
A Self-Organizing Distributed and
In-Band SDN Control Plane

Marco Canini* Iosif Salem‡ Liron Schiff† Elad M. Schiller‡ Stefan Schmid§
*Université catholique de Louvain ‡Chalmers University of Technology

†Tel Aviv University §Aalborg University & TU Berlin

Abstract—Adopting distributed control planes is critical to-
wards ensuring high availability and fault-tolerance of depend-
able Software-Defined Networks (SDNs). However, designing and
bootstrapping a distributed SDN control plane is a challenging
task, especially if to be done in-band, without a dedicated control
network, and without relying on legacy networking protocols. One
of the most appealing and powerful notions of fault-tolerance is
self-organization and this paper discusses the possibility of self-
organizing algorithms for in-band control planes.

I. OUR CONTRIBUTION

Computer networks have become a critical infrastructure
of our society. However, traditional computer networks are
often inflexible, complex and error-prone, raising concerns
regarding their dependability. Over the last years, Software-
Defined Networks (SDNs) have emerged, promising interesting
opportunities for designing more dependable networks [1].

SDNs advocate for software-based control of a network
based on a simple, logically-centralized global network view.
While the literature has well articulated the benefits of the
separation between control and data planes [2], the question
of how connectivity between these two planes is maintained –
that is, paths for supporting switch-controller and controller-to-
controller communications – has not received much attention.

The problem is further amplified by the fact that the
logically-centralized SDN control plane actually means physi-
cally distributed, for a plethora of reasons, including reliability,
availability, scalability, and latency (cf. [3] and references
therein). In practice, most SDN deployments resort to out-
of-band control, where control plane packets are carried by
a dedicated management network. The management network
runs its own routing system, which typically is realized using
traditional routing protocols such as STP or OSPF.

Instead, in-band control is desirable for many reasons
including its economical benefits (in certain contexts, such as
carrier networks, out-of-band control would be prohibitively
expensive). In essence, with in-band control there is no reason
to build, operate, and ensure the reliability of a separate
network.

This work contributes an important module for many
fault-tolerant distributed systems: a self-organizing network
control plane. In particular, we find that SDNs offer interesting
opportunities for designing robust and highly available network
structures. We sketch two approaches for implementing a self-
organizing SDNs.

II. SYSTEM SETTINGS

We consider a network connecting two kinds of compo-
nents, controllers and switches, henceforth also called nodes.
The controller nodes compute, communicate and coordinate
the network data flows. The switches are nodes that relay the
packets of the data plane, communicate with the controllers,
and have unique addresses. Switches are basic and “passive”
devices: they cannot perform general purpose computations,
because they have to follow a set of rules that the controllers
define for them. The term switch configuration refers to the
set of match-action rules with priorities and (possibly infinite)
timeout values. The configuration can be changed either (1)
by a controller or (2) through a timeout (which upon firing,
causes the corresponding rule to be deleted). We consider two
configuration settings: one that is timeout-based, which uses
rules with (finite) timeouts, and another that is timeout-free,
which does not use any (finite) timeout. A switch can be in
one of two possible states: managed by one or more controllers
or unmanaged, say, because the timeout of its management
rule has expired. We consider two variations of the manner in
which a switch becomes managed. In the first way, the switch
takes the initiative to contact a given controller. In the other
way, the initiative is on the controller side.

III. OUR APPROACHES

The SDN control plane, that is, a collection of network-
attached servers, must have connectivity to the data plane.
Self-organization is a natural approach to meet this goal while
coping with dynamic conditions, such as arrival and departure
of controllers [4], arbitrary topology changes (switch or link
failures), and communication errors (packet losses or delays).
However, the design of self-organizing mechanisms to build
and maintain connectivity between a distributed control plane
and the data plane raises several fundamental challenges.

Our goal is to place each switch in the network under
the control of a controller and establish routes that support
connectivity of the control plane to the switches as well as
among the controllers themselves. We propose the following
two approaches.

A Timeout-based Approach: Each switch opens an OpenFlow
connection to a single controller whose address is preconfig-
ured in the form of a virtual anycast address. Every controller
constructs an (in-band control) tree. This tree reaches all
switches that this controller manages as well as the other
controllers in the network, as in [5].

To allow the system to add and remove controllers and
switches, we aim to minimize the prior knowledge that any



Algorithm 1: Self-organizing SDN, code for controller pi.
1 local state:
2 responses, most recently received query responses;
3 do forever begin
4 make sure that pi’s direct neighborhood appears in

responses and remove from responses stale
information, e.g., packet forwarding rules that
consider nodes that are unreachable according to
responses;

5 foreach node pj reachable from pi do
6 query pj’s configuration and local neighborhood
7 foreach switch pj reachable from pi do
8 pi becomes an equal manager of pj and updates

its forwarding rules so that pi can communicate
with pj (and any other controller);

9 upon arrival of pj’s query response m begin
10 if no space to store m then responses← ∅;
11 store m in responses (remove pj’s old responses)

switch needs to have about the controllers. We use a pre-
configured anycast controller address at the switches: a logical
IP address shared by all controllers. When unmanaged, a
switch periodically attempts to connect with any controller
using the pre-configured remote controller address, i.e., the
virtual anycast address. When a switch is managed by a con-
troller, that controller can access and modify the configuration
of the switch that determines its behavior.

