extended ones) provide more

e�cient way of capturing changes in the system than the change primitives. Similarly,

we also expect that the extended patterns set is more e�cient than the basic patterns

set. The e�ciency of performing changes is captured through 2 dependent variables in

our study, the correctness of the captured changes (CoCC) and the time required to

perform required changes (Time). Beside these 2 dependent variables, we introduced

7 independent variables concerning the participants' experience (UML modelling, pro-

gramming, and programming of distributed systems) and group a�liation (3 di�erent

groups of participants).

Based on the discussion above, we can break down our research question RQ2 into the

following hypotheses to be tested in our study:

Hypothesis H1: The usage of both a minimal and an extended change patterns set

signi�cantly increases the correctness of the captured changes in EDSOAs compared to

the usage of a minimal set of change primitives.

Hypothesis H2: The usage of both a minimal and an extended change patterns set sig-

ni�cantly decreases the time required to perform required changes in EDSOAs compared

to the usage of a minimal set of change primitives.

Hypothesis H3: The usage of an extended set of change patterns signi�cantly increases

the correctness of the captured changes in EDSOAs compared to the usage of a minimal

change patterns set.

Hypothesis H4: The usage of an extended set of change patterns signi�cantly decreases

the time required to perform required changes in EDSOAs compared to the usage of a

minimal change patterns set.

The CoCC variable is assessed as the number of non-captured changes in the �nal model

provided by the participants as a solution. The variable is calculated with respect to

a desired �nal model (also called a target model) and a model created by the partici-

pants (see below for more details). The time variable is measured by the time that the

participants spent on providing a set of operations that should capture desired changes.

The participants' experience is measured based on their self-evaluations using a 5 level

19

Description Scale

type

Unit Range

UML modelling theory (UML-T) Ordinal N/A 5 level Likert scale

UML modelling practice (UML-P) Ordinal N/A 5 level Likert scale

Programming theory (Prog-T) Ordinal N/A 5 level Likert scale

Programming practice (Prog-P) Ordinal N/A 5 level Likert scale

Programming of distributed

systems theory (Concur-T)

Ordinal N/A 5 level Likert scale

Programming of distributed

systems practice (Concur-P)

Ordinal N/A 5 level Likert scale

Group affiliation Nominal N/A Groups G1 (3 patterns),

G2 (5 patterns), G3

(4 primitives)

Table 4: Independent Variables

Likert scale. The dependent variables together with their scale types, units, and ranges

are shown in Table 3. The independent variables are shown in Table 4.

5.1.2 Study Design

The experiment took place as a part of the Software Architecture lecture at the University

of Vienna, Austria, in the Summer Semester 2015. Therefore, it was compulsory for

students in the course.

Subjects The subjects of the study were 90 students of the Software Architecture

lecture at the University of Vienna.

Objects The objects used in our study are 4 EDSOA models that di�er in their com-

plexity, i.e., the number of actors and interconnections among them. Those models are

adapted from industrial case studies used in one of our previous projects or constructed

to re�ect common behaviour and scenarios very similar to those that exist in practice.

The following models are used: �Exchange Rates� (Model 1), �ATM Machine� (Model

2), �Travel Booking� (Model 3), and �CRM (Customer Relationship Management) Ful-

�lment� (Model 4).

Let us consider one of the models used in our study, for example, the model �ATM

Machine�. Figures 11 and 12 show the source and the target model of the system. The

changes between the two models used in the experiment were marked in red so that

they can be easily recognized. When a new actor or event appears in the system, its

name is marked in red as well as the symbol of an actor whose input or output events

are changed. The event �ow among the actors is represented by a dashed line with an

event name written beside. The actors are represented as square boxes. The actors

with arrows inside represent so-called condition actors that send their output events

20

Model Description Actors Control
Flows

Source-
Target

Changes

Exchange
Rates

Converting currencies
and finding the best
conversion option

Source: 8
Target: 9

Source: 11
Target: 12

19

ATM
Machine

Automatic transaction
machine to perform
financial transactions

Source: 12
Target: 13

Source: 15
Target: 17

22

Travel
Booking

Booking a journey
including hotel, flight,
and car

Source: 12
Target: 13

Source: 17
Target: 20

39

CRM
Fulfilment

Managing interactions
between a customer and
a company by verifying
different information

Source: 21
Target: 23

Source: 34
Target: 36

87

Table 5: Studied Models

Receive
Bank Card (A2)

Is PIN 1
valid (A4)

Verify
PIN 1 (A3)

Ask for
an amount (A9)

Verify
PIN 2 (A5)

Is the
amount valid (A10)

Dispense
cash (A11)

Is PIN 2
valid (A6)

Verify
PIN 3 (A7)

Is PIN 3
valid (A8)

<eInput> <ePIN1> <eVerified1>

<e
PI

N1
No
>

<ePIN1Yes>

<eVerified2>

<e
PI

N2
Ye

s>

<ePIN2No> <eVerified3>

<ePIN3Yes>

<eAmount>

<eAmountNo>

<eAmountYes>
INPUT

SYSTEM (A1)

OUTPUT
SYSTEM (A12)

<eEnd>

<ePIN3No>

Figure 11: ATM Machine Model � Source Model

depending on the evaluation (TRUE or FALSE). They can send either events related to

the TRUE evaluation, e.g. Event �ePIN1Yes� for Actor �A4�, or events related to the

FALSE evaluation, e.g. Event �ePIN1No� for the same actor (see [40] for more details).

The abbreviations of the actors' names (i.e., �A1�, �A2�, etc., see the �gures) are used to

shorten the time needed for writing corresponding change operations. The target model

of the system is created by performing di�erent types of changes on the source model

that can re�ect di�erent real situations. For example, insert of a new actor or event,

delete some actors or events, replace an actor or event with a new one, add or delete

a control dependency, etc. (see [44] for detailed real-world examples). The information

related to the Models 1,3, and 4 are summarized in Table 5. The corresponding graphical

representations are not shown because of space limitations.

Receive
Bank Card (A2)

Verify
PIN 1 (A3)

Ask for
an amount (A9)

Verify
PIN 2 (A5)

Is the
amount valid (A10)

Dispense
cash (A11)

Is PIN 2
valid (A6) Verify

PIN 3 (A7) Is PIN 3
valid (A8) Lock

Bank Card (A13)

<eInput> <ePIN1> <eVerified1>

<e
PI

N1
No
>

<eValidPIN1>

<eVerified2>

<e
Va

lid
PI

N2
>

<ePIN2No> <eVerified3>

<ePIN3Yes>

<ePIN3No>

<eAmountValid>

<eAmountYes>

<eTryAgain>

INPUT
SYSTEM (A1)

OUTPUT
SYSTEM (A12)

<eEnd>

Is PIN 1
valid (A4)

<eRepeat>

Figure 12: ATM Machine Model � Target Model

21

Instrumentation All participants were provided with a document containing a de-

tailed description of the notation used in the models. Depending on the group a�liation

the document also contained a set of change operations that can be used to transform

the given source models into the corresponding target models. In the same document,

an introductory example of the source/target model pair is described together with a

solution, to get participants more familiar with the task.

In addition, participants were provided with a questionnaire to be �lled-in during the

study execution. On the �rst page of the questionnaire, the participants had to rate their

experience on a scale of 1�5, i.e., theoretical knowledge as well as practical experience

on UML modelling, programming, and programming distributed systems (concurrent

programming). Regarding the theoretical knowledge, a scale level 1 means �I have weak

theoretical knowledge� and 5 means �I have strong theoretical knowledge�. With respect

to the practical experience 1 means �I never use it in practice� and 5 means �I use it in

practice every day�. The subsequent pages contain the 4 source/target model pairs to be

studied by participants3. The models were shu�ed so that 4 di�erent combinations were

generated (a �xed sequence of models is hold, only the starting point was variable) and

randomly assigned to the participants. The shu�ing was used to ensure that we get the

more/less balanced data for all the models in terms of equalizing the confounding factors

such as possible fatigue e�ects or the lack of time needed to complete all the models.

We also provided a table where the participants had to enter the time slots during

which they studied each of the models. Each time slot contains a start and stop time,

indicating the time when the participants started studying the given model and the time

when they �nish it, respectively. There were more time slots in case the participants

wanted to study the model more than one time. The time is written in the format hour

: minute.

5.1.3 Execution

Preparation The total time for the whole study was 2.5 hours. During the �rst

hour the participants and the experimenters (people who supervised the experiment)

studied together the notation and an introductory example, in order to ensure that the

participants comprehensively understand the notation and tasks to be studied and to

clarify any possible ambiguity and confusion. Two experimenters, who were familiar

with the internals of the study, were present during the whole study execution, so that

the participants could pose any additional clari�cation questions.

3The number of models to be studied per participant is estimated in a pre-study, conducted with our

colleagues, to ensure that the participants have fairly enough time to study all of them.

22

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
Level 5

Level 4

Level 3

Level 2

Level 1

The percentage of participants having a given experience

Figure 13: Participants' Demographic Information

Data collection The data related to the participants' demographic information are

shown in Figure 13 (please see Table 4 for the abbreviations used in the �gure). According

to the experience of the participants, we can say that most of the participants have

moderate experience (levels 2, 3, and 4). According to their self-evaluations, we can

say that they have slightly worse knowledge and experience on programming distributed

systems than on UML modelling and programming in general.

Since we did not consider related knowledge and experience as a factor in our study,

an in�uence of the independent variables (primarily participants' experiences) on the

dependent variables is eliminated by balancing the characteristics between the given 3

groups of participants. The participants were randomly assigned to the three groups.

From Figure 13 we can see that the experience of the participants is quite well balanced

among the three studied groups. We also con�rmed it statistically by pursuing the Cli�'s

test and concluded that there is no signi�cant di�erence in the experience between the

3 groups (see below for details on how to perform the given test).

5.2 Analysis

5.2.1 Descriptive Statistics

Six of the participants (3 from the G1 group and 3 from the G3 group) who wrote nothing

or just a few operations in total were excluded from the analysis because this would just

introduce bias in the results. The descriptive statistics (mean, median, and standard

deviation) related the correctness and time variables for each studied model as well as

for all models together, after removals, is shown in Table 6.

As mentioned before, the correctness variable is calculated as the number of non-captured

changes in the �nal models provided by the participants with respect to the desired

�nal models. Particularly, the non-captured changes are calculated per actor and then

23

Model Group Num. of
partic.