We devise a control plane in which the controllers are
connected among themselves. This allows the controllers to
use in-band connections for the sake of, for example, deciding
which controller should be the master (unique) manager of
an individual switch. Each controller pc attempts to manage
exclusively, i.e., in the master mode, a set of switches by
preconfiguring them to accept connections from pc. Note
that a controller can take control of an unmanaged switch
using an atomic operation [6]. This way, we provide an in-
band management that decides which controller should be
the manager of a switch following a “first-come-first-served”
approach.

Our approach allows every switch to notice when it is
unmanaged, e.g., when its controller is not live and connected.
The key difficulty here is the passive nature of the switches.
To overcome this difficulty, the algorithm need to make sure
that whenever a switch is disconnected from its controller,
the switch detects controller inactivity and transitions to the
unmanaged state. In turn, this allows other controllers to
connect and re-establish the in-band control plane. We address
this challenge through rule timeouts to detect inactivity and
a set of a-priori rules that encode the switch behavior in
its unmanaged state. These rules are low priority rules that
are masked by other rules, which are installed (and regularly
refreshed) by a controller while the switch is in its managed
state. Importantly, we must be careful to define this unmanaged
configuration through a set of a-priori rules that ensure that
some controller can eventually learn and reestablish connec-
tivity of an unmanaged switch.

One of the important aims is to establish in-band Open-

Flow connections from any switch to a controller. To allow
connecting between controllers and switches to which there is
no direct connection, the algorithm lets each controller install
rules on the switches that it is directly connected to [5]. Then,
the algorithm lets the controller install rules on switches that
are two hops away from it and so on. This iterative process
expands the controller’s (reachable) network. We note that our
approach can also ensure that the controller installs in-band
rules in a way that does not conflict with the rules for regular
data plane traffic.

A Timeout-free Approach: All controllers discover the net-
work topology of the SDN while letting each controller become
the (equal) manager of every switch. Each controller is the root
of a tree that spans, in an in-band manner, the entire control
network (Algorithm 1). Once a controller has discovered the
entire network, it can remove stale information.

In this approach, we avoid preconfiguring addresses, such
as the anycast address that we use in the first approach. This
allows us to deal with the corruption of these addresses and
stop relying on a network infrastructure that supports anycast
addresses. Algorithm 1 configures the switches in a way that
allows (1) each switch to participate in the discovery of its local
topology and (2) any controller to open an OpenFlow session
to them (in an equal mode). By that, the algorithm avoids
preconfiguring any address, which could be subject to errors.
The controllers run a topology discovery algorithm that calls
for the discovery of the local topology (lines 4 to 6 and 9 to 11)
and installs packet forwarding rules that facilitate a connection
between every switch and controllers (lines 7 and 8). By
coupling, in a step by step manner, the local topology discovery
and the construction of paths from every controller to every
switch, the algorithm can include in the control network more
and more switches. We propose to extend Algorithm 1 as
follows. Once a controller has discovered the entire network
topology, it can also remove any information on the switches,
such as forwarding rules, which was installed by any controller
that does not appear in the discovered topology. This addition
will let any controller clean up the switch configuration after
the crash of any other controller.

Acknowledgements. This work was partially supported by
Swedish Vinnova’s project C-ITS Testplattform för framtidens
transportsystem (CHRONOS steg1) as well as by the Danish
Villum project ReNet.

REFERENCES

[1] M. Canini, D. Venzano, P. Peresı́ni, D. Kostic, and J. Rexford, “A NICE
Way to Test OpenFlow Applications,” in NSDI, 2012.

[2] N. Feamster, J. Rexford, and E. W. Zegura, “The Road to SDN: An
Intellectual History of Programmable Networks,” SIGCOMM Comput.
Commun. Rev., vol. 44, no. 2, Apr. 2014.

[3] S. Hassas Yeganeh and Y. Ganjali, “Kandoo: A Framework for Efficient
and Scalable Offloading of Control Applications,” in HotSDN, 2012.

[4] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. Kompella, “Towards
an Elastic Distributed SDN Controller,” in HotSDN, 2013.

[5] L. Schiff, S. Schmid, and M. Canini, “Ground Control to Major Faults:
Towards a Fault Tolerant and Adaptive SDN Control Network,” in DISN,
2016.

[6] L. Schiff, S. Schmid, and P. Kuznetsov, “In-Band Synchronization for
Distributed SDN Control Planes,” SIGCOMM Comput. Commun. Rev.,
vol. 46, no. 1, Jan. 2016.