Mean
(CoCC)

Median
(CoCC)

St. Dev.
(CoCC)

Mean
(Time)

Median
(Time)

St. Dev.
(Time)

Model 1

G1 27 1.74 1 2.79 12.26 11 4.79

G2 30 3.16 1 4.38 12.60 12 5.25

G3 27 2.04 2 2.26 12.52 11 5.22

Model 2

G1 27 1.37 1 2.63 17 16 8.53

G2 30 3.96 1 5.58 15.43 13 9.04

G3 27 2.14 1 3.42 17.18 15 7.24

Model 3

G1 27 2.14 0 2.99 17.41 15 7.02

G2 30 5.66 2 8.61 18.86 18 8.61

G3 27 4.33 1 7.24 19.51 19 7.30

Model 4

G1 27 9.62 4 17.16 24.03 21 8.67

G2 30 21.46 9 24.83 21.96 23 7.68

G3 27 14.22 8 15.40 29.85 29 10.36

All
models

G1 27 14.88 9 19.14 70.70 72 9.31

G2 30 34.26 21 35.62 68.86 68 11.35

G3 27 22.74 15 21.65 79.07 77 11.13

Table 6: Descriptive Statistics

summed up for all actors in the model. The number of non-captured changes per actor

is calculated as the number of primitive changes that need to be performed in order to

transform an actor in the �nal model provided by the participants to the corresponding

actor in the desired �nal model. For example, to transform Actor �A10� in Figure 11 to

Actor �A10� in Figure 12 4 primitive changes are needed (removing Event �eAmountNo�,

adding Event �eRepeat�, removing Event �eAmount�, and adding Event �eAmountValid�).

Actor �A13� is new so the number of primitive changes in this case is 3 (adding Actor

�A13�, adding Event �ePIN3No, and adding Event �eTryAgain�). When all actors in the

system are taken into account, the number of changes to be made to transform the source

system into the target system is 22. Regarding the other studied models, Model 1, 3,

and 4, the number of changes to transform the source into the target system is 19, 39,

and 87, respectively.

5.2.2 Testing Hypotheses

To analyse the data obtained in the study, the following statistical tests are performed

using the programming language R [28]:

• Normality analysis: The Shapiro Wilk normality test (R function shapiro.test)

• Comparison of a location shift between more than two variables: The Cli�'s test

(R function cidmulv2)

The �rst step in the analysis is examining if our data are normally distributed or not. In

case of not normally distributed data, we have to use the non-parametric tests in the next

step of our analysis, otherwise we can use the parametric tests [9]. The obtained p-values

for the Shapiro Wilk normality test are lower than 0.05 (i.e., the level of con�dence is 95

%), which means that our data show signi�cant variation from the normal distribution.

24

Model 1
(p-val, p-crit, p-hat)

Model 2
(p-val, p-crit, p-hat)

Model 3
(p-val, p-crit, p-hat)

Model 4
(p-val, p-crit, p-hat)

All models
(p-val, p-crit, p-hat)

 G1 G2 G1 G2 G1 G2 G1 G2 G1 G2

G2 0.280
0.025
0.581

-- G2 0.041
0.017
0.640

-- G2 0.290
0.025
0.578

-- G2 0.150
0.025
0.613

-- G2 0.096
0.017
0.634

--

G3 0.150
0.017
0.614

0.690
0.050
0.531

G3 0.640
0.050
0.462

0.058
0.025
0.355

G3 0.190
0.017
0.603

0.900
0.050
0.509

G3 0.130
0.017
0.624

0.650
0.050
0.464

G3 0.150
0.025
0.617

0.590
0.050
0.457

Table 7: The Results of the Cli�'s Method - Correctness (p-val<p-crit -> result signi�-

cance, p-hat -> the e�ect size)

Model 1
(p-val, p-crit, p-hat)

Model 2
(p-val, p-crit, p-hat)

Model 3
(p-val, p-crit, p-hat)

Model 4
(p-val, p-crit, p-hat)

All models
(p-val, p-crit, p-hat)

 G1 G2 G1 G2 G1 G2 G1 G2 G1 G2

G2 0.780
0.017
0.523

-- G2 0.330
0.025
0.422

-- G2 0.520
0.050
0.551

-- G2 0.490
0.050
0.444

-- G2 0.560
0.050
0.453

--

G3 0.890
0.025
0.511

0.990
0.050
0.501

G3 0.810
0.050
0.519

0.150
0.017
0.613

G3 0.180
0.017
0.613

0.480
0.025
0.557

G3 0.020
0.025
0.687

0.004
0.017
0.721

G3 0.011
0.025
0.701

0.002
0.017
0.744

Table 8: The Results of the Cli�'s Method - Time (p-val<p-crit -> result signi�cance,

p-hat -> the e�ect size)

Therefore, we decided to apply non-parametric tests to test our hypotheses. The Cli�'s

method in conjunction with the Hochberg's method (to control the probability of one

or more type I error) that allows heteroscedasticity (di�erent variances in the tested

groups) and performs well when tied values can occur [47] is used.

The results of the Cli�'s method for the correctness and time variables are shown in

Tables 7 and 8. Particularly, the p-values that show if there is a signi�cant di�erence

between the groups, the corresponding critical p-values, and the p-hat values that mea-

sure the e�ect sizes are shown. If the p-values are lower than the corresponding critical

p-values it means that there exists a signi�cant di�erence between the groups [47]. The

e�ect size indicates how strong is the obtained di�erence between the groups. Values

around 0.556 indicate small e�ect size, around 0.638 medium e�ect size, and around 0.714

large e�ect size [15]. From the obtained results, we can see that there is no signi�cant

di�erence in the correctness among the groups for all studied models separately nor in

the case where all models are considered together, when the correctness of all models is

summed up. However, for the time variable there exists a signi�cant di�erence for Model

4 and the case where all models are considered together (see Table 8). The p-values in

the bottom of the table indicate a signi�cant di�erence obtained between Group G1 and

Group G3 as well as between Group G2 and Group G3. No signi�cant di�erence is found

between Group G1 and Group G2. The obtained e�ect sizes for the groups that show

signi�cant di�erence in the time variable can be considered as large, which indicates a

strong di�erence.

25

5.3 Discussion

In the view of the obtained results, we can conclude that the Hypothesis H1 of our study

is not supported, i.e., the usage of both a minimal and an extended change patterns

set does not signi�cantly increase the correctness of the captured changes in EDSOAs

compared to the usage of a minimal set of change primitives. Therefore, our results

suggest that the abstraction level of the change patterns/primitives does hardly have an

in�uence on the level of correctness achieved. The expectations that change patterns

signi�cantly increase the correctness, driven by the correctness-by-construction principle

discussed in Section 5.1.1, did not materialize. A possible reason might be that the

change patterns are not correctly utilized a�ecting the appearance of a large number of

non-captured changes in the models. By considering the results from all 4 models we

�nd that almost 80% of the participants who used patterns applied them correctly, i.e.,

they introduced just around 10% of non-captured changes with respect to all required

changes.

To better comprehend the results for the Hypothesis H1, we can actually associate them

with the results obtained for the time variable that are related to the Hypothesis H2 of

our study. Namely, in achieving the same or similar level of correctness (as discussed

above no signi�cant di�erence is found), the groups that utilized change patterns (Groups

G1 and G2) needed signi�cantly less time to perform all required transformations (for

all 4 tasks together) compared to the group that utilized change primitives (Group G3).

The same remark applies to Model 4. However, for Models 1, 2, and 3 we found no

statistically signi�cant di�erence in the time variable. For Model 4, the highest number

of transformations is required to transform the source model into the target one. Totally

87 primitive changes are required compared to Models 1, 2, and 3, that required 19, 22,

and 39 primitive changes, respectively (see Section 5.2.1 for more details). We conclude

that a certain level of transformation complexity is needed in order that change pattens

provide bene�ts in performing changes in the system. Consequently, we can say that

the Hypothesis H2 of our study is partially supported, i.e., under the assumption that

a certain level of transformation complexity exists, the usage of both a minimal and an

extended change patterns set signi�cantly decreases the time required to perform required

changes in EDSOAs, compared to the usage of a minimal set of change primitives.

From the obtained results in Tables 7 and 8, we can say that the Hypotheses H3 and

H4 of our study are not supported, i.e., the usage of an extended set of change patterns

neither signi�cantly increases the correctness of the captured changes nor decreases the

time required to perform the changes in EDSOAs, compared to the usage of a minimal

change patterns set. Therefore, our expectations that two additional, more abstract,

change patterns would provide more e�cient way of capturing changes did not material-

ize. To examine the potential usage of the additional patterns, we compare the number

26

of change operations that need to be written in the case where the extended patterns set

is used versus the case where the basic patterns set is used. The additional patterns can

provide signi�cant bene�ts only in the �rst 3 models where the number of operations to

capture the required changes can be reduced from 21 to 16 (23.8% of reduction), using

the extended patterns set compared to the basic one. Since the additional patterns can

provide bene�ts only in the �rst 3 models, we examine the Hypotheses H3 and H4 addi-

tionally in the case where the �rst 3 models are considered together. Also in that case,

no signi�cant di�erence in the observed variables is found. An explanation for the ob-

tained results might be that the participants realised that the additional 2 patterns can

be captured by the other 3 patterns. Since the additional 2 patterns represent patterns

that operate on one actor, that do not provide huge bene�ts in capturing more changes

than other 3 patterns, the participants simply did not use them as an option. We ex-

amined this explanation by studying the usage of the additional patterns in the system.

Table 9 shows the number of participants (and the corresponding percentage) who used

any of the additional patterns. From the obtained results, we can say that a relatively

small number of participants used any of the patterns. Furthermore, we examine if the

additional 2 patterns were correctly applied in the models, since incorrect pattern us-

age can increase the number of non-captured changes in the models. The usage of the

additional patterns introduced totally 58 non-captured changes in the �rst 3 models, of

which 24 come from the Replace pattern (made by 2 out of 5 participants who used the

Replace pattern) and 34 from the Reroute pattern (made by 8 out of 17 participants

who used the Reroute pattern). Therefore, we can say that the relatively high number

of non-captured changes is introduced by the incorrect usage of the additional patterns

set. This fact and the fact that the additional patterns are rarely used, partially support

the explanations of the results for Hypotheses H3 and H4.

To summarize the obtained results regarding Hypotheses H1 and H2, we can say that

working on change abstractions at higher level does not provide signi�cant bene�ts, if

the goal is only correctness for smaller amounts of changes, but for performing a lot

of frequent changes, higher level abstractions like change patterns make sense. This is

quite reasonable, since capturing a small number of changes can be more or less easily

tracked using change primitives without a�ecting the model correctness while change

patterns still have to be appropriately combined (especially in the case where the set

of changes to be preformed do not comply with a set of change primitives captured in

a given pattern). Regarding Hypotheses H3 and H4, we can say that the potential of

using the additional patterns could not be fully exploited, since the subjects used them

only to a limited extent and had troubles with their correct application.

Examining more precisely which patterns in which situations could provide bene�ts or

cause disadvantages in the process of performing changes needs to be further investigated.

Also, we plan to examine the obtained results in cases where expert users who are more

27

 Model 1 Model 2 Model 3 Model 4

Replace pattern 1 (3.33%) 1 (3.33%) 3 (10%) 10 (33.33%)

Reroute pattern 9 (30%) 12 (40%) 7 (23.33%) 8 (26.67%)

Table 9: Number of Participants Who Used Replace or Reroute Patterns

experienced with model transformations as well as more complex patterns that operate

on several model elements are used.

Based on our results, we can conclude for research question RQ2 that a higher e�ciency in

performing changes using change patterns compared to primitives in EDSOAs is indeed

supported by our empirical results. However, the usage of a minimal set of change

patterns did not signi�cantly increase the e�ciency of performing changes in EDSOAs

compared to the usage of an extended change patterns, or vice versa. That is, additional

research is required to �nd exactly the right set of change patterns for optimizing our

design method for supporting changes in EDSOAs.

5.4 Validity evaluation

In this section we discuss the various threats to validity of our study and how we tried

to minimize them:

5.4.1 Conclusion validity

The conclusion validity de�nes the extent to which the conclusion is statistically valid.

The statistical validity might be a�ected by the size of the sample (27, 30, and 27

students in the groups G1, G2, and G3, respectively). In a between subjects-design, 20

participants are recommended to detect a large e�ect in the one way ANOVA test with

a power of 0.8 and a signi�cance level of 0.05 [4]. In the corresponding non-parametric

Cli�'s test maximum 15 % more participants can be expected [49] leading to 23. As

we obtained that there is a statistically signi�cant di�erence between the studied groups

for the given sample size, we would be able to detect even tiny di�erences between the

groups if the sample size increases. Therefore, there is a low threat to conclusion validity

of our results.

5.4.2 Construct validity

The construct validity is the degree to which the independent and the dependent variables

are accurately measured by the appropriated instruments. A possible threat to validity

might be the measuring of the time variable. The participants could have forgotten to

write the time right before they start and right after they �nish studying the models

which represents a threat to the accuracy of the time variable. In order to reduce that

28

threat, we wrote a reminder before each studied model to remind the participants to

write the stop time in the previously studied model if they forgot it and the start time

for the given model they intend to study as the next one.

The interpretation of the answers to the questions might result in a threat to valid-

ity of the dependent variable. The change operations written by the participants are

thoroughly examined by the �rst author and additionally checked by the second one.

Therefore this potential threat is mitigated to a large degree.

5.4.3 Internal validity

The internal validity is the degree to which conclusions can be drawn about cause-e�ect

of independent variables on the dependent variables. We deal with the following issues:

Di�erences among subjects. The variation in human performance might distort

the results of the study, and then the performance di�erences would not arise from the

di�erence in treatments. In this particular study, the participants' experience is quite

well balanced among the three groups in the study and there is no signi�cant di�erence

among the groups (see Section 5.1.3). Thus, this factor is not seen as a strong threat to

validity.

Fatigue e�ects. Total time limit for the whole study was 2.5 hours so fatigue was

not very relevant. Also, the shu�ing of the models and a pre-study estimation of the

required time for studying the questions (see Section 5.1.2) helped to cancel out these

e�ects.

Measuring method. A potential threat to validity might be that the understanding

of the questionnaire could have been biased towards �Group Ahierarchy�. Answering

some of the questions might be easier for that group because the architecture for that

group reduces the decision space by pointing to the component or the set of components

related to the examined concern. However, those questions are based on the established

comprehension framework related to examining the relevant concerns of (a part of) the

system and how those concerns are interrelated [24]. The established task framework

also ensures that many aspects of typical understanding contexts are covered. Beside the

usage of the common framework the questions are imaginatively constructed to measure

the deeper understanding of the groups (see Section 5.1.2). As a result, the questionnaire

concerned both global and detailed knowledge, as well as static and dynamic aspects.

Therefore, we consider that this threat is mitigated to a large extent.

29

5.4.4 External validity

The external validity is the degree to which the results of the study can be generalized

to the broader population under study. The following facts are identi�ed: The greater

the external validity, the more the results of an empirical study can be generalised to

actual software engineering practice.

The studied models. Although we used only 4 models in the study, we consider that

a risk for generalizing the results is mitigated to a large extent. In particular, we created

di�erent types of changes (without emphasizing particular change types) on the source

model that re�ect di�erent real situations like inserting of a new actor or event, deleting

some actors or events, replacing an actor or an event with a new one, adding or deleting

a control dependency, etc. [44]. Therefore, we consider that this threat is mitigated to

a large extent. However, examining in how far di�erent change operations are bene�cial

for models with di�erent characteristics or structures need to be further investigated.

The used notation. Another possible threat to external validity relates to the mod-

elling notation used (i.e., DERA framework). In the given notation, the interfaces of

the actors are explicitly de�ned, which is close to the developers' perception and re-

duces a non-deterministic behaviour of event-based communications (see Section 3). As

mentioned before, the used notation and concepts comply with most existing EDSOAs.

Explicitly de�ned actors' interfaces, used in the notation, enable that the dependencies

between the actors are known at any time. Therefore, the dependencies do not need

to be extracted from the source code by studying di�erent event-processing rules (e.g.

complex event processing rules [20], publish-subscribe rules [20]). However, in case of no

explicit interfaces, where a user has to study actors event processing rules to infer how

the actors communicate, di�erent results might be obtained. More studies are necessary

to investigate those e�ects.

Subjects. In our study, we used students who have moderate knowledge and experiences

related to the studied problem. It has been shown in previous research that software

engineering students may provide an adequate model for the experts population [46].

However, the results cannot be generalized to experts who will presumably be able to

apply patterns more e�ectively.

6 Conclusion

This study presents a change pattern based design method for supporting evolution

in EDSOAs, together with a controlled experiment on understanding and performing

changes in EDSOAs using change operations at di�erent abstraction levels (i.e., low-

level change primitives and high-level change patterns). We have clearly shown in the

30

feasibility of our approach by developing a design method and tool support using a model-

driven tool chain consisting of 3 domain-speci�c languages. In our empirical study, we

investigated the e�ciency of transforming a given architecture model into a desired one,

using 3 di�erent sets of change operations: a minimal set of 3 change patterns, an

extended set of 5 change patterns, and a minimal set of 4 change primitives. Our results

indicate that change patterns based evolution is more e�cient, i.e., requires a signi�cantly

less time to capture a similar level of correctness, compared to the change primitives

based evolution. However, the observed improvement in e�ciency has only been shown

for the model that required the highest number of changes to be captured as well as for

the case where all models are considered together. Therefore, we conclude that a certain

level of transformation complexity is required for change patterns to provide bene�ts in

performing changes of a system. In addition, no signi�cant di�erence in e�ciency of

an extended pattern set compared to a minimal set of patterns is found. With respect

to that, we conclude that the additional patterns could not be fully exploited, since

the subjects used them only to a limited extent and had troubles with their correct

application. The results of our study � besides the empirical evidence � also provide a

contribution toward a tool support for performing changes in EDSOAs. In particular, our

research informs the choice of change operations that such tools should provide. Future

research should include examining more precisely in how far di�erent change operations

can support capturing di�erent types of changes in the system as well as how experts

would apply di�erent types of change operations.

Acknowledgments

This work was supported by the Austrian Science Fund (FWF), Project: P24345-N23.

References

[1] S. T. andy Uwe Zdun. Domain speci�c languages for maintaining and analyzing

changes in event-based architectures. In 8th International Workshop on Evolution-

ary Business Processes (EVL-BP 2015), Co-located with the 19th IEEE EDOC Con-

ference, September 2015.

[2] H. P. Breivold, I. Crnkovic, and M. Larsson. A systematic review of software ar-

chitecture evolution research. Information and Software Technology, 54(1):16�40,

2012.

[3] J. Claes, I. Vanderfeesten, H. Reijers, J. Pinggera, M. Weidlich, S. Zugal,

D. Fahland, B. Weber, J. Mendling, and G. Poels. Tying process model quality

to the modeling process: The impact of structuring, movement, and speed. In

A. Barros, A. Gal, and E. Kindler, editors, Business Process Management, volume

31

7481 of Lecture Notes in Computer Science, pages 33�48. Springer Berlin Heidelberg,

2012.

[4] J. Cohen. Statistical Power Analysis for the Behavioral Sciences. L. Erlbaum As-

sociates, 1988.

[5] J. A. Cruz-Lemus, M. Genero, M. E. Manso, S. Morasca, and M. Piattini. Assessing

the understandability of uml statechart diagrams with composite states�a family of

empirical studies. Empirical Softw. Engg., 14(6):685�719, Dec. 2009.

[6] P. Dadam and M. Reichert. The adept project: A decade of research and de-

velopment for robust and �exible process support - challenges and achievements.

Computer Science - Research and Development, 23(2):81�97, 2009.

[7] J. L. Fiadeiro and A. Lopes. An algebraic semantics of event-based architectures.

Mathematical. Structures in Comp. Sci., 17(5):1029�1073, Oct. 2007.

[8] L. Fiege, G. Mühl, and F. C. Gärtner. Modular event-based systems. The Knowledge

Engineering Review, 17(4):359�388, Dec. 2002.

[9] A. Field, J. Miles, and Z. Field. Discovering Statistics Using R. SAGE Publications,

2012.

[10] S. Ganesan, Y. Yoon, and H.-A. Jacobsen. NIÑOS take �ve: the management

infrastructure for distributed event-driven work�ows. In 5th ACM Int'l Conf. on

Distributed event-based system (DEBS), pages 195�206. ACM, 2011.

[11] J. Garcia, D. Popescu, G. Sa�, W. G. J. Halfond, and N. Medvidovic. Identifying

message �ow in distributed event-based systems. In Proceedings of the 2013 9th Joint

Meeting on Foundations of Software Engineering, ESEC/FSE 2013, pages 367�377,

New York, NY, USA, 2013. ACM.

[12] A. Hallerbach, T. Bauer, and M. Reichert. Capturing variability in business process

models: the provop approach. J. Softw. Maint. Evol., 22:519�546, Oct. 2010.

[13] M. B. Juric. {WSDL} and {BPEL} extensions for event driven architecture. Infor-

mation and Software Technology, 52(10):1023 � 1043, 2010.

[14] B. A. Kitchenham, S. L. P�eeger, L. M. Pickard, P. W. Jones, D. C. Hoaglin,

K. El Emam, and J. Rosenberg. Preliminary guidelines for empirical research in

software engineering. Software Engineering, IEEE Transactions on, 28(8):721�734,

Aug. 2002.

[15] H. C. Kraemer and D. J. Kupfer. Size of treatment e�ects and their importance to

clinical research and practice. Biological Psychiatry, 59(11):990 � 996, 2006.

32

[16] T. D. LaToza and B. A. Myers. Developers ask reachability questions. In Proceed-

ings of the 32Nd ACM/IEEE International Conference on Software Engineering -

Volume 1, ICSE '10, pages 185�194, 2010.

[17] M. Lehman. Programs, life cycles, and laws of software evolution. Proceedings of

the IEEE, 68(9):1060�1076, 1980.

[18] M. M. Lehman. On understanding laws, evolution, and conservation in the large-

program life cycle. J. Syst. Softw., 1:213�221, Sept. 1984.

[19] D. C. Luckham. The Power of Events: An Introduction to Complex Event Processing

in Distributed Enterprise Systems. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA., Dec. 2001.

[20] G. Mühl, L. Fiege, and P. Pietzuch. Distributed Event-Based Systems. Springer,

2006.

[21] P. Niblett and S. Graham. Events and service-oriented architecture: The oasis web

services noti�cation speci�cations. IBM Syst. J., 44(4):869�886, Oct. 2005.

[22] M. C. Otero and J. J. Dolado. Evaluation of the comprehension of the dynamic

modeling in {UML}. Information and Software Technology, 46(1):35 � 53, 2004.

[23] S. Overbeek, M. Janssen, and P. Bommel. Designing, formalizing, and evaluating

a �exible architecture for integrated service delivery: combining event-driven and

service-oriented architectures. Service Oriented Computing and Applications, 6:167�

188, 2012.

[24] M. J. Pacione, M. Roper, and M. Wood. A novel software visualisation model to

support software comprehension. In Proceedings of the 11th Working Conference on

Reverse Engineering, WCRE '04, pages 70�79, Washington, DC, USA, 2004. IEEE

Computer Society.

[25] J. Pinggera, S. Zugal, M. Weidlich, D. Fahland, B. Weber, J. Mendling, and H. Rei-

jers. Tracing the process of process modeling with modeling phase diagrams. In

F. Daniel, K. Barkaoui, and S. Dustdar, editors, Business Process Management

Workshops, volume 99 of Lecture Notes in Business Information Processing, pages

370�382. Springer Berlin Heidelberg, 2012.

[26] D. Popescu, J. Garcia, K. Bierho�, and N. Medvidovic. Impact analysis for dis-

tributed event-based systems. In 6th ACM Int'l Conf. Distributed Event-Based

Systems (DEBS), pages 241�251. ACM, 2012.

[27] H. C. Purchase, L. Colpoys, M. McGill, D. Carrington, and C. Britton. Uml class

diagram syntax: An empirical study of comprehension. In Proceedings of the 2001

33

Asia-Paci�c Symposium on Information Visualisation - Volume 9, APVis '01, pages

113�120, Darlinghurst, Australia, Australia, 2001. Australian Computer Society,

Inc.

[28] R Core Team. R: A Language and Environment for Statistical Computing. R Foun-

dation for Statistical Computing, 2013.

[29] G. Redding, M. Dumas, A. ter Hofstede, and A. Iordachescu. Modelling �exible

processes with business objects. In IEEE Conf. on Commerce and Enterprise Com-

puting (CEC), pages 41�48, 2009.

[30] M. Reichert and B. Weber. Enabling Flexibility in Process-Aware Information Sys-

tems - Challenges, Methods, Technologies. Springer, 2012.

[31] S. Rinderle-Ma, M. Reichert, and B. Weber. On the formal semantics of change

patterns in process-aware information systems. In 27th Int'l Conf. on Conceptual

Modeling (ER), pages 279�293. Springer, 2008.

[32] N. Russell, A. ter Hofstede, D. Edmond, and W. van der Aalst. Work�ow data

patterns: Identi�cation, representation and tool support. In L. Delcambre, C. Kop,

H. Mayr, J. Mylopoulos, and O. Pastor, editors, Conceptual Modeling â�� ER 2005,

volume 3716 of Lecture Notes in Computer Science, pages 353�368. Springer Berlin

Heidelberg, 2005.

[33] N. Russell, A. H. M. ter Hofstede, W. M. P. van der Aalst, and N. Mulyar. Work�ow

Control-Flow Patterns: A Revised View. Technical report, BPMcenter.org, 2006.

[34] H. Schonenberg, R. Mans, and N. Russell. Process �exibility: A survey of con-

temporary approaches. In The 4th Int'l Workshop CIAO! and 4th Int'l Workshop

EOMAS, pages 16�30. Springer, 2008.

[35] L. Thom, M. Reichert, and C. Iochpe. Activity patterns in process-aware infor-

mation systems: Basic concepts and empirical evidence. International Journal of

Business Process Integration and Management (IJBPIM), 4(2):93�110, 2009.

[36] D. Tombros and A. Geppert. Building Extensible Work�ow Systems Using an Event-

Based Infrastructure. In 12th Int'l Conf. on Advanced Information Systems Engi-

neering (CAiSE), pages 325�339. Springer-Verlag, 2000.

[37] S. Tragatschnig, H. Tran, and U. Zdun. Change patterns for supporting the evolu-

tion of event-based systems. In 21st International Conference on COOPERATIVE

INFORMATION SYSTEMS (CoopIS 2013), pages 283�290, Graz, Austria, Septem-

ber 2013. Springer.

34

[38] S. Tragatschnig, H. Tran, and U. Zdun. Impact analysis for event-based systems

using change patterns. In 29th Symposium On Applied Computing (SAC 2014) -

Cooperative Systems. ACM, March 2014.

[39] S. Tragatschnig and U. Zdun. Modeling Change Patterns for Impact and Con�ict

Analysis in Event-Driven Architectures. In 24th IEEE International Conference on

Enabling Technologies: Infrastructure for Collaborative Enterprises, International

track on Adaptive and Recon�gurable Service-oriented and component-based Appli-

cations and Architectures., pages 44�46, June 2015.

[40] H. Tran and U. Zdun. Event-driven actors for supporting �exibility and scalability in

service-based integration architecture. In 20th Int'l Conf. Cooperative Information

Systems (CoopIS), pages 164�181. Springer, 2012.

[41] H. Tran and U. Zdun. Event actors based approach for supporting analysis and

veri�cation of event-driven architectures. In 17th IEEE International Enterprise

Distributed Object Computing Conference (EDOC), pages 217�226, USA, September

2013. IEEE Computer Society Press.

[42] W. M. P. van der Aalst, M. Pesic, and H. Schonenberg. Declarative work�ows:

Balancing between �exibility and support. Computer Science - Research and De-

velopment, 23(2):99�113, 2009.

[43] B. Weber, J. Pinggera, V. Torres, and M. Reichert. Change patterns in use: A

critical evaluation. In S. Nurcan, H. Proper, P. So�er, J. Krogstie, R. Schmidt,

T. Halpin, and I. Bider, editors, Enterprise, Business-Process and Information Sys-

tems Modeling, volume 147 of Lecture Notes in Business Information Processing,

pages 261�276. Springer Berlin Heidelberg, 2013.

[44] B. Weber, M. Reichert, and S. Rinderle-Ma. Change patterns and change support

features - enhancing �exibility in process-aware information systems. Data Knowl.

Eng., 66(3):438�466, Sept. 2008.

[45] B. Weber, S. Rinderle, and M. Reichert. Change patterns and change support

features in process-aware information systems. In 19th Int'l Conf. Advanced Infor-

mation Systems Engineering (CAiSE), pages 574�588. Springer-Verlag, 2007.

[46] B. Weber, S. Zeitelhofer, J. Pinggera, V. Torres, and M. Reichert. How advanced

change patterns impact the process of process modeling. In I. Bider, K. Gaaloul,

J. Krogstie, S. Nurcan, H. Proper, R. Schmidt, and P. So�er, editors, Enterprise,

Business-Process and Information Systems Modeling, volume 175 of Lecture Notes

in Business Information Processing, pages 17�32. Springer Berlin Heidelberg, 2014.

[47] R. Wilcox. Chapter 7 - one-way and higher designs for independent groups. In

R. Wilcox, editor, Introduction to Robust Estimation and Hypothesis Testing (Third

35

Edition), Statistical Modeling and Decision Science, pages 291 � 377. Academic

Press, Boston, third edition edition, 2012.

[48] C. Wohlin. Experimentation in Software Engineering: An Introduction. The Kluwer

International Series in Software Engineering. Kluwer Academic, 2000.

[49] D. Wolfe. Nonparametrics: Statistical methods based on ranks and its impact on

the �eld of nonparametric statistics. In J. Rojo, editor, Selected Works of E. L.

Lehmann, Selected Works in Probability and Statistics, pages 1101�1110. Springer

US, 2012.

[50] S.-T. Yuan and M.-R. Lu. An value-centric event driven model and architecture: A

case study of adaptive complement of {SOA} for distributed care service delivery.

Expert Systems with Applications, 36(2, Part 2):3671 � 3694, 2009.

36

	Introduction
	Related Work
	Related Works on Change Patterns
	Related Work on Event-driven Systems
	Related Work on EDSOAs
	Related Work on Process-Driven Systems

	Background on Event-Driven Service-Oriented Architectures
	Change Pattern Based Design Method for Supporting EDSOA Evolution
	Change Primitives
	Change Patterns
	Model-driven Tool Support
	DSL for Change Primitives
	DSLs for Change Patterns
	Change Pattern Description DSL for Supporting Change Pattern Definition

	Discussion

	Empirical Study on Efficiency of Performing Changes in EDSOAs
	Empirical Study Description
	Goal, hypotheses, and variables
	Study Design
	Execution

	Analysis
	Descriptive Statistics
	Testing Hypotheses

	Discussion
	Validity evaluation
	Conclusion validity
	Construct validity
	Internal validity
	External validity

	Conclusion

